1
|
Cebeci S, Polat T, Ünübol N. Roles of NET Peptides With Known Antimicrobial Activity and Toxicity in Immune Response. J Immunol Res 2024; 2024:5528446. [PMID: 39759156 PMCID: PMC11698612 DOI: 10.1155/jimr/5528446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/09/2024] [Indexed: 01/07/2025] Open
Abstract
Antimicrobial peptides (AMPs) are crucial components of the innate immune system in all living organisms, playing a vital role in the body's defense against diseases and infections. The immune system's primary functions include preventing disease-causing agents from entering the body and eliminating them without causing harm. These peptides exhibit broad-spectrum activity against bacteria, viruses, fungi, parasites, and cancer cells. They are secreted by innate and epithelial cells and contribute to host defense by inducing cellular activities such as cell migration, proliferation, differentiation, cytokine production, angiogenesis, and wound healing. In response to the growing challenge of bacterial resistance to antimicrobial agents, alternative drugs and new antibacterial molecules are being explored. In a previous study, NET AMPs were synthesized and their antimicrobial effects were determined. The current study extends this work by assessing the effects of these peptides on the immune system through cell culture experiments and ELISA. Specifically, the study investigated how different concentrations of these peptides influence the secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) in mouse macrophages. Among the synthesized peptides, NET1 and NET2 demonstrated low cytotoxicity in TIB-71 RAW 264.7 macrophages. These peptides induced an anti-inflammatory response and reduced IL-6 expression in the absence of LPS stimulation, while simultaneously increasing IFN-γ and TNF-α secretion. These findings suggest that NET1 and NET2 peptides possess both anti-inflammatory and pro-inflammatory properties, highlighting their potential role in modulating immune responses.
Collapse
Affiliation(s)
- Sinan Cebeci
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Tuba Polat
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Nihan Ünübol
- Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Medical Laboratory Technician Program, Vocational School of Health Services, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
2
|
Akinwale AD, Parang K, Tiwari RK, Yamaki J. Mechanistic Study of Antimicrobial Effectiveness of Cyclic Amphipathic Peptide [R 4W 4] against Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Antibiotics (Basel) 2024; 13:555. [PMID: 38927221 PMCID: PMC11201061 DOI: 10.3390/antibiotics13060555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are being explored as a potential strategy to combat antibiotic resistance due to their ability to reduce susceptibility to antibiotics. This study explored whether the [R4W4] peptide mode of action is bacteriostatic or bactericidal using modified two-fold serial dilution and evaluating the synergism between gentamicin and [R4W4] against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) by a checkered board assay. [R4W4] exhibited bactericidal activity against bacterial isolates (MBC/MIC ≤ 4), with a synergistic effect with gentamicin against E. coli (FICI = 0.3) but not against MRSA (FICI = 0.75). Moreover, we investigated the mechanism of action of [R4W4] against MRSA by applying biophysical assays to evaluate zeta potential, cytoplasmic membrane depolarization, and lipoteichoic acid (LTA) binding affinity. [R4W4] at a 16 mg/mL concentration stabilized the zeta potential of MRSA -31 ± 0.88 mV to -8.37 mV. Also, [R4W4] at 2 × MIC and 16 × MIC revealed a membrane perturbation process associated with concentration-dependent effects. Lastly, in the presence of BODIPY-TR-cadaverine (BC) fluorescence dyes, [R4W4] exhibited binding affinity to LTA comparable with melittin, the positive control. In addition, the antibacterial activity of [R4W4] against MRSA remained unchanged in the absence and presence of LTA, with an MIC of 8 µg/mL. Therefore, the [R4W4] mechanism of action is deemed bactericidal, involving interaction with bacterial cell membranes, causing concentration-dependent membrane perturbation. Additionally, after 30 serial passages, there was a modest increment of MRSA strains resistant to [R4W4] and a change in antibacterial effectiveness MIC [R4W4] and vancomycin by 8 and 4 folds with a slight change in Levofloxacin MIC 1 to 2 µg/mL. These data suggest that [R4W4] warrants further consideration as a potential AMP.
Collapse
Affiliation(s)
- Ajayi David Akinwale
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA (K.P.)
- Department of Pharmacy Practice, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA (K.P.)
| | - Rakesh Kumar Tiwari
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific–Northwest, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Jason Yamaki
- Department of Pharmacy Practice, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
3
|
Paul S, Verma S, Chen YC. Peptide Dendrimer-Based Antibacterial Agents: Synthesis and Applications. ACS Infect Dis 2024; 10:1034-1055. [PMID: 38428037 PMCID: PMC11019562 DOI: 10.1021/acsinfecdis.3c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Pathogenic bacteria cause the deaths of millions of people every year. With the development of antibiotics, hundreds and thousands of people's lives have been saved. Nevertheless, bacteria can develop resistance to antibiotics, rendering them insensitive to antibiotics over time. Peptides containing specific amino acids can be used as antibacterial agents; however, they can be easily degraded by proteases in vivo. To address these issues, branched peptide dendrimers are now being considered as good antibacterial agents due to their high efficacy, resistance to protease degradation, and low cytotoxicity. The ease with which peptide dendrimers can be synthesized and modified makes them accessible for use in various biological and nonbiological fields. That is, peptide dendrimers hold a promising future as antibacterial agents with prolonged efficacy without bacterial resistance development. Their in vivo stability and multivalence allow them to effectively target multi-drug-resistant strains and prevent biofilm formation. Thus, it is interesting to have an overview of the development and applications of peptide dendrimers in antibacterial research, including the possibility of employing machine learning approaches for the design of AMPs and dendrimers. This review summarizes the synthesis and applications of peptide dendrimers as antibacterial agents. The challenges and perspectives of using peptide dendrimers as the antibacterial agents are also discussed.
Collapse
Affiliation(s)
- Suchita Paul
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Sandeep Verma
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
- Gangwal
School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Yu-Chie Chen
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
4
|
Zhang M, Wang J, Li C, Wu S, Liu W, Zhou C, Ma L. Cathelicidin AS-12W Derived from the Alligator sinensis and Its Antimicrobial Activity Against Drug-Resistant Gram-Negative Bacteria In Vitro and In Vivo. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10250-2. [PMID: 38587584 DOI: 10.1007/s12602-024-10250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Antimicrobial peptides (AMPs) have the potential to treat multidrug-resistant bacterial infections. Cathelicidins are a class of cationic antimicrobial peptides that are found in nearly all vertebrates. Herein, we determined the mature peptide region of Alligator sinensis cathelicidin by comparing its cathelicidin peptide sequence with those of other reptiles and designed nine peptide mutants based on the Alligator sinensis cathelicidin mature peptide. According to the antibacterial activity and cytotoxicity screening, the peptide AS-12W demonstrated broad-spectrum antibacterial activity and exhibited low erythrocyte hemolytic activity. In particular, AS-12W exhibited strong antibacterial activity and rapid bactericidal activity against carbapenem-resistant Pseudomonas aeruginosa in vitro. Additionally, AS-12W effectively removed carbapenem-resistant P. aeruginosa from blood and organs in vivo, leading to improved survival rates in septic mice. Furthermore, AS-12W exhibited good stability and tolerance to harsh conditions such as high heat, high salt, strong acid, and strong alkali, and it also displayed high stability toward trypsin and simulated gastric fluid (SGF). Moreover, AS-12W showed significant anti-inflammatory effects in vitro by inhibiting the production of proinflammatory factors induced by lipopolysaccharide (LPS). Due to its antibacterial mechanism against Escherichia coli, we found that this peptide could neutralize the negative charge on the surface of the bacteria and disrupt the integrity of the bacterial cell membrane. In addition, AS-12W has the ability to bind to the genomic DNA of bacteria and stimulate the production of reactive oxygen species (ROS) within bacteria, which is believed to be the reason for the good antibacterial activity of AS-12W. These results demonstrated that AS-12W exhibits remarkable antibacterial activity, particularly against carbapenem-resistant P. aeruginosa. Therefore, it is a potential candidate for antibacterial drug development.
Collapse
Affiliation(s)
- Meina Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jian Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chao Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Shaoju Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Wei Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Changlin Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
5
|
Tiwari K, Patel P, Mondal AH, Mukhopadhyay K. Interaction with lipopolysaccharide is key to efficacy of tryptophan- and arginine-rich α-melanocyte-stimulating hormone analogs against Gram-negative bacteria. Future Microbiol 2024; 19:195-211. [PMID: 38126934 DOI: 10.2217/fmb-2023-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/20/2023] [Indexed: 12/23/2023] Open
Abstract
Aim: In order to search for novel antibacterial therapeutics against Gram-negative bacteria, the antibacterial efficacies and mechanism of action of tryptophan- and arginine-rich α-melanocyte-stimulating hormone analogs were investigated. Materials & methods: We performed a killing assay to determine their efficacy; fluorescence, microscopic studies were used to understand their mechanism and peptide-lipopolysaccharide interaction. A checkerboard assay was used to find the effective combination of peptide and antibiotics. Results: Ana-peptides displayed good killing activity against Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Their strong interaction with lipopolysaccharide damaged the bacterial membranes and led to their subsequent death. Ana-5, the highest cationic and hydrophobic analog, emerged as the most potent peptide, showing synergistic action with rifampicin and erythromycin. Conclusion: Ana-5 can be presented as an important therapeutic candidate against bacterial infections.
Collapse
Affiliation(s)
- Kanchan Tiwari
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priya Patel
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aftab H Mondal
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
6
|
Xing H, Loya-Perez V, Franzen J, Denton PW, Conda-Sheridan M, Rodrigues de Almeida N. Designing peptide amphiphiles as novel antibacterials and antibiotic adjuvants against gram-negative bacteria. Bioorg Med Chem 2023; 94:117481. [PMID: 37776750 DOI: 10.1016/j.bmc.2023.117481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Gram-negative strains are intrinsically resistant to most antibiotics due to the robust and impermeable characteristic of their outer membrane. Self-assembling cationic peptide amphiphiles (PAs) have the ability to disrupt bacteria membranes, constituting an excellent antibacterial alternative to small molecule drugs that can be used alone or as antibiotic adjuvants to overcome bacteria resistance. PA1 (C16KHKHK), self-assembled into micelles, which exhibited low antibacterial activity against all strains tested, and showed strong synergistic antibacterial activity in combination with Vancomycin with a Fractional Inhibitory Concentration index (FICi) of 0.15 against E. coli. The molecules, PA2 (C16KRKR) and PA3 (C16AAAKRKR), also self-assembled into micelles, displayed a broad-spectrum antibacterial activity against all strains tested, and low susceptibility to resistance development over 21 days. Finally, PA1, PA 2 and PA3 displayed low cytotoxicity against mammalian cells, and PA2 showed a potent antibacterial activity and low toxicity in preliminary in vivo models using G. mellonella. The results show that PAs are a great platform for the future development of effective antibiotics to slow down the antibiotic resistance and can act as antibiotic adjuvants with synergistic mechanism of action, which can be repurposed for use with existing antibiotics commonly used to treat gram-positive bacteria to treat infections caused by gram-negative bacteria.
Collapse
Affiliation(s)
- Huihua Xing
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Vanessa Loya-Perez
- Department of Chemistry, University of Nebraska Omaha, Omaha, NE 68182, United States
| | - Joshua Franzen
- Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, United States
| | - Paul W Denton
- Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, United States
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | | |
Collapse
|
7
|
Acharya Y, Taneja KK, Haldar J. Dual functional therapeutics: mitigating bacterial infection and associated inflammation. RSC Med Chem 2023; 14:1410-1428. [PMID: 37593575 PMCID: PMC10429821 DOI: 10.1039/d3md00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/21/2023] [Indexed: 08/19/2023] Open
Abstract
The emergence of antimicrobial resistance, coupled with the occurrence of persistent systemic infections, has already complicated clinical therapy efforts. Moreover, infections are also accompanied by strong inflammatory responses, generated by the host's innate and adaptive immune systems. The closely intertwined relationship between bacterial infection and inflammation has multiple implications on the ability of antibacterial therapeutics to tackle infection and inflammation. Particularly, uncontrolled inflammatory responses to infection can lead to sepsis, a life-threatening physiological condition. In this review, we discuss dual-functional antibacterial therapeutics that have potential to be developed for treating inflammation associated with bacterial infections. Immense research is underway that aims to develop new therapeutic agents that, when administered, regulate the excess inflammatory response, i.e. they have immunomodulatory properties along with the desired antibacterial activity. The classes of antibiotics that have immunomodulatory function in addition to antibacterial activity have been reviewed. Host defense peptides and their synthetic mimics are amongst the most sought-after solutions to develop such dual-functional therapeutics. This review also highlights the important classes of peptidomimetics that exhibit both antibacterial and immunomodulatory properties.
Collapse
Affiliation(s)
- Yash Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
| | - Kashish Kumar Taneja
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
| |
Collapse
|
8
|
Mazurkiewicz-Pisarek A, Baran J, Ciach T. Antimicrobial Peptides: Challenging Journey to the Pharmaceutical, Biomedical, and Cosmeceutical Use. Int J Mol Sci 2023; 24:ijms24109031. [PMID: 37240379 DOI: 10.3390/ijms24109031] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial peptides (AMPs), or host defence peptides, are short proteins in various life forms. Here we discuss AMPs, which may become a promising substitute or adjuvant in pharmaceutical, biomedical, and cosmeceutical uses. Their pharmacological potential has been investigated intensively, especially as antibacterial and antifungal drugs and as promising antiviral and anticancer agents. AMPs exhibit many properties, and some of these have attracted the attention of the cosmetic industry. AMPs are being developed as novel antibiotics to combat multidrug-resistant pathogens and as potential treatments for various diseases, including cancer, inflammatory disorders, and viral infections. In biomedicine, AMPs are being developed as wound-healing agents because they promote cell growth and tissue repair. The immunomodulatory effects of AMPs could be helpful in the treatment of autoimmune diseases. In the cosmeceutical industry, AMPs are being investigated as potential ingredients in skincare products due to their antioxidant properties (anti-ageing effects) and antibacterial activity, which allows the killing of bacteria that contribute to acne and other skin conditions. The promising benefits of AMPs make them a thrilling area of research, and studies are underway to overcome obstacles and fully harness their therapeutic potential. This review presents the structure, mechanisms of action, possible applications, production methods, and market for AMPs.
Collapse
Affiliation(s)
- Anna Mazurkiewicz-Pisarek
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Joanna Baran
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Tomasz Ciach
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
9
|
Sowers A, Wang G, Xing M, Li B. Advances in Antimicrobial Peptide Discovery via Machine Learning and Delivery via Nanotechnology. Microorganisms 2023; 11:1129. [PMID: 37317103 PMCID: PMC10223199 DOI: 10.3390/microorganisms11051129] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 06/16/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been investigated for their potential use as an alternative to antibiotics due to the increased demand for new antimicrobial agents. AMPs, widely found in nature and obtained from microorganisms, have a broad range of antimicrobial protection, allowing them to be applied in the treatment of infections caused by various pathogenic microorganisms. Since these peptides are primarily cationic, they prefer anionic bacterial membranes due to electrostatic interactions. However, the applications of AMPs are currently limited owing to their hemolytic activity, poor bioavailability, degradation from proteolytic enzymes, and high-cost production. To overcome these limitations, nanotechnology has been used to improve AMP bioavailability, permeation across barriers, and/or protection against degradation. In addition, machine learning has been investigated due to its time-saving and cost-effective algorithms to predict AMPs. There are numerous databases available to train machine learning models. In this review, we focus on nanotechnology approaches for AMP delivery and advances in AMP design via machine learning. The AMP sources, classification, structures, antimicrobial mechanisms, their role in diseases, peptide engineering technologies, currently available databases, and machine learning techniques used to predict AMPs with minimal toxicity are discussed in detail.
Collapse
Affiliation(s)
- Alexa Sowers
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
10
|
Yang XF, Liu X, Yan XY, Shang DJ. Effects of frog skin peptide temporin-1CEa and its analogs on ox-LDL induced macrophage-derived foam cells. Front Pharmacol 2023; 14:1139532. [PMID: 37021059 PMCID: PMC10067733 DOI: 10.3389/fphar.2023.1139532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Purpose: Atherosclerosis is one of the most important pathological foundations of cardiovascular and cerebrovascular diseases with high morbidity and mortality. Studies have shown that macrophages play important roles in lipid accumulation in the vascular wall and thrombosis formation in atherosclerotic plaques. This study aimed to explore the effect of frog skin antimicrobial peptides (AMPs) temporin-1CEa and its analogs on ox-LDL induced macrophage-derived foam cells.Methods: CCK-8, ORO staining, and intracellular cholesterol measurements were used to study cellular activity, lipid droplet formation and cholesterol levels, respectively. ELISA, real-time quantitative PCR, Western blotting and flow cytometry analysis were used to study the expression of inflammatory factors, mRNA and proteins associated with ox-LDL uptake and cholesterol efflux in macrophage-derived foam cells, respectively. Furthermore, the effects of AMPs on inflammation signaling pathways were studied.Results: Frog skin AMPs could significantly increase the cell viability of the ox-LDL-induced foaming macrophages and decrease the formation of intracellular lipid droplets and the levels of total cholesterol and cholesterol ester (CE). Frog skin AMPs inhibited foaming formation by reducing the protein expression of CD36, which regulates ox-LDL uptake but had no effect on the expression of efflux proteins ATP binding cassette subfamily A/G member 1 (ABCA1/ABCG1). Then, decreased mRNA expression of NF-κB and protein expression of p-NF-κB p65, p-IκB, p-JNK, p-ERK, p-p38 and the release of TNF-α and IL-6 occurred after exposure to the three frog skin AMPs.Conclusion: Frog skin peptide temporin-1CEa and its analogs can improve the ox-LDL induced formation of macrophage-derived foam cells, in addition, inhibit inflammatory cytokine release through inhibiting the NF-κB and MAPK signaling pathways, thereby inhibiting inflammatory responses in atherosclerosis.
Collapse
Affiliation(s)
- Xue-Feng Yang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- School of Basic Medical Sciences, Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Xin Liu
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Xiao-Yi Yan
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - De-Jing Shang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- *Correspondence: De-Jing Shang,
| |
Collapse
|
11
|
Mazaheri Tehrani M, Erfani M, Goudarzi M. Inflammation scintigraphy imaging through a novel antimicrobial peptide labeled with technetium-99m in an animal model. Int J Radiat Biol 2023; 99:673-680. [PMID: 35939321 DOI: 10.1080/09553002.2022.2110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
PURPOSE Antimicrobial peptides (AMPs), due to their biological properties, have great potential for radiopharmaceutical development. In this research, a new antimicrobial peptide, derived from a 21-residue antimicrobial peptide microcinJ25 (MccJ25), was utilized to diagnose inflamed sites in mice bodies after labeling with [99mTc]Tc. MATERIALS AND METHODS An antimicrobial peptide derivative was connected with an efficient chelator, hydrazinonicotinamide, and then labeled with [99mTc]Tc. The binding of labeled microcinJ25 conjugate to lymphocyte was investigated in vitro. Turpentine oil-induced inflammation uptake and tissue distribution were assessed through the animal pattern. Detector scanning was done through scintigraphy post injection of [99mTc]Tc-radiopeptide within different time points. RESULTS High radiochemical purity (>98%) was obtained for [99mTc]Tc-radiopeptide. Lymphocyte binding assessment showed specific cell binding. Binding Inhibition was observed when additional unlabeled conjugate was used. In in vivo biological distribution studies, the uptake for inflamed tissue was 1.52 ± 0.12%ID/g. The inflammation site was visualized by scintigraphy imaging at 1 up to 2 hours. CONCLUSION Based on our results this new designed [99mTc]Tc-radiopeptide was able to detect inflammation sites early and with high resolution, and could be considered a promising diagnostic candidate in inflammatory diseases.
Collapse
Affiliation(s)
- Maryam Mazaheri Tehrani
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mostafa Erfani
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mostafa Goudarzi
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
12
|
Rivera-Jiménez J, Berraquero-García C, Pérez-Gálvez R, García-Moreno PJ, Espejo-Carpio FJ, Guadix A, Guadix EM. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: sources, structural features and modulation mechanisms. Food Funct 2022; 13:12510-12540. [PMID: 36420754 DOI: 10.1039/d2fo02223k] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammation is the response of the immune system to harmful stimuli such as tissue injury, infection or toxic chemicals, which has the aim of eliminating irritants or pathogenic microorganisms and enhancing tissue repair. Uncontrolled long-lasting acute inflammation can gradually progress to chronic, causing a variety of chronic inflammatory diseases that are usually treated with anti-inflammatory drugs, but most of them are inadequate to control chronic responses and are also associated with adverse side effects. Thus, many efforts are being directed to develop alternative and more selective anti-inflammatory therapies from natural products. One main field of interest is the obtaining of bioactive peptides exhibiting anti-inflammatory activity from sustainable protein sources like edible insects or agroindustry and fishing by-products. This work highlighted the structure-activity relationship of anti-inflammatory peptides. Small peptides with molecular weight under 1 kDa and amino acid chain length between 2 to 20 residues are generally the most active because of the higher probability to be absorbed in the intestine and penetrate into cells when compared with the larger size peptides. The presence of hydrophobic (Val, Ile, Pro) and positively charged (His, Arg, Lys) amino acids is another common occurrence for anti-inflammatory peptides. Interestingly, a high percentage (77%) of these bioactive peptides can be found in alternative sustainable protein sources such as Tenebrio molitor or sunflower, apart from its original protein source. However, not all of these peptides with anti-inflammatory potential in vitro achieve good scores by the in silico bioactivity predictors studied. Therefore, it is essential to implement current bioinformatics tools, in order to complement in vitro experiments with prior prediction of potential bioactive peptides.
Collapse
Affiliation(s)
- Julia Rivera-Jiménez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | | | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
13
|
Pranantyo D, Zhang K, Si Z, Hou Z, Chan-Park MB. Smart Multifunctional Polymer Systems as Alternatives or Supplements of Antibiotics To Overcome Bacterial Resistance. Biomacromolecules 2022; 23:1873-1891. [PMID: 35471022 DOI: 10.1021/acs.biomac.1c01614] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent years, infectious diseases have again become a critical threat to global public health largely due to the challenges posed by antimicrobial resistance. Conventional antibiotics have played a crucial role in combating bacterial infections; however, their efficacy is significantly impaired by widespread drug resistance. Natural antimicrobial peptides (AMPs) and their polymeric mimics demonstrate great potential for killing bacteria with low propensity of resistance as they target the microbial membrane rather than a specific molecular target, but they are also toxic to the host eukaryotic cells. To minimize antibiotics systemic spread and the required dose that promote resistance and to advocate practical realization of the promising activity of AMPs and polymers, smart systems to target bacteria are highly sought after. This review presents bacterial recognition by various specific targeting molecules and the delivery systems of active components in supramolecules. Bacteria-induced activations of antimicrobial-based nanoformulations are also included. Recent advances in the bacteria targeting and delivery of synthetic antimicrobial agents may assist in developing new classes of highly selective antimicrobial systems which can improve bactericidal efficacy and greatly minimize the spread of bacterial resistance.
Collapse
|
14
|
Influence of Acetylation on the Mechanism of Action of Antimicrobial Peptide L163. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Gong Y, Li H, Wu F, Zhang X, Zhou Y, Zhang S. A short peptide derived from zebrafish
AP
‐2 complex subunit
mu‐A AP2M1A
354
–382
has antimicrobial activity against multi‐drug resistant bacteria. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi Gong
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity Ocean University of China Qingdao China
| | - Haoyi Li
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity Ocean University of China Qingdao China
| | - Fei Wu
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity Ocean University of China Qingdao China
| | - Xiangmin Zhang
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity Ocean University of China Qingdao China
| | - Yucong Zhou
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity Ocean University of China Qingdao China
| | - Shicui Zhang
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity Ocean University of China Qingdao China
- Laboratory for Marine Biology and Biotechnology Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China
| |
Collapse
|
16
|
Potent antibacterial and antibiofilm activities of TICbf-14, a peptide with increased stability against trypsin. J Microbiol 2021; 60:89-99. [PMID: 34964945 DOI: 10.1007/s12275-022-1368-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 10/19/2022]
Abstract
The poor stability of peptides against trypsin largely limits their development as potential antibacterial agents. Here, to obtain a peptide with increased trypsin stability and potent antibacterial activity, TICbf-14 derived from the cationic peptide Cbf-14 was designed by the addition of disulfide-bridged hendecapeptide (CWTKSIPPKPC) loop. Subsequently, the trypsin stability and antimicrobial and antibiofilm activities of this peptide were evaluated. The possible mechanisms underlying its mode of action were also clarified. The results showed that TICbf-14 exhibited elevated trypsin inhibitory activity and effectively mitigated lung histopathological damage in bacteria-infected mice by reducing the bacterial counts, further inhibiting the systemic dissemination of bacteria and host inflammation. Additionally, TICbf-14 significantly repressed bacterial swimming motility and notably inhibited biofilm formation. Considering the mode of action, we observed that TICbf-14 exhibited a potent membrane-disruptive mechanism, which was attributable to its destructive effect on ionic bridges between divalent cations and LPS of the bacterial membrane. Overall, TICbf-14, a bifunctional peptide with both antimicrobial and trypsin inhibitory activity, is highly likely to become an ideal candidate for drug development against bacteria.
Collapse
|
17
|
Shin YP, Lee JH, Choi RY, Lee HJ, Baek M, Kim IW, Seo M, Kim MA, Kim SH, Hwang JS. Antiseptic effect of antimicrobial peptide psacotheasin 2 derived from the yellow-spotted longicorn beetle (Psacothea hilaris). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104140. [PMID: 34033840 DOI: 10.1016/j.dci.2021.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Given the challenges posed by antibiotic resistant microbes and the high mortality rate associated with sepsis, there is an urgent need to develop novel peptide antibiotics that exhibit both antimicrobial and anti-inflammatory activities. Herein, we evaluated antimicrobial activity and anti-inflammatory activity of psacotheasin 2, one of the antimicrobial peptide candidates identified previously using an in silico analysis on the transcriptome of Psacothea hilaris. In addition to exhibiting antimicrobial activities against microorganisms without inducing hemolysis, psacotheasin 2 also decreased the nitric oxide production in lipopolysaccharide (LPS)-induced Raw264.7 cells. Moreover, ELISA and western blot analysis revealed that psacotheasin 2 reduced the expression levels of pro-inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Further, we found that psacotheasin 2 markedly reduced the expression levels of pro-inflammatory cytokines (IL-6 and IL-1β) by regulating mitogen-activated protein kinases (MAPKs) and nuclear factor-kB (NF-kB) signaling in LPS-induced Raw264.7 cells. We also confirmed that the binding of psacotheasin 2 to bacterial cell membranes occurs via a specific interaction with LPS. In mouse models of LPS-induced shock, psacotheasin 2 significantly enhanced the survival rate and recovered weight by attenuating pro-inflammatory cytokines. Thus, psacotheasin 2 could be a promising candidate as a peptide antiseptic agent.
Collapse
Affiliation(s)
- Yong Pyo Shin
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Joon Ha Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Ra-Yeong Choi
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Hwa Jeong Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Minhee Baek
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - In-Woo Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Minchul Seo
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Mi-Ae Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Seong Hyun Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea.
| |
Collapse
|
18
|
Zhong L, Liu J, Teng S, Xie Z. Identification of a Novel Cathelicidin from the Deinagkistrodon acutus Genome with Antibacterial Activity by Multiple Mechanisms. Toxins (Basel) 2020; 12:toxins12120771. [PMID: 33291852 PMCID: PMC7762006 DOI: 10.3390/toxins12120771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
The abuse of antibiotics and the consequent increase of drug-resistant bacteria constitute a serious threat to human health, and new antibiotics are urgently needed. Research shows that antimicrobial peptides produced by natural organisms are potential substitutes for antibiotics. Based on Deinagkistrodonacutus (known as five-pacer viper) genome bioinformatics analysis, we discovered a new cathelicidin antibacterial peptide which was called FP-CATH. Circular dichromatic analysis showed a typical helical structure. FP-CATH showed broad-spectrum antibacterial activity. It has antibacterial activity to Gram-negative bacteria and Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA). The results of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that FP-CATH could cause the change of bacterial cell integrity, having a destructive effect on Gram-negative bacteria and inducing Gram-positive bacterial surface formation of vesicular structure. FP-CATH could bind to LPS and showed strong binding ability to bacterial DNA. In vivo, FP-CATH can improve the survival rate of nematodes in bacterial invasion experiments, and has a certain protective effect on nematodes. To sum up, FP-CATH is likely to play a role in multiple mechanisms of antibacterial action by impacting bacterial cell integrity and binding to bacterial biomolecules. It is hoped that the study of FP-CATH antibacterial mechanisms will prove useful for development of novel antibiotics.
Collapse
|
19
|
Degasperi M, Agostinis C, Mardirossian M, Maschio M, Taddio A, Bulla R, Scocchi M. The Anti-Pseudomonal Peptide D-BMAP18 Is Active in Cystic Fibrosis Sputum and Displays Anti-Inflammatory In Vitro Activity. Microorganisms 2020; 8:microorganisms8091407. [PMID: 32932703 PMCID: PMC7565916 DOI: 10.3390/microorganisms8091407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
Most Cystic Fibrosis (CF) patients succumb to airway inflammation and pulmonary infections due to Pseudomonas aeruginosa. D-BMAP18, a membrane-permeabilizing antimicrobial peptide composed of D-amino acids, was evaluated as a possible antibacterial aimed to address this issue. The antipseudomonal activity of D-BMAP18 was tested in a pathophysiological context. The peptide displayed activity against CF isolates of Pseudomonas aeruginosa in the presence of CF sputum when combined with sodium chloride and DNase I. In combination with DNase I, D-BMAP18 discouraged the deposition of new biofilm and eradicated preformed biofilms of some P. aeruginosa strains. In addition, D-BMAP18 down regulated the production of TNF-α, IL1-β, and TGF-β in LPS-stimulated or IFN-γ macrophages derived from THP-1 cells indicating an anti-inflammatory activity. The biocompatibility of D-BMAP18 was assessed using four different cell lines, showing that residual cell-specific cytotoxicity at bactericidal concentrations could be abolished by the presence of CF sputum. Overall, this study suggests that D-BMAP18 may be an interesting molecule as a starting point to develop a novel therapeutic agent to simultaneously contrast lung infections and inflammation in CF patients.
Collapse
Affiliation(s)
- Margherita Degasperi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.D.); (R.B.)
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (C.A.); (M.M.)
| | - Mario Mardirossian
- Department of Medical Sciences, University of Trieste, 34125 Trieste, Italy;
| | - Massimo Maschio
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (C.A.); (M.M.)
| | - Andrea Taddio
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (C.A.); (M.M.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.D.); (R.B.)
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.D.); (R.B.)
- Correspondence:
| |
Collapse
|
20
|
Grassi L, Pompilio A, Kaya E, Rinaldi AC, Sanjust E, Maisetta G, Crabbé A, Di Bonaventura G, Batoni G, Esin S. The Anti-Microbial Peptide (Lin-SB056-1) 2-K Reduces Pro-Inflammatory Cytokine Release through Interaction with Pseudomonas aeruginosa Lipopolysaccharide. Antibiotics (Basel) 2020; 9:antibiotics9090585. [PMID: 32911618 PMCID: PMC7557804 DOI: 10.3390/antibiotics9090585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 01/09/2023] Open
Abstract
The ability of many anti-microbial peptides (AMPs) to modulate the host immune response has highlighted their possible therapeutic use to reduce uncontrolled inflammation during chronic infections. In the present study, we examined the anti-inflammatory potential of the semi-synthetic peptide lin-SB056-1 and its dendrimeric derivative (lin-SB056-1)2-K, which were previously found to have anti-microbial activity against Pseudomonas aeruginosa in in vivo-like models mimicking the challenging environment of chronically infected lungs (i.e., artificial sputum medium and 3-D lung mucosa model). The dendrimeric derivative exerted a stronger anti-inflammatory activity than its monomeric counterpart towards lung epithelial- and macrophage-cell lines stimulated with P. aeruginosa lipopolysaccharide (LPS), based on a marked decrease (up to 80%) in the LPS-induced production of different pro-inflammatory cytokines (i.e., IL-1β, IL-6 and IL-8). Accordingly, (lin-SB056-1)2-K exhibited a stronger LPS-binding affinity than its monomeric counterpart, thereby suggesting a role of peptide/LPS neutralizing interactions in the observed anti-inflammatory effect. Along with the anti-bacterial and anti-biofilm properties, the anti-inflammatory activity of (lin-SB056-1)2-K broadens its therapeutic potential in the context of chronic (biofilm-associated) infections.
Collapse
Affiliation(s)
- Lucia Grassi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa PI, Italy; (L.G.); (E.K.); (G.M.)
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti CH, Italy; (A.P.); (G.D.B.)
| | - Esingül Kaya
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa PI, Italy; (L.G.); (E.K.); (G.M.)
| | - Andrea C. Rinaldi
- Department of Biomedical Sciences, University of Cagliari, 09142 Monserrato CA, Italy; (A.C.R.); (E.S.)
| | - Enrico Sanjust
- Department of Biomedical Sciences, University of Cagliari, 09142 Monserrato CA, Italy; (A.C.R.); (E.S.)
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa PI, Italy; (L.G.); (E.K.); (G.M.)
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Gent, Belgium;
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti CH, Italy; (A.P.); (G.D.B.)
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa PI, Italy; (L.G.); (E.K.); (G.M.)
- Correspondence: (G.B.); (S.E.)
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa PI, Italy; (L.G.); (E.K.); (G.M.)
- Correspondence: (G.B.); (S.E.)
| |
Collapse
|
21
|
Bee venom-derived antimicrobial peptide melectin has broad-spectrum potency, cell selectivity, and salt-resistant properties. Sci Rep 2020; 10:10145. [PMID: 32576874 PMCID: PMC7311438 DOI: 10.1038/s41598-020-66995-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides have attracted attention as alternatives to conventional antibiotics. Previously, a novel antimicrobial peptide, melectin, consisting of 18 amino acids was isolated from the venom of a bee, Melecta albifrons. Here, we investigated the antibacterial activity of melectin against drug-resistant bacteria. Melectin showed broad-spectrum antimicrobial activity but low cytotoxicity and no hemolytic activity. Melectin maintained its antimicrobial activity at physiological salt concentrations. Melectin is an α-helical structure that binds to the bacterial membrane via electrostatic interactions and kills bacteria in a short time by bacterial membrane targeting. Collectively, our results suggest that melectin has antibacterial activity and anti-inflammatory activity.
Collapse
|
22
|
Singh J, Mumtaz S, Joshi S, Mukhopadhyay K. In Vitro and Ex Vivo Efficacy of Novel Trp-Arg Rich Analogue of α-MSH against Staphylococcus aureus. ACS OMEGA 2020; 5:3258-3270. [PMID: 32118141 PMCID: PMC7045321 DOI: 10.1021/acsomega.9b03307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/17/2020] [Indexed: 05/04/2023]
Abstract
Antimicrobial peptides (AMPs), an essential component of innate immunity, are very important resources for human therapeutics to counter the current threat of drug resistance. We have previously established that one such AMP, α-melanocyte stimulating hormone (α-MSH), an endogenous neuropeptide, and its derivatives have potent antimicrobial activity against Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA). However, the immense potential of α-MSH for therapeutic development against staphylococcal infections is marred by its reduced efficacy in the presence of standard microbiological culture medium. To overcome this issue, in this study, we designed a series of five novel analogues of the C-terminal fragment of α-MSH, i.e., α-MSH(6-13), by replacing uncharged and less hydrophobic residues with tryptophan and arginine to increase the hydrophobicity and cationic charge of the peptide, respectively. While all of the peptides showed a preferential interaction with negatively charged phospholipid vesicles, the most hydrophobic and cationic peptide, i.e., Ana-5, exhibited the highest activity against S. aureus cells while maintaining cell selectivity. Moreover, Ana-5 could retain its activity even in complex media like the Mueller Hinton broth and displayed rapid bactericidal activity in the presence of serum. Ana-5 also caused rapid bacterial membrane depolarization, permeabilization, and cell lysis and was able to bind to polyanionic plasmid DNA suggesting a possible dual mode of action of the peptide. Importantly, Ana-5 was able to eradicate intracellular S. aureus in fibroblast cells similar to conventional antibiotics. Collectively, in the present study, we obtained a potent α-MSH-based analogue with excellent staphylocidal potency in microbial growth medium and ex vivo efficacy, which may translate into therapeutic application.
Collapse
|
23
|
Dong W, Luo X, Sun Y, Li Y, Wang C, Guan Y, Shang D. Binding Properties of DNA and Antimicrobial Peptide Chensinin-1b Containing Lipophilic Alkyl Tails. J Fluoresc 2020; 30:131-142. [DOI: 10.1007/s10895-019-02478-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/26/2019] [Indexed: 11/29/2022]
|
24
|
Bellavita R, Raucci F, Merlino F, Piccolo M, Ferraro MG, Irace C, Santamaria R, Iqbal AJ, Novellino E, Grieco P, Mascolo N, Maione F. Temporin L-derived peptide as a regulator of the acute inflammatory response in zymosan-induced peritonitis. Biomed Pharmacother 2019; 123:109788. [PMID: 31865142 DOI: 10.1016/j.biopha.2019.109788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 01/29/2023] Open
Abstract
Antimicrobial peptides (AMPs) are an ancient group of defense molecules distributed in nature being found in mammals, birds, amphibians, insects, plants, and microorganisms. They display antimicrobial as well as immunomodulatory properties. The aim of this study was to investigate, for the first time, the anti-inflammatory activities of two synthetic temporin-L analogues (here named peptide 1 and 2) by an in vivo model of inflammation caused by intraperitoneal sub-lethal dose of zymosan. Our results show that peptide 1 and 2 exert anti-inflammatory activity in vivo in response to zymosan-induce peritonitis. Simultaneous administration of 10 mg/kg of both temporins, with a sub-lethal dose of zymosan (500 mg/kg), significantly rescued mice from the classical hallmarks of inflammation, including leukocyte infiltration and synthesis of inflammatory mediators including IL-6, TNF-α and MCP-1. More importantly, flow cytometry analysis highlighted a selective modulation of infiltrating inflammatory monocytes (defined as B220-/GR1hi-F480hi/CD115+) after peptide 2 treatment. Our results and presented models offer the possibility to test, in a preclinical setting, the potential of temporin analogues as anti-inflammatory agents.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Federica Raucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Francesco Merlino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Rita Santamaria
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ettore Novellino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | - Nicola Mascolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
25
|
Short tryptophan- and arginine-rich peptide shows efficacy against clinical methicillin-resistant Staphylococcus aureus strains isolated from skin and soft tissue infections. Sci Rep 2019; 9:17176. [PMID: 31748670 PMCID: PMC6868180 DOI: 10.1038/s41598-019-53926-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/07/2019] [Indexed: 11/28/2022] Open
Abstract
In recent years methicillin-resistant Staphylococcus aureus has posed a challenge in treating skin and soft tissue infections. Finding new antimicrobial agents has therefore become imperative. We evaluated the in vitro antimicrobial activity of a synthetic peptide, P6, against multidrug resistant clinical strains of Staphylococcus aureus isolated from skin and soft tissue infections. The P6 antimicrobial effect was evaluated in vitro by determining MIC/MBC, the ratio of live/dead cells and the effects induced at membrane level. The therapeutic efficiency was determined against human skin cells. P6 inhibited growth for all strains between 8 and 16 mg/L and killed all bacterial strains at 16 mg/L. The therapeutic potential was found to be 30 and 15 in the presence of BSA. We showed that P6 localizes at membrane level, where it acts slowly, by depolarizing it and affecting its integrity. P6 can be considered a good candidate for use as an antimicrobial agent in topical applications.
Collapse
|
26
|
Goto C, Hirano M, Hayashi K, Kikuchi Y, Hara-Kudo Y, Misawa T, Demizu Y. Development of Amphipathic Antimicrobial Peptide Foldamers Based on Magainin 2 Sequence. ChemMedChem 2019; 14:1911-1916. [PMID: 31667994 DOI: 10.1002/cmdc.201900460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/27/2019] [Indexed: 11/07/2022]
Abstract
Magainin 2 (Mag 2), which is isolated from the skin of frogs, is a representative antimicrobial peptide (AMP), exerts its antimicrobial activity via microbial membrane disruption. It has been reported that both the amphipathicity and helical structure of Mag 2 play an important role in its antimicrobial activity. In this study, we revealed that the sequence of 17 amino acid residues in Mag 2 (peptide 7) is required to exert sufficient activity. We also designed a set of Mag 2 derivatives, based on enhancement of helicity and/or amphipathicity, by incorporation of α,α-disubstituted amino acid residues into the Mag 2 fragment, and evaluated their preferred secondary structures and their antimicrobial activities against both Gram-positive and Gram-negative bacteria. As a result, peptide 11 formed a stable helical structure in solution, and possessed potent antimicrobial activities against both Gram-positive and Gram-negative bacteria without significant cytotoxicity.
Collapse
Affiliation(s)
- Chihiro Goto
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.,Graduate School of Medical Health Sciences, Yokohama City University, Yokohama-shi, Kanagawa, 230-0045, Japan
| | - Motoharu Hirano
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Katsuhiko Hayashi
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Yutaka Kikuchi
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.,Department of Nutrition, Chiba Prefectural University of Health Sciences University, 2-10-1 Wakaba, Mihama-ku, Chiba, 261-0014, Japan
| | - Yukiko Hara-Kudo
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Takashi Misawa
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Yosuke Demizu
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.,Graduate School of Medical Health Sciences, Yokohama City University, Yokohama-shi, Kanagawa, 230-0045, Japan
| |
Collapse
|
27
|
Li R, Chen C, Zhang B, Jing H, Wang Z, Wu C, Hao P, Kuang Y, Yang M. The chromogranin A-derived antifungal peptide CGA-N9 induces apoptosis in Candida tropicalis. Biochem J 2019; 476:3069-3080. [PMID: 31652303 PMCID: PMC6824672 DOI: 10.1042/bcj20190483] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
CGA-N9, a peptide derived from human chromogranin A (CGA), was found to have antimicrobial activity in our previous investigation, but its mechanism of action remains unclear. Herein, the mechanism of action of CGA-N9 was investigated. We found that CGA-N9 induced the depolarization of the cell membrane and uptake of calcium ions into the cytosol and mitochondria. With the disruption of the mitochondrial membrane potential, the generation of intracellular reactive oxygen species (ROS) increased. Accordingly, we assessed apoptotic processes in Candida tropicalis cells post-treatment with CGA-N9 and found cytochrome c leakage, chromatin condensation and DNA degradation. The interaction of CGA-N9 with DNA in vitro showed that CGA-N9 did not degrade DNA but bound to DNA via an electrostatic interaction. In conclusion, CGA-N9 exhibits antifungal activity by inducing apoptosis in C. tropicalis.
Collapse
Affiliation(s)
- Ruifang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chen Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Beibei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongjuan Jing
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chunling Wu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Pu Hao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yong Kuang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Minghang Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
28
|
Misawa T, Goto C, Shibata N, Hirano M, Kikuchi Y, Naito M, Demizu Y. Rational design of novel amphipathic antimicrobial peptides focused on the distribution of cationic amino acid residues. MEDCHEMCOMM 2019; 10:896-900. [PMID: 31303986 PMCID: PMC6590335 DOI: 10.1039/c9md00166b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 01/19/2023]
Abstract
Antimicrobial peptides (AMPs) have garnered much attention as novel therapeutic agents against infectious diseases. They exhibit antimicrobial activity through microbial membrane disruption based on their amphipathic properties. In this study, we rationally designed and synthesized a series of novel AMPs Block, Stripe, and Random, and revealed that Stripe exhibits potent antimicrobial activity against Gram-positive and Gram-negative microbes. Moreover, we also demonstrated that Stripe disrupts both Gram-positive and Gram-negative mimetic bacterial membranes. Finally, we investigated the hemolytic activity and cytotoxicity in human blood cells and human cell lines, and found that Stripe exhibited neither. These data indicated that Stripe is a promising antimicrobial reagent that does not display significant cytotoxicity.
Collapse
Affiliation(s)
- Takashi Misawa
- Division of Organic Chemistry , National Institute of Health Sciences , 3-25-26, Tonomachi , Kawasaki , Kanagawa 210-9501 , Japan .
| | - Chihiro Goto
- Division of Organic Chemistry , National Institute of Health Sciences , 3-25-26, Tonomachi , Kawasaki , Kanagawa 210-9501 , Japan .
- Graduate School of Medical Life Science , Yokohama City University , 1-7-29 , Yokohama , Kanagawa 230-0045 , Japan
| | - Norihito Shibata
- Division of Molecular Target and Gene Therapy Products , National Institute of Health Sciences , 3-25-26, Tonomachi , Kawasaki , Kanagawa 210-9501 , Japan
| | - Motoharu Hirano
- Division of Organic Chemistry , National Institute of Health Sciences , 3-25-26, Tonomachi , Kawasaki , Kanagawa 210-9501 , Japan .
| | - Yutaka Kikuchi
- Division of Microbiology , National Institute of Health Sciences , 3-25-26, Tonomachi , Kawasaki , Kanagawa 210-9501 , Japan
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products , National Institute of Health Sciences , 3-25-26, Tonomachi , Kawasaki , Kanagawa 210-9501 , Japan
| | - Yosuke Demizu
- Division of Organic Chemistry , National Institute of Health Sciences , 3-25-26, Tonomachi , Kawasaki , Kanagawa 210-9501 , Japan .
- Graduate School of Medical Life Science , Yokohama City University , 1-7-29 , Yokohama , Kanagawa 230-0045 , Japan
| |
Collapse
|
29
|
Seyedjavadi SS, Khani S, Zare-Zardini H, Halabian R, Goudarzi M, Khatami S, Imani Fooladi AA, Amani J, Razzaghi-Abyaneh M. Isolation, functional characterization, and biological properties of MCh-AMP1, a novel antifungal peptide from Matricaria chamomilla L. Chem Biol Drug Des 2019; 93:949-959. [PMID: 30773822 DOI: 10.1111/cbdd.13500] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/13/2019] [Accepted: 02/09/2019] [Indexed: 12/27/2022]
Abstract
The antimicrobial activities of natural products have attracted much attention due to the increasing incidence of pathogens that have become resistant to drugs. Thus, it has been attempted to promisingly manage infectious diseases via a new group of therapeutic agents called antimicrobial peptides. In this study, a novel antifungal peptide, MCh-AMP1, was purified by reverse phase HPLC and sequenced by de novo sequencing and Edman degradation. The antifungal activity, safety, thermal, and pH stability of MCh-AMP1 were determined. This peptide demonstrated an antifungal activity against the tested Candida and Aspergillus species with MIC values in the range of 3.33-6.66 μM and 6.66-13.32 μM, respectively. Further, physicochemical properties and molecular modeling of MCh-AMP1 were evaluated. MCh-AMP1 demonstrated 3.65% hemolytic activity at the concentration of 13.32 μM on human red blood cells and 10% toxicity after 48 hr at the same concentration on HEK293 cell lines. The antifungal activity of MCh-AMP1 against Candida albicans was stable at a temperature range of 30-50°C and at the pH level of 7-11. The present study indicates that MCh-AMP1 may be considered as a new antifungal agent with therapeutic potential against major human pathogenic fungi.
Collapse
Affiliation(s)
| | - Soghra Khani
- Department of Mycology, Pasteur Institute of Iran, Tehran, Iran
| | - Hadi Zare-Zardini
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
30
|
CGA-N9, an antimicrobial peptide derived from chromogranin A: direct cell penetration of and endocytosis by Candida tropicalis. Biochem J 2019; 476:483-497. [PMID: 30610128 PMCID: PMC6362824 DOI: 10.1042/bcj20180801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/22/2018] [Accepted: 01/04/2019] [Indexed: 12/15/2022]
Abstract
CGA-N9 is a peptide derived from the N-terminus of human chromogranin A comprising amino acids 47–55. Minimum inhibitory concentration (MIC) assays showed that CGA-N9 had antimicrobial activity and exhibited time-dependent inhibition activity against Candida tropicalis, with high safety in human red blood cells (HRBCs) and mouse brain microvascular endothelial cells (bEnd.3). According to the results of transmission electron microscopy (TEM), flow cytometry and confocal microscopy, CGA-N9 accumulated in cells without destroying the integrity of the cell membrane; the peptide was initially localized to the cell membrane and subsequently internalized into the cytosol. An investigation of the cellular internalization mechanism revealed that most CGA-N9 molecules entered the yeast cells, even at 4°C and in the presence of sodium azide (NaN3), both of which block all energy-dependent transport mechanisms. In addition, peptide internalization was affected by the endocytic inhibitors 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), cytochalasin D (CyD) and heparin; chlorpromazine (CPZ) also had some effect on CGA-N9 internalization. Similar results were obtained in the MIC assays, whereby the anticandidal activity of CGA-N9 was blocked to different degrees in the presence of EIPA, CyD, heparin or CPZ. Therefore, most CGA-N9 passes through the C. tropicalis cell membrane via direct cell penetration, whereas the remainder enters through macropinocytosis and sulfate proteoglycan-mediated endocytosis, with a slight contribution from clathrin-mediated endocytosis.
Collapse
|
31
|
Yu Z, Kong Y, Luo Z, Liu T, Lin J. Anti-bacterial activity of mutant chensinin-1 peptide against multidrug-resistant Pseudomonas aeruginosa and its effects on biofilm-associated gene expression. Exp Ther Med 2019; 17:2031-2038. [PMID: 30867692 PMCID: PMC6396000 DOI: 10.3892/etm.2019.7182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/26/2018] [Indexed: 01/23/2023] Open
Abstract
Nosocomial infections with Pseudomonas aeruginosa (PA) are difficult to treat due to the low outer membrane permeability of the bacterium and the development of resistance. In the present study, the anti-microbial peptide (AMP) mutant chensinin-1 (MC1) was revealed to exhibit anti-bacterial activity against a multidrug-resistant PA (MRPA) strain in vitro, and the minimum inhibitory concentration was 25 µM, which was 4-fold higher than that of the native strain. MC1 was able to disrupt the integrity of the cytoplasmic membrane in the native PA strain and MRPA and had a similar membrane depolarization ability in these strains, but the outer membrane permeability of MRPA cells was lower than that of native PA cells, as determined by a 1-N-phenylnaphthylamine assay. In addition, the abundance of the gene Psl encoding for biofilm-associated polysaccharides was detected using Congo red, and a high concentration of MC1 inhibited the formation of MRPA biofilms. Furthermore, the expression levels of biofilm-associated genes affected by the AMP, MC1, were quantified by polymerase chain reaction analysis. The results indicated that MC1 induced biofilm inhibition by downregulating the relative expression of specific biofilm polysaccharide-associated genes, including pelA, algD and pslA. The present results indicated that the AMP MC1 may be an effective antibiotic against MRPA strains.
Collapse
Affiliation(s)
- Zhiyuan Yu
- Department of Comprehensive Chemotherapy, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya Medical School of Central South University, Changsha, Hunan 410006, P.R. China
| | - Yi Kong
- Department of Comprehensive Chemotherapy, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya Medical School of Central South University, Changsha, Hunan 410006, P.R. China
| | - Zhenqin Luo
- Department of Comprehensive Chemotherapy, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya Medical School of Central South University, Changsha, Hunan 410006, P.R. China
| | - Tongtong Liu
- Department of Biotechnology, School of Life Science, Liaoning Normal University, Dalian, Liaoning 116081, P.R. China
| | - Jinguan Lin
- Department of Comprehensive Chemotherapy, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya Medical School of Central South University, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
32
|
Wang J, Dou X, Song J, Lyu Y, Zhu X, Xu L, Li W, Shan A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med Res Rev 2018; 39:831-859. [PMID: 30353555 DOI: 10.1002/med.21542] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022]
Abstract
Antimicrobial peptides (AMPs), critical components of the innate immune system, are widely distributed throughout the animal and plant kingdoms. They can protect against a broad array of infection-causing agents, such as bacteria, fungi, parasites, viruses, and tumor cells, and also exhibit immunomodulatory activity. AMPs exert antimicrobial activities primarily through mechanisms involving membrane disruption, so they have a lower likelihood of inducing drug resistance. Extensive studies on the structure-activity relationship have revealed that net charge, hydrophobicity, and amphipathicity are the most important physicochemical and structural determinants endowing AMPs with antimicrobial potency and cell selectivity. This review summarizes the recent advances in AMPs development with respect to characteristics, structure-activity relationships, functions, antimicrobial mechanisms, expression regulation, and applications in food, medicine, and animals.
Collapse
Affiliation(s)
- Jiajun Wang
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xiujing Dou
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jing Song
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yinfeng Lyu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xin Zhu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Lin Xu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Weizhong Li
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
33
|
CGA-N12, a peptide derived from chromogranin A, promotes apoptosis of Candida tropicalis by attenuating mitochondrial functions. Biochem J 2018; 475:1385-1396. [PMID: 29559502 PMCID: PMC5902677 DOI: 10.1042/bcj20170894] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
CGA-N12 (the amino acid sequence from the 65th to the 76th residue of the N-terminus of chromagranin A) is an antifungal peptide derived from human chromogranin A (CGA). In our previous investigation, CGA-N12 was found to have specific anti-candidal activity, though the mechanism of action remained unclear. Here, we investigated the effects of CGA-N12 on mitochondria. We found that CGA-N12 induced an over-generation of intracellular reactive oxygen species and dissipation in mitochondrial membrane potential, in which the former plays key roles in the initiation of apoptosis and the latter is a sign of the cell apoptosis. Accordingly, we assessed the apoptosis features of Candida tropicalis cells after treatment with CGA-N12 and found the following: leakage of cytochrome c and uptake of calcium ions into mitochondria and the cytosol; metacaspase activation; and apoptotic phenotypes, such as chromatin condensation and DNA degradation. In conclusion, CGA-N12 is capable of inducing apoptosis in C. tropicalis cells through mitochondrial dysfunction and metacaspase activation. Antifungal peptide CGA-N12 from human CGA exhibits a novel apoptotic mechanism as an antifungal agent.
Collapse
|
34
|
He W, Zhao A, Zou J, Luo X, Lin X, Wang L, Lin C. Synthesis, in vitro coagulation activities and molecular docking studies on three L-histidine amide derivatives. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7184-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Dong N, Wang Z, Chou S, Zhang L, Shan A, Jiang J. Antibacterial activities and molecular mechanism of amino-terminal fragments from pig nematode antimicrobial peptide CP-1. Chem Biol Drug Des 2018; 91:1017-1029. [PMID: 29266746 DOI: 10.1111/cbdd.13165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/18/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022]
Abstract
High manufacturing costs and weak cell selectivity have limited the clinical application of naturally occurring peptides when faced with an outbreak of drug resistance. To overcome these limitations, a set of antimicrobial peptides was synthesized with the general sequence of (WL)n, where n = 1, 2, 3, and WL was truncated from the N-terminus of Cecropin P1 without initial serine residues. The antimicrobial peptide WL3 exhibited stronger antimicrobial activity against both Gram-negative and Gram-positive microbes than the parental peptide CP-1. WL3 showed no hemolysis even at the highest test concentrations compared to the parental peptide CP-1. The condition sensitivity assays (salts, serum, and trypsin) demonstrated that WL3 had high stability in vitro. Fluorescence spectroscopy and electron microscopy indicated that WL3 killed microbes by means of penetrating the membrane and causing cell lysis. In a mouse model, WL3 was able to significantly reduce the bacteria load in major organs and cytokines (TNF-α, IL-6, and IL-1β) levels in serum. In summary, these findings suggest that WL3, which was modified from a natural antimicrobial peptide, has enormous potential for application as a novel antibacterial agent.
Collapse
Affiliation(s)
- Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Zhihua Wang
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Shuli Chou
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Licong Zhang
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Junguang Jiang
- The State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|