1
|
Maigler F, Ladel S, Flamm J, Gänger S, Kurpiers B, Kiderlen S, Völk R, Hamp C, Hartung S, Spiegel S, Soleimanizadeh A, Eberle K, Hermann R, Krainer L, Pitzer C, Schindowski K. Selective CNS Targeting and Distribution with a Refined Region-Specific Intranasal Delivery Technique via the Olfactory Mucosa. Pharmaceutics 2021; 13:pharmaceutics13111904. [PMID: 34834319 PMCID: PMC8620656 DOI: 10.3390/pharmaceutics13111904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022] Open
Abstract
Intranasal drug delivery is a promising approach for the delivery of drugs to the CNS, but too heterogenous, unprecise delivery methods without standardization decrease the quality of many studies in rodents. Thus, the lack of a precise and region-specific application technique for mice is a major drawback. In this study, a previously developed catheter-based refined technique was validated against the conventional pipette-based method and used to specifically reach the olfactory or the respiratory nasal regions. This study successfully demonstrated region-specific administration at the olfactory mucosa resulting in over 20% of the administered fluorescein dose in the olfactory bulbs, and no peripheral bioactivity of insulin detemir and Fc-dependent uptake of two murine IgG1 (11C7 and P3X) along the olfactory pathway to cortex and hippocampus. An scFv of 11C7 showed hardly any uptake to the CNS. Elimination was dependent on the presence of the IgG’s antigen. In summary, it was successfully demonstrated that region-specific intranasal administration via the olfactory region resulted in improved brain targeting and reduced peripheral targeting in mice. The data are discussed with regard to their clinical potential.
Collapse
Affiliation(s)
- Frank Maigler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Simone Ladel
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Flamm
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Stella Gänger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
- Medical Faculty, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Barbara Kurpiers
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany; (B.K.); (C.P.)
| | - Stefanie Kiderlen
- Prospective Instruments LK OG, Stadtstraße 33, 6850 Dornbirn, Austria; (S.K.); (L.K.)
| | - Ronja Völk
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Carmen Hamp
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Sunniva Hartung
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Sebastian Spiegel
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Arghavan Soleimanizadeh
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Katharina Eberle
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Rebecca Hermann
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Lukas Krainer
- Prospective Instruments LK OG, Stadtstraße 33, 6850 Dornbirn, Austria; (S.K.); (L.K.)
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany; (B.K.); (C.P.)
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
- Correspondence:
| |
Collapse
|
2
|
LOTUS, an endogenous Nogo receptor antagonist, is involved in synapse and memory formation. Sci Rep 2021; 11:5085. [PMID: 33658590 PMCID: PMC7930056 DOI: 10.1038/s41598-021-84106-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/12/2021] [Indexed: 11/29/2022] Open
Abstract
The Nogo signal is involved in impairment of memory formation. We previously reported the lateral olfactory tract usher substance (LOTUS) as an endogenous antagonist of the Nogo receptor 1 that mediates the inhibition of axon growth and synapse formation. Moreover, we found that LOTUS plays an essential role in neural circuit formation and nerve regeneration. However, the effects of LOTUS on synapse formation and memory function have not been elucidated. Here, we clearly showed the involvement of LOTUS in synapse formation and memory function. The cultured hippocampal neurons derived from lotus gene knockout (LOTUS-KO) mice exhibited a decrease in synaptic density compared with those from wild-type mice. We also found decrease of dendritic spine formation in the adult hippocampus of LOTUS-KO mice. Finally, we demonstrated that LOTUS deficiency impairs memory formation in the social recognition test and the Morris water maze test, indicating that LOTUS is involved in functions of social and spatial learning and memory. These findings suggest that LOTUS affects synapse formation and memory function.
Collapse
|
3
|
Yu C, Sun X, Li J, Chan SO, Wang L. Analysis of axon divergence at the optic chiasm in nogo-a knockout mice. Neurosci Lett 2020; 731:135109. [PMID: 32492476 DOI: 10.1016/j.neulet.2020.135109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
Our earlier studies have shown that the axon growth inhibitory molecule Nogo affects axon routing at the optic chiasm likely through a differential regulation of Nogo receptor on the optic axons. Using isoform specific antibodies, we further showed that Nogo-A was predominantly expressed by retinal ganglion cells and their axons, while Nogo-B was highly localized on the radial glia at the midline of the chiasm, suggesting a role of Nogo-B in regulating turning of uncrossed axons. To further investigate the roles of Nogo-A in axon divergence, we analyzed the routing of axons in the chiasm of Nogo-A knockout mice during the growth of axons across the midline. At E13 to E16, there was no significant difference in the contralateral projection (P = 0.6943 for E13; P = 0.9867 for E14; P = 0.4121 for E15 and P = 0.3402 for E16). The results also showed the absence of Nogo-A did not cause any obvious change to the ipsilateral projection at the optic chiasm, both for the early generated uncrossed axons at E13 and E14 and the late cohorts at E15-E16, when compared with the wild-type mice (P = 0.4788 for E13; P = 0.188 for E14; P = 0.3152 for E15 and P = 0.432 for E16). These findings support that Nogo-A is not the major isoform to guide the axon divergence in the mouse optic chiasm.
Collapse
Affiliation(s)
- Chao Yu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Medical Examination Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Xiaobo Sun
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Jing Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Sun-On Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Liqing Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
4
|
Sasaki K, Arimoto K, Kankawa K, Terada C, Yamamori T, Watakabe A, Yamamoto N. Rho Guanine Nucleotide Exchange Factors Regulate Horizontal Axon Branching of Cortical Upper Layer Neurons. Cereb Cortex 2020; 30:2506-2518. [PMID: 31768529 DOI: 10.1093/cercor/bhz256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/23/2019] [Indexed: 11/14/2022] Open
Abstract
Axon branching is a crucial process for cortical circuit formation. However, how the cytoskeletal changes in axon branching are regulated is not fully understood. In the present study, we investigated the role of RhoA guanine nucleotide exchange factors (RhoA-GEFs) in branch formation of horizontally elongating axons (horizontal axons) in the mammalian cortex. In situ hybridization showed that more than half of all known RhoA-GEFs were expressed in the developing rat cortex. These RhoA-GEFs were mostly expressed in the macaque cortex as well. An overexpression study using organotypic cortical slice cultures demonstrated that several RhoA-GEFs strongly promoted horizontal axon branching. Moreover, branching patterns were different between overexpressed RhoA-GEFs. In particular, ARHGEF18 markedly increased terminal arbors, whereas active breakpoint cluster region-related protein (ABR) increased short branches in both distal and proximal regions of horizontal axons. Rho kinase inhibitor treatment completely suppressed the branch-promoting effect of ARHGEF18 overexpression, but only partially affected that of ABR, suggesting that these RhoA-GEFs employ distinct downstream pathways. Furthermore, knockdown of either ARHGEF18 or ABR considerably suppressed axon branching. Taken together, the present study revealed that subsets of RhoA-GEFs differentially promote axon branching of mammalian cortical neurons.
Collapse
Affiliation(s)
- Kensuke Sasaki
- Cellular and Molecular Neurobiology Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kei Arimoto
- Cellular and Molecular Neurobiology Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kento Kankawa
- Cellular and Molecular Neurobiology Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chikayo Terada
- Cellular and Molecular Neurobiology Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nobuhiko Yamamoto
- Cellular and Molecular Neurobiology Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Rigby MJ, Gomez TM, Puglielli L. Glial Cell-Axonal Growth Cone Interactions in Neurodevelopment and Regeneration. Front Neurosci 2020; 14:203. [PMID: 32210757 PMCID: PMC7076157 DOI: 10.3389/fnins.2020.00203] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
The developing nervous system is a complex yet organized system of neurons, glial support cells, and extracellular matrix that arranges into an elegant, highly structured network. The extracellular and intracellular events that guide axons to their target locations have been well characterized in many regions of the developing nervous system. However, despite extensive work, we have a poor understanding of how axonal growth cones interact with surrounding glial cells to regulate network assembly. Glia-to-growth cone communication is either direct through cellular contacts or indirect through modulation of the local microenvironment via the secretion of factors or signaling molecules. Microglia, oligodendrocytes, astrocytes, Schwann cells, neural progenitor cells, and olfactory ensheathing cells have all been demonstrated to directly impact axon growth and guidance. Expanding our understanding of how different glial cell types directly interact with growing axons throughout neurodevelopment will inform basic and clinical neuroscientists. For example, identifying the key cellular players beyond the axonal growth cone itself may provide translational clues to develop therapeutic interventions to modulate neuron growth during development or regeneration following injury. This review will provide an overview of the current knowledge about glial involvement in development of the nervous system, specifically focusing on how glia directly interact with growing and maturing axons to influence neuronal connectivity. This focus will be applied to the clinically-relevant field of regeneration following spinal cord injury, highlighting how a better understanding of the roles of glia in neurodevelopment can inform strategies to improve axon regeneration after injury.
Collapse
Affiliation(s)
- Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy M Gomez
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, United States
| |
Collapse
|
6
|
Shepherd DJ, Tsai SY, Cappucci SP, Wu JY, Farrer RG, Kartje GL. The Subventricular Zone Response to Stroke Is Not a Therapeutic Target of Anti-Nogo-A Immunotherapy. J Neuropathol Exp Neurol 2017; 76:683-696. [DOI: 10.1093/jnen/nlx050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Daniel J. Shepherd
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| | - Shih-Yen Tsai
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| | - Stefanie P. Cappucci
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| | - Joanna Y. Wu
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| | - Robert G. Farrer
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| | - Gwendolyn L. Kartje
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| |
Collapse
|
7
|
Pernet V. Nogo-A in the visual system development and in ocular diseases. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1300-1311. [PMID: 28408340 DOI: 10.1016/j.bbadis.2017.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/08/2017] [Accepted: 04/09/2017] [Indexed: 01/02/2023]
Abstract
Nogo-A is a potent myelin-associated inhibitor for neuronal growth and plasticity in the central nervous system (CNS). Its effects are mediated by the activation of specific receptors that intracellularly control cytoskeleton rearrangements, protein synthesis and gene expression. Moreover, Nogo-A has been involved in the development of the visual system and in a variety of neurodegenerative diseases and injury processes that can alter its function. For example, Nogo-A was shown to influence optic nerve myelinogenesis, the formation and maturation of retinal axon projections, and retinal angiogenesis. In adult animals, the inactivation of Nogo-A exerted remarkable effects on visual plasticity. Relieving Nogo-A-induced inhibition increased axonal sprouting after optic nerve lesion and axonal rewiring in the visual cortex of intact adult mice. This review aims at presenting our current knowledge on the role of Nogo-A in the visual system and to discuss how its therapeutic targeting may promote visual improvement in ophthalmic diseases.
Collapse
Affiliation(s)
- Vincent Pernet
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|