1
|
Mungara P, Waiss M, Hartwig S, Burger D, Cordat E. Unraveling the molecular landscape of kAE1: a narrative review. Can J Physiol Pharmacol 2024; 102:396-407. [PMID: 38669699 DOI: 10.1139/cjpp-2023-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Kidney anion exchanger 1 (kAE1) is an isoform of the AE1 protein encoded by the SLC4A1 gene. It is a basolateral membrane protein expressed by α-intercalated cells in the connecting tubules and collecting duct of the kidney. Its main function is to exchange bicarbonate and chloride ions between the blood and urine to maintain blood pH at physiological threshold. The kAE1 protein undergoes multiple post-translational modifications such as phosphorylation and ubiquitination and interacts with many different proteins such as claudin-4 and carbonic anhydrase II. Mutations in the gene may lead to the development of distal renal tubular acidosis, characterized by the failure to acidify the urine, which may result in nephrocalcinosis and in more severe cases, renal failure. In this review, we discuss the structure and function of kAE1, its post-translational modifications, and protein-protein interactions. Finally, we discuss insights gained from the study of kAE1 mutations in humans and in mice.
Collapse
Affiliation(s)
- Priyanka Mungara
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Moubarak Waiss
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sunny Hartwig
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Dylan Burger
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Kidney Research Centre, Ottawa, ON, Canada
| | - Emmanuelle Cordat
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Fu Y, Li S, Nie J, Yan D, Zhang B, Hao X, Zhang H. Expression of PDLIM5 Spliceosomes and Regulatory Functions on Myogenesis in Pigs. Cells 2024; 13:720. [PMID: 38667334 PMCID: PMC11049100 DOI: 10.3390/cells13080720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Meat yield, determined by muscle growth and development, is an important economic trait for the swine industry and a focus of research in animal genetics and breeding. PDZ and LIM domain 5 (PDLIM5) are cytoskeleton-related proteins that play key roles in various tissues and cells. These proteins have multiple isoforms, primarily categorized as short (PDLIM5-short) and long (PDLIM5-long) types, distinguished by the absence and presence of an LIM domain, respectively. However, the expression patterns of swine PDLIM5 isoforms and their regulation during porcine skeletal muscle development remain largely unexplored. We observed that PDLIM5-long was expressed at very low levels in pig muscles and that PDLIM5-short and total PDLIM5 were highly expressed in the muscles of slow-growing pigs, suggesting that PDLIM5-short, the dominant transcript in pigs, is associated with a slow rate of muscle growth. PDLIM5-short suppressed myoblast proliferation and myogenic differentiation in vitro. We also identified two single nucleotide polymorphisms (-258 A > T and -191 T > G) in the 5' flanking region of PDLIM5, which influenced the activity of the promoter and were associated with muscle growth rate in pigs. In summary, we demonstrated that PDLIM5-short negatively regulates myoblast proliferation and differentiation, providing a theoretical basis for improving pig breeding programs.
Collapse
Affiliation(s)
- Yu Fu
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing 100193, China; (Y.F.); (S.L.); (J.N.); (B.Z.)
| | - Shixin Li
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing 100193, China; (Y.F.); (S.L.); (J.N.); (B.Z.)
| | - Jingru Nie
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing 100193, China; (Y.F.); (S.L.); (J.N.); (B.Z.)
| | - Dawei Yan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Bo Zhang
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing 100193, China; (Y.F.); (S.L.); (J.N.); (B.Z.)
| | - Xin Hao
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing 100193, China; (Y.F.); (S.L.); (J.N.); (B.Z.)
| | - Hao Zhang
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing 100193, China; (Y.F.); (S.L.); (J.N.); (B.Z.)
| |
Collapse
|
3
|
Fisher LAB, Schöck F. The unexpected versatility of ALP/Enigma family proteins. Front Cell Dev Biol 2022; 10:963608. [PMID: 36531944 PMCID: PMC9751615 DOI: 10.3389/fcell.2022.963608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
One of the most intriguing features of multicellular animals is their ability to move. On a cellular level, this is accomplished by the rearrangement and reorganization of the cytoskeleton, a dynamic network of filamentous proteins which provides stability and structure in a stationary context, but also facilitates directed movement by contracting. The ALP/Enigma family proteins are a diverse group of docking proteins found in numerous cellular milieus and facilitate these processes among others. In vertebrates, they are characterized by having a PDZ domain in combination with one or three LIM domains. The family is comprised of CLP-36 (PDLIM1), Mystique (PDLIM2), ALP (PDLIM3), RIL (PDLIM4), ENH (PDLIM5), ZASP (PDLIM6), and Enigma (PDLIM7). In this review, we will outline the evolution and function of their protein domains which confers their versatility. Additionally, we highlight their role in different cellular environments, focusing specifically on recent advances in muscle research using Drosophila as a model organism. Finally, we show the relevance of this protein family to human myopathies and the development of muscle-related diseases.
Collapse
|
4
|
Li ZL, Gou CY, Wang WH, Li Y, Cui Y, Duan JJ, Chen Y. A novel effect of PDLIM5 in α7 nicotinic acetylcholine receptor upregulation and surface expression. Cell Mol Life Sci 2022; 79:64. [PMID: 35013841 PMCID: PMC11072317 DOI: 10.1007/s00018-021-04115-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widespread throughout the central nervous system. Signaling through nAChRs contributes to numerous higher-order functions, including memory and cognition, as well as abnormalities such as nicotine addiction and neurodegenerative disorders. Although recent studies indicate that the PDZ-containing proteins comprising PSD-95 family co-localize with nicotinic acetylcholine receptors and mediate downstream signaling in the neurons, the mechanisms by which α7nAChRs are regulated remain unclear. Here, we show that the PDZ-LIM domain family protein PDLIM5 binds to α7nAChRs and plays a role in nicotine-induced α7nAChRs upregulation and surface expression. We find that chronic exposure to 1 μM nicotine upregulated α7, β2-contained nAChRs and PDLIM5 in cultured hippocampal neurons, and the upregulation of α7nAChRs and PDLIM5 is increased more on the cell membrane than the cytoplasm. Interestingly, in primary hippocampal neurons, α7nAChRs and β2nAChRs display distinct patterns of expression, with α7nAChRs colocalized more with PDLIM5. Furthermore, PDLIM5 interacts with α7nAChRs, but not β2nAChRs in native brain neurons. Knocking down of PDLIM5 in SH-SY5Y abolishes nicotine-induced upregulation of α7nAChRs. In primary hippocampal neurons, using shRNA against PDLIM5 decreased both surface clustering of α7nAChRs and α7nAChRs-mediated currents. Proteomics analysis and isothermal titration calorimetry (ITC) results show that PDLIM5 interacts with α7nAChRs through the PDZ domain, and the interaction between PDLIM5 and α7nAChRs can be promoted by nicotine. Collectively, our data suggest a novel cellular role of PDLIM5 in the regulation of α7nAChRs, which may be relevant to plastic changes in the nervous system.
Collapse
Affiliation(s)
- Zi-Lin Li
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Chen-Yu Gou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzho, 510080, Guangdong, People's Republic of China
| | - Wen-Hui Wang
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yuan Li
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzho, 510080, Guangdong, People's Republic of China
| | - Yu Cui
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Jing-Jing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzho, 510080, Guangdong, People's Republic of China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Yuan Chen
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Li X, Cordat E, Schmitt MJ, Becker B. Boosting endoplasmic reticulum folding capacity reduces unfolded protein response activation and intracellular accumulation of human kidney anion exchanger 1 in Saccharomyces cerevisiae. Yeast 2021; 38:521-534. [PMID: 34033682 DOI: 10.1002/yea.3652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/20/2021] [Accepted: 05/21/2021] [Indexed: 11/09/2022] Open
Abstract
Human kidney anion exchanger 1 (kAE1) facilitates simultaneous efflux of bicarbonate and absorption of chloride at the basolateral membrane of α-intercalated cells. In these cells, kAE1 contributes to systemic acid-base balance along with the proton pump v-H+ -ATPase and the cytosolic carbonic anhydrase II. Recent electron microscopy analyses in yeast demonstrate that heterologous expression of several kAE1 variants causes a massive accumulation of the anion transporter in intracellular membrane structures. Here, we examined the origin of these kAE1 aggregations in more detail. Using various biochemical techniques and advanced light and electron microscopy, we showed that accumulation of kAE1 mainly occurs in endoplasmic reticulum (ER) membranes which eventually leads to strong unfolded protein response (UPR) activation and severe growth defect in kAE1 expressing yeast cells. Furthermore, our data indicate that UPR activation is dose dependent and uncoupled from the bicarbonate transport activity. By using truncated kAE1 variants, we identified the C-terminal region of kAE1 as crucial factor for the increased ER stress level. Finally, a redistribution of ER-localized kAE1 to the cell periphery was achieved by boosting the ER folding capacity. Our findings not only demonstrate a promising strategy for preventing intracellular kAE1 accumulation and improving kAE1 plasma membrane targeting but also highlight the versatility of yeast as model to investigate kAE1-related research questions including the analysis of structural features, protein degradation and trafficking. Furthermore, our approach might be a promising strategy for future analyses to further optimize the cell surface targeting of other disease-related PM proteins, not only in yeast but also in mammalian cells.
Collapse
Affiliation(s)
- Xiaobing Li
- Molecular and Cell Biology, Department of Biosciences and Centre of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Emmanuelle Cordat
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Manfred J Schmitt
- Molecular and Cell Biology, Department of Biosciences and Centre of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Björn Becker
- Molecular and Cell Biology, Department of Biosciences and Centre of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| |
Collapse
|
6
|
Huang X, Qu R, Ouyang J, Zhong S, Dai J. An Overview of the Cytoskeleton-Associated Role of PDLIM5. Front Physiol 2020; 11:975. [PMID: 32848888 PMCID: PMC7426503 DOI: 10.3389/fphys.2020.00975] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Regenerative medicine represented by stem cell technology has become one of the pillar medical technologies for human disease treatment. Cytoskeleton plays important roles in maintaining cell morphology, bearing external forces, and maintaining the effectiveness of cell internal structure, among which cytoskeleton related proteins are involved in and play an indispensable role in the changes of cytoskeleton. PDLIM5 is a cytoskeleton-related protein that, like other cytoskeletal proteins, acts as a binding protein. PDZ and LIM domain 5 (PDLIM5), also known as ENH (Enigma homolog), is a cytoplasmic protein with a molecular mass of about 63 KDa that consists of a PDZ domain at the N-terminus and three LIM domains at the C-terminus. PDLIM5 binds to the cytoskeleton and membrane proteins through its PDZ domain and interacts with various signaling molecules, including protein kinases and transcription factors, through its LIM domain. As a cytoskeleton-related protein, PDLIM5 plays an important role in regulating cell proliferation, differentiation and cell fate decision in multiple tissues and cell types. In this review, we briefly summarize the state of knowledge on the PDLIM5 gene, structural properties, and molecular functional mechanisms of the PDLIM5 protein, and its role in cells, tissues, and organ systems, and describe the possible underlying molecular signaling pathways. In the last part of this review, we will focus on discussing the limitations of existing research and the future prospects of PDLIM5 research in turn.
Collapse
Affiliation(s)
- Xiaolan Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shizhen Zhong
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
The kidney anion exchanger 1 affects tight junction properties via claudin-4. Sci Rep 2019; 9:3099. [PMID: 30816203 PMCID: PMC6395713 DOI: 10.1038/s41598-019-39430-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
In the renal collecting duct, intercalated cells regulate acid-base balance by effluxing protons through the v-H+-ATPase, and bicarbonate via apical pendrin or the basolateral kidney anion exchanger 1 (kAE1). Additionally, collecting duct cells play an essential role in transepithelial absorption of sodium and chloride. Expression of kAE1 in polarized MDCK I cells was previously shown to decrease trans-epithelial electrical resistance (TEER), suggesting a novel role for kAE1 in paracellular permeability. In our study, we not only confirmed that inducible expression of kAE1 in mIMCD3 cells decreased TEER but we also observed (i) increased epithelial absolute permeability to both sodium and chloride, and (ii) that this effect was dependent on kAE1 activity. Further, kAE1 regulated tight junction properties through the tight junction protein claudin-4, a protein with which it physically interacts and colocalizes. These findings unveil a novel interaction between the junctional protein claudin-4 and the kidney anion exchanger, which may be relevant to ion and/or pH homeostasis.
Collapse
|
8
|
Mohammed SG, Arjona FJ, Verschuren EHJ, Bakey Z, Alkema W, Hijum S, Schmidts M, Bindels RJM, Hoenderop JGJ. Primary cilia‐regulated transcriptome in the renal collecting duct. FASEB J 2018; 32:3653-3668. [DOI: 10.1096/fj.201701228r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sami G. Mohammed
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Francisco J. Arjona
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Eric H. J. Verschuren
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Zeineb Bakey
- Department of Human GeneticsRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Wynand Alkema
- Centre for Molecular and Biomolecular InformaticsRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Sacha Hijum
- Centre for Molecular and Biomolecular InformaticsRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Miriam Schmidts
- Department of Human GeneticsRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburg University Medical FacultyFreiburgGermany
| | - Rene J. M. Bindels
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Joost G. J. Hoenderop
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|