1
|
Wang R, Roiuk M, Storer F, Teleman AA, Amoyel M. Signals from the niche promote distinct modes of translation initiation to control stem cell differentiation and renewal in the Drosophila testis. PLoS Biol 2025; 23:e3003049. [PMID: 40067813 DOI: 10.1371/journal.pbio.3003049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/20/2025] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
Stem cells have the unique ability among adult cells to give rise to cells of different identities. To do so, they must change gene expression in response to environmental signals. Much work has focused on how transcription is regulated to achieve these changes; however, in many cell types, transcripts and proteins correlate poorly, indicating that post-transcriptional regulation is important. To assess how translational control can influence stem cell fate, we use the Drosophila testis as a model. The testis niche secretes a ligand to activate the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway in two stem cell populations, germline stem cells (GSCs) and somatic cyst stem cells (CySCs). We find that global translation rates are high in CySCs and decrease during differentiation, and that JAK/STAT signaling regulates translation. To determine how translation was regulated, we knocked down translation initiation factors and found that the cap binding complex, eIF4F, is dispensable in differentiating cells, but is specifically required in CySCs for self-renewal, acting downstream of JAK/STAT activity. Moreover, we identify eIF3d1 as a key regulator of CySC fate, and show that two eIF3d1 residues subject to regulation by phosphorylation are critical to maintain CySC self-renewal. We further show that Casein Kinase II (CkII), which controls eIF3d1 phosphorylation, influences the binding of eIF3d and eIF4F in mammalian cells, and that CkII expression is sufficient to restore CySC function in the absence of JAK/STAT. We propose a model in which niche signals regulate a specific translation programme in which only some mRNAs are translated. The mechanism we identify allows stem cells to switch between modes of translation, adding a layer of regulation on top of transcription and providing cells with the ability to rapidly change gene expression upon receiving external stimuli.
Collapse
Affiliation(s)
- Ruoxu Wang
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Mykola Roiuk
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | - Freya Storer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Aurelio A Teleman
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
García-Tejera R, Tian JY, Amoyel M, Grima R, Schumacher LJ. Licensing and niche competition in spermatogenesis: mathematical models suggest complementary regulation of tissue maintenance. Development 2025; 152:dev202796. [PMID: 39745313 PMCID: PMC11829763 DOI: 10.1242/dev.202796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 11/21/2024] [Indexed: 02/17/2025]
Abstract
To maintain and regenerate adult tissues after injury, division and differentiation of tissue-resident stem cells must be precisely regulated. It remains elusive which regulatory strategies prevent exhaustion or overgrowth of the stem cell pool, whether there is coordination between multiple mechanisms, and how to detect them from snapshots. In Drosophila testes, somatic stem cells transition to a state that licenses them to differentiate, but remain capable of returning to the niche and resuming cell division. Here, we build stochastic mathematical models for the somatic stem cell population to investigate how licensing contributes to homeostasis. We find that licensing, in combination with differentiation occurring in pairs, is sufficient to maintain homeostasis and prevent stem cell extinction from stochastic fluctuations. Experimental data have shown that stem cells are competing for niche access, and our mathematical models demonstrate that this contributes to the reduction in the variability of stem cell numbers but does not prevent extinction. Hence, a combination of both regulation strategies, licensing with pairwise differentiation and competition for niche access, may be needed to reduce variability and prevent extinction simultaneously.
Collapse
Affiliation(s)
- Rodrigo García-Tejera
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jing-Yi Tian
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Linus J. Schumacher
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
3
|
Kaneko T, Li R, He Q, Yang L, Ye B. Transsynaptic BMP Signaling Regulates Fine-Scale Topography between Adjacent Sensory Neurons. eNeuro 2024; 11:ENEURO.0322-24.2024. [PMID: 39137988 PMCID: PMC11360983 DOI: 10.1523/eneuro.0322-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Sensory axons projecting to the central nervous system are organized into topographic maps that represent the locations of sensory stimuli. In some sensory systems, even adjacent sensory axons are arranged topographically, forming "fine-scale" topographic maps. Although several broad molecular gradients are known to instruct coarse topography, we know little about the molecular signaling that regulates fine-scale topography at the level of two adjacent axons. Here, we provide evidence that transsynaptic bone morphogenetic protein (BMP) signaling mediates local interneuronal communication to regulate fine-scale topography in the nociceptive system of Drosophila larvae. We first show that the topographic separation of the axon terminals of adjacent nociceptors requires their common postsynaptic target, the A08n neurons. This phenotype is recapitulated by knockdown of the BMP ligand, Decapentaplegic (Dpp), in these neurons. In addition, removing the Type 2 BMP receptors or their effector (Mad transcription factor) in single nociceptors impairs the fine-scale topography, suggesting the contribution of BMP signaling originated from A08n. This signaling is likely mediated by phospho-Mad in the presynaptic terminals of nociceptors to ensure local interneuronal communication. Finally, reducing Dpp levels in A08n reduces the nociceptor-A08n synaptic contacts. Our data support that transsynaptic BMP signaling establishes the fine-scale topography by facilitating the formation of topographically correct synapses. Local BMP signaling for synapse formation may be a developmental strategy that independently regulates neighboring axon terminals for fine-scale topography.
Collapse
Affiliation(s)
- Takuya Kaneko
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Ruonan Li
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
- School of Medicine, Dalian University, Dalian 116622, China
| | - Qun He
- School of Medicine, Dalian University, Dalian 116622, China
| | - Limin Yang
- School of Medicine, Dalian University, Dalian 116622, China
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
4
|
Berry CW, Fuller MT. Functional septate junctions between cyst cells are required for survival of transit amplifying male germ cells expressing Bag of marbles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587826. [PMID: 38617328 PMCID: PMC11014526 DOI: 10.1101/2024.04.02.587826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In adult stem cell lineages, the cellular microenvironment plays essential roles to ensure the proper balance of self-renewal, differentiation and regulated elimination of differentiating cells. Although regulated death of progenitor cells undergoing proliferation or early differentiation is a feature of many tissues, mechanisms that initiate this pruning remain unexplored, particularly in the male germline, where up to 30% of the germline is eliminated before the meiotic divisions. We conducted a targeted screen to identify functional regulators required in somatic support cells for survival or differentiation at early steps in the male germ line stem cell lineage. Cell type-specific knockdown in cyst cells uncovered novel roles of genes in germline stem cell differentiation, including a previously unappreciated role of the Septate Junction (SJ) in preventing cell death of differentiating germline progenitors. Loss of the SJ in the somatic cyst cells resulted in elimination of transit-amplifying spermatogonia by the 8-cell stage. Germ cell death was spared in males mutant for the differentiation factor bam indicating that intact barriers surrounding transit amplifying progenitors are required to ensure germline survival once differentiation has initiated.
Collapse
Affiliation(s)
- Cameron W. Berry
- Department of Developmental Biology, Stanford University School of Medicine, USA
| | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, USA
- Department of Genetics, Stanford University School of Medicine, USA
| |
Collapse
|
5
|
Zohar-Fux M, Ben-Hamo-Arad A, Arad T, Volin M, Shklyar B, Hakim-Mishnaevski K, Porat-Kuperstein L, Kurant E, Toledano H. The phagocytic cyst cells in Drosophila testis eliminate germ cell progenitors via phagoptosis. SCIENCE ADVANCES 2022; 8:eabm4937. [PMID: 35714186 PMCID: PMC9205596 DOI: 10.1126/sciadv.abm4937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Phagoptosis is a frequently occurring nonautonomous cell death pathway in which phagocytes eliminate viable cells. While it is thought that phosphatidylserine (PS) "eat-me" signals on target cells initiate the process, the precise sequence of events is largely unknown. Here, we show that in Drosophila testes, progenitor germ cells are spontaneously removed by neighboring cyst cells through phagoptosis. Using live imaging with multiple markers, we demonstrate that cyst cell-derived early/late endosomes and lysosomes fused around live progenitors to acidify them, before DNA fragmentation and substantial PS exposure on the germ cell surface. Furthermore, the phagocytic receptor Draper is expressed on cyst cell membranes and is necessary for phagoptosis. Significantly, germ cell death is blocked by knockdown of either the endosomal component Rab5 or the lysosomal associated protein Lamp1, within the cyst cells. These data ascribe an active role for phagocytic cyst cells in removal of live germ cell progenitors.
Collapse
Affiliation(s)
- Maayan Zohar-Fux
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Aya Ben-Hamo-Arad
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Tal Arad
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Marina Volin
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Boris Shklyar
- Bioimaging Unit, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Ketty Hakim-Mishnaevski
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Lilach Porat-Kuperstein
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Estee Kurant
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Hila Toledano
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| |
Collapse
|
6
|
Butsch TJ, Dubuisson O, Johnson AE, Bohnert KA. A meiotic switch in lysosome activity supports spermatocyte development in young flies but collapses with age. iScience 2022; 25:104382. [PMID: 35620438 PMCID: PMC9126793 DOI: 10.1016/j.isci.2022.104382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/01/2021] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
Gamete development ultimately influences animal fertility. Identifying mechanisms that direct gametogenesis, and how they deteriorate with age, may inform ways to combat infertility. Recently, we found that lysosomes acidify during oocyte maturation in Caenorhabditis elegans, suggesting that a meiotic switch in lysosome activity promotes female germ-cell health. Using Drosophila melanogaster, we report that lysosomes likewise acidify in male germ cells during meiosis. Inhibiting lysosomes in young-male testes causes E-cadherin accumulation and loss of germ-cell partitioning membranes. Notably, analogous changes occur naturally during aging; in older testes, a reduction in lysosome acidity precedes E-cadherin accumulation and membrane dissolution, suggesting one potential cause of age-related spermatocyte abnormalities. Consistent with lysosomes governing the production of mature sperm, germ cells with homozygous-null mutations in lysosome-acidifying machinery fail to survive through meiosis. Thus, lysosome activation is entrained to meiotic progression in developing sperm, as in oocytes, and lysosomal dysfunction may instigate male reproductive aging. Lysosomes acidify at the mitotic-meiotic transition in the testis Acidic lysosomes support germ-cell membrane stability Lysosome acidity naturally declines in the aging male germline Lysosome acidification is required for mature sperm production
Collapse
|
7
|
Yuen AC, Hillion KH, Wang R, Amoyel M. Germ cells commit somatic stem cells to differentiation following priming by PI3K/Tor activity in the Drosophila testis. PLoS Genet 2021; 17:e1009609. [PMID: 34898607 PMCID: PMC8699969 DOI: 10.1371/journal.pgen.1009609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/23/2021] [Accepted: 11/27/2021] [Indexed: 01/05/2023] Open
Abstract
How and when potential becomes restricted in differentiating stem cell daughters is poorly understood. While it is thought that signals from the niche are actively required to prevent differentiation, another model proposes that stem cells can reversibly transit between multiple states, some of which are primed, but not committed, to differentiate. In the Drosophila testis, somatic cyst stem cells (CySCs) generate cyst cells, which encapsulate the germline to support its development. We find that CySCs are maintained independently of niche self-renewal signals if activity of the PI3K/Tor pathway is inhibited. Conversely, PI3K/Tor is not sufficient alone to drive differentiation, suggesting that it acts to license cells for differentiation. Indeed, we find that the germline is required for differentiation of CySCs in response to PI3K/Tor elevation, indicating that final commitment to differentiation involves several steps and intercellular communication. We propose that CySC daughter cells are plastic, that their fate depends on the availability of neighbouring germ cells, and that PI3K/Tor acts to induce a primed state for CySC daughters to enable coordinated differentiation with the germline. Stem cells are unique in their ability to regenerate adult tissues by dividing to provide new stem cells, a process called self-renewal, and cells that will differentiate and maintain tissue function. How and when the daughters that differentiate lose the ability to self-renew is still poorly understood. Self-renewal depends on signals that are provided by the supportive micro-environment, or niche, in which the stem cells reside. It was assumed that simply losing access to this environment and the signals it provides was sufficient to direct differentiation. Here we use the Drosophila testis as a model to show that this is not the case. Instead, differentiation must be actively induced by signalling, and stem cells deprived of all signals can be maintained. Studying the relative timings of the various inputs into differentiation leads us to propose that a series of events ensure appropriate differentiation. First, stem cells receive differentiation-inducing signals that promote a permissive, or primed, state which is reversible and does not preclude self-renewal. The final commitment comes from interacting with other cells in the tissue, ensuring that differentiation always occurs in a coordinated manner among the different cell types composing this tissue.
Collapse
Affiliation(s)
- Alice C. Yuen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Kenzo-Hugo Hillion
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Ruoxu Wang
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Gadre P, Nitsure N, Mazumdar D, Gupta S, Ray K. The rates of stem cell division determine the cell cycle lengths of its lineage. iScience 2021; 24:103232. [PMID: 34746698 PMCID: PMC8555441 DOI: 10.1016/j.isci.2021.103232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/10/2021] [Accepted: 10/01/2021] [Indexed: 01/10/2023] Open
Abstract
Adult stem cells and their transit-amplifying progeny alter their proliferation rates to maintain tissue homeostasis. To test how the division rates of stem cells and transit-amplifying progeny affect tissue growth and differentiation, we developed a computation strategy that estimates the average cell-cycle lengths (lifespans) of germline stem cells and their progeny from fixed-tissue demography in the Drosophila testis. Analysis of the wild-type data using this method indicated that during the germline transit-amplification, the cellular lifespans extend by nearly 1.3-fold after the first division and shrink by about 2-folds after the second division. Cell-autonomous perturbations of the stem cell lifespan accordingly altered the lifespans of successive transit-amplifying stages. Remarkably, almost 2-fold alterations in the lifespans of stem cells and their immediate daughters did not affect the subsequent differentiation. The results indicate that the early germline division rates can adjust the following division rates and the onset of differentiation. Prediction of cellular lifespan from the demography of transit-amplifying cells Lifespans of spermatogonial cells change anomalously during transit-amplification Anomalous lifespan extension during transit-amplification precedes the onset of Bam Lifespan changes of early TA stages readjust that of the subsequent stages
Collapse
Affiliation(s)
- Purna Gadre
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Nitin Nitsure
- School of Mathematics, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Debasmita Mazumdar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India.,Biology Department, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Samir Gupta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India.,Department of Molecular and Life Sciences, University Zurich, 80006 Zürich, Switzerland
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| |
Collapse
|
9
|
Gadre P, Chatterjee S, Varshney B, Ray K. Cyclin E and Cdk1 regulate the termination of germline transit-amplification process in Drosophila testis. Cell Cycle 2020; 19:1786-1803. [PMID: 32573329 DOI: 10.1080/15384101.2020.1780381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An extension of the G1 is correlated with stem cell differentiation. The role of cell cycle regulation during the subsequent transit amplification (TA) divisions is, however, unclear. Here, we report for the first time that in the Drosophila male germline lineage, the transit amplification divisions accelerate after the second TA division. The cell cycle phases, marked by Cyclin E and Cyclin B, are progressively altered during the TA. Antagonistic functions of the bag-of-marbles and the Transforming-Growth-Factor-β signaling regulate the cell division rates after the second TA division and the extent of the Cyclin E phase during the fourth TA division. Furthermore, loss of Cyclin E during the fourth TA cycle retards the cell division and induces premature meiosis in some cases. A similar reduction of Cdk1 activity during this stage arrests the penultimate division and subsequent differentiation, whereas enhancement of the Cdk1 activity prolongs the TA by one extra round. Altogether, the results suggest that modification of the cell cycle structure and the rates of cell division after the second TA division determine the extent of amplification. Also, the regulation of the Cyclin E and CDK1 functions during the penultimate TA division determines the induction of meiosis and subsequent differentiation.
Collapse
Affiliation(s)
- Purna Gadre
- Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai, India
| | - Shambhabi Chatterjee
- Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai, India
| | - Bhavna Varshney
- Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai, India
| |
Collapse
|
10
|
Drummond-Barbosa D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster. Genetics 2019; 213:9-26. [PMID: 31488592 PMCID: PMC6727809 DOI: 10.1534/genetics.119.300234] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The long-term survival of any multicellular species depends on the success of its germline in producing high-quality gametes and maximizing survival of the offspring. Studies in Drosophila melanogaster have led our growing understanding of how germline stem cell (GSC) lineages maintain their function and adjust their behavior according to varying environmental and/or physiological conditions. This review compares and contrasts the local regulation of GSCs by their specialized microenvironments, or niches; discusses how diet and diet-dependent factors, mating, and microorganisms modulate GSCs and their developing progeny; and briefly describes the tie between physiology and development during the larval phase of the germline cycle. Finally, it concludes with broad comparisons with other organisms and some future directions for further investigation.
Collapse
Affiliation(s)
- Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
11
|
Kahney EW, Snedeker JC, Chen X. Regulation of Drosophila germline stem cells. Curr Opin Cell Biol 2019; 60:27-35. [PMID: 31014993 DOI: 10.1016/j.ceb.2019.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
The asymmetric division of adult stem cells into one self-renewing stem cell and one differentiating cell is critical for maintaining homeostasis in many tissues. One paradigmatic model of this division is the Drosophila male and female germline stem cell, which provides two model systems not only sharing common features but also having distinct characteristics for studying asymmetric stem cell division in vivo. This asymmetric division is controlled by a combination of extrinsic signaling molecules and intrinsic factors that are either asymmetrically segregated or regulated differentially following division. In this review, we will discuss recent advances in understanding the molecular and cellular mechanisms guiding this asymmetric outcome, including extrinsic cues, intrinsic factors governing cell fate specification, and cell cycle control.
Collapse
Affiliation(s)
- Elizabeth W Kahney
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Jonathan C Snedeker
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
12
|
Brantley SE, Fuller MT. Somatic support cells regulate germ cell survival through the Baz/aPKC/Par6 complex. Development 2019; 146:dev.169342. [PMID: 30918053 PMCID: PMC6503986 DOI: 10.1242/dev.169342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
Local signals and structural support from the surrounding cellular microenvironment play key roles in directing development in both embryonic organs and adult tissues. In Drosophila, male germ cells are intimately associated and co-differentiate with supporting somatic cells. Here, we show that the function of the Baz/aPKC/Par6 apical polarity complex in somatic cyst cells is required stage specifically for survival of the germ cells they enclose. Although spermatogonia enclosed by cyst cells in which the function of the Par complex had been knocked down survived and proliferated, newly formed spermatocytes enclosed by cyst cells lacking Par complex proteins died soon after onset of meiotic prophase. Loss of Par complex function resulted in stage-specific overactivation of the Jun-kinase (JNK) pathway in cyst cells. Knocking down expression of JNK pathway components or the GTPase Rab35 in cyst cells lacking Par complex function rescued the survival of neighboring spermatocytes, suggesting that action of the apical polarity complex ensures germ cell survival by preventing JNK pathway activation, and that the mechanism by which cyst cells lacking Par complex function kill neighboring spermatocytes requires intracellular trafficking in somatic cyst cells. Summary: The Par polarity complex suppresses JNK pathway activity in Drosophila somatic support cells to allow stage-specific germ cell survival.
Collapse
Affiliation(s)
- Susanna E Brantley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
13
|
|
14
|
Lu KL, Yamashita YM. Germ cell connectivity enhances cell death in response to DNA damage in the Drosophila testis. eLife 2017; 6:27960. [PMID: 28809158 PMCID: PMC5577909 DOI: 10.7554/elife.27960] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/21/2017] [Indexed: 12/25/2022] Open
Abstract
Two broadly known characteristics of germ cells in many organisms are their development as a ‘cyst’ of interconnected cells and their high sensitivity to DNA damage. Here we provide evidence that in the Drosophila testis, connectivity serves as a mechanism that confers to spermatogonia a high sensitivity to DNA damage. We show that all spermatogonia within a cyst die synchronously even when only a subset of them exhibit detectable DNA damage. Mutants of the fusome, an organelle that is known to facilitate intracyst communication, compromise synchronous spermatogonial death and reduces overall germ cell death. Our data indicate that a death-promoting signal is shared within the cyst, leading to death of the entire cyst. Taken together, we propose that intercellular connectivity supported by the fusome uniquely increases the sensitivity of the germline to DNA damage, thereby protecting the integrity of gamete genomes that are passed on to the next generation.
Collapse
Affiliation(s)
- Kevin L Lu
- Life Sciences Institute, University of Michigan, Ann Arbor, United States.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Medical Scientist Training Program, University of Michigan, Ann Arbor, United States
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, United States.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| |
Collapse
|