1
|
Singh A, Siddiqui MA, Pandey S, Azim A, Sinha N. Unveiling Pathophysiological Insights: Serum Metabolic Dysregulation in Acute Respiratory Distress Syndrome Patients with Acute Kidney Injury. J Proteome Res 2024; 23:4216-4228. [PMID: 39078945 DOI: 10.1021/acs.jproteome.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high mortality rates, which are further exacerbated when accompanied by acute kidney injury (AKI). Presently, there is a lack of comprehensive studies thoroughly elucidating the metabolic dysregulation in ARDS patients with AKI leading to poor outcomes. We hypothesized that metabolomics can be a potent tool to highlight the differences in the metabolic profile unraveling unidentified pathophysiological mechanisms of ARDS patients with and without AKI. 1H nuclear magnetic resonance spectroscopy was used to identify key metabolites in the serum samples of 75 patients. Distinct clusters of both groups were obtained as the study's primary outcome using multivariate analysis. Notable alternations in the levels of nine metabolites were identified. Pathway analysis revealed the dysregulation of five significant cycles, which resulted in various complications, such as hyperammonemia, higher energy requirements, and mitochondrial dysfunction causing oxidative stress. Identified metabolites also showed a significant correlation with clinical scores, indicating severity. This study shows the alterations in the metabolite concentration highlighting the difference in the pathophysiology of both patient groups and its association with outcome, pointing in the direction of a personalized medicine approach and holding significant promise for application in critical care settings to improve clinical outcomes.
Collapse
Affiliation(s)
- Anamika Singh
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Mohd Adnan Siddiqui
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Swarnima Pandey
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 212001, United States
| | - Afzal Azim
- Department of Critical Care Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
2
|
Diao H, Gu H, Chen QM. Hyperkalemic or Low Potassium Cardioplegia Protects against Reduction of Energy Metabolism by Oxidative Stress. Antioxidants (Basel) 2023; 12:452. [PMID: 36830011 PMCID: PMC9952220 DOI: 10.3390/antiox12020452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
Open-heart surgery is often an unavoidable option for the treatment of cardiovascular disease and prevention of cardiomyopathy. Cardiopulmonary bypass surgery requires manipulating cardiac contractile function via the perfusion of a cardioplegic solution. Procedure-associated ischemia and reperfusion (I/R) injury, a major source of oxidative stress, affects postoperative cardiac performance and long-term outcomes. Using large-scale liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics, we addressed whether cardioplegic solutions affect the baseline cellular metabolism and prevent metabolic reprogramming by oxidative stress. AC16 cardiomyocytes in culture were treated with commonly used cardioplegic solutions, High K+ (HK), Low K+ (LK), Del Nido (DN), histidine-tryptophan-ketoglutarate (HTK), or Celsior (CS). The overall metabolic profile shown by the principal component analysis (PCA) and heatmap revealed that HK or LK had a minimal impact on the baseline 78 metabolites, whereas HTK or CS significantly repressed the levels of multiple amino acids and sugars. H2O2-induced sublethal mild oxidative stress causes decreases in NAD, nicotinamide, or acetylcarnitine, but increases in glucose derivatives, including glucose 6-P, glucose 1-P, fructose, mannose, and mannose 6-P. Additional increases include metabolites of the pentose phosphate pathway, D-ribose-5-P, L-arabitol, adonitol, and xylitol. Pretreatment with HK or LK cardioplegic solution prevented most metabolic changes and increases of reactive oxygen species (ROS) elicited by H2O2. Our data indicate that HK and LK cardioplegic solutions preserve baseline metabolism and protect against metabolic reprogramming by oxidative stress.
Collapse
Affiliation(s)
- Hongting Diao
- Department of Pharmacy Practice and Science, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University Phoenix, Phoenix, AZ 85004, USA
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Qin M. Chen
- Department of Pharmacy Practice and Science, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Pedersen S, Hansen JB, Maltesen RG, Szejniuk WM, Andreassen T, Falkmer U, Kristensen SR. Identifying metabolic alterations in newly diagnosed small cell lung cancer patients. Metabol Open 2021; 12:100127. [PMID: 34585134 PMCID: PMC8455369 DOI: 10.1016/j.metop.2021.100127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is a malignant disease with poor prognosis. At the time of diagnosis most patients are already in a metastatic stage. Current diagnosis is based on imaging, histopathology, and immunohistochemistry, but no blood-based biomarkers have yet proven to be clinically successful for diagnosis and screening. The precise mechanisms of SCLC are not fully understood, however, several genetic mutations, protein and metabolic aberrations have been described. We aim at identifying metabolite alterations related to SCLC and to expand our knowledge relating to this aggressive cancer. METHODS A total of 30 serum samples of patients with SCLC, collected at the time of diagnosis, and 25 samples of healthy controls were included in this study. The samples were analyzed with nuclear magnetic resonance spectroscopy. Multivariate, univariate and pathways analyses were performed. RESULTS Several metabolites were identified to be altered in the pre-treatment serum samples of small-cell lung cancer patients compared to healthy individuals. Metabolites involved in tricarboxylic acid cycle (succinate: fold change (FC) = 2.4, p = 0.068), lipid metabolism (LDL triglyceride: FC = 1.3, p = 0.001; LDL-1 triglyceride: FC = 1.3, p = 0.012; LDL-2 triglyceride: FC = 1.4, p = 0.009; LDL-6 triglyceride: FC = 1.5, p < 0.001; LDL-4 cholesterol: FC = 0.5, p = 0.007; HDL-3 free cholesterol: FC = 0.7, p = 0.002; HDL-4 cholesterol FC = 0.8, p < 0.001; HDL-4 apolipoprotein-A1: FC = 0.8, p = 0.005; HDL-4 apolipoprotein-A2: FC ≥ 0.7, p ≤ 0.001), amino acids (glutamic acid: FC = 1.7, p < 0.001; glutamine: FC = 0.9, p = 0.007, leucine: FC = 0.8, p < 0.001; isoleucine: FC = 0.8, p = 0.016; valine: FC = 0.9, p = 0.032; lysine: FC = 0.8, p = 0.004; methionine: FC = 0.8, p < 0.001; tyrosine: FC = 0.7, p = 0.002; creatine: FC = 0.9, p = 0.030), and ketone body metabolism (3-hydroxybutyric acid FC = 2.5, p < 0.001; acetone FC = 1.6, p < 0.001), among other, were found deranged in SCLC. CONCLUSIONS This study provides novel insight into the metabolic disturbances in pre-treatment SCLC patients, expanding our molecular understanding of this malignant disease.
Collapse
Affiliation(s)
- Shona Pedersen
- Department of Basic Medical Science, College of Medicine, Qatar University, QU Health, Doha, Qatar
| | | | - Raluca Georgiana Maltesen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, 2145, Australia
| | - Weronika Maria Szejniuk
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Trygve Andreassen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ursula Falkmer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Søren Risom Kristensen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
4
|
Nielsen JE, Maltesen RG, Havelund JF, Færgeman NJ, Gotfredsen CH, Vestergård K, Kristensen SR, Pedersen S. Characterising Alzheimer's disease through integrative NMR- and LC-MS-based metabolomics. Metabol Open 2021; 12:100125. [PMID: 34622190 PMCID: PMC8479251 DOI: 10.1016/j.metop.2021.100125] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Alzheimer's Disease (AD) is a complex and multifactorial disease and novel approaches are needed to illuminate the underlying pathology. Metabolites comprise the end-product of genes, transcripts, and protein regulations and might reflect disease pathogenesis. Blood is a common biofluid used in metabolomics; however, since extracellular vesicles (EVs) hold cell-specific biological material and can cross the blood-brain barrier, their utilization as biological material warrants further investigation. We aimed to investigate blood- and EV-derived metabolites to add insigts to the pathological mechanisms of AD. Methods Blood samples were collected from 10 AD and 10 Mild Cognitive Impairment (MCI) patients, and 10 healthy controls. EVs were enriched from plasma using 100,000×g, 1 h, 4 °C with a wash. Metabolites from serum and EVs were measured using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Multivariate and univariate analyses were employed to identify altered metabolites in cognitively impaired individuals. Results While no significant EV-derived metabolites were found differentiating patients from healthy individuals, six serum metabolites were found important; valine (p = 0.001, fold change, FC = 0.8), histidine (p = 0.001, FC = 0.9), allopurinol riboside (p = 0.002, FC = 0.2), inosine (p = 0.002, FC = 0.3), 4-pyridoxic acid (p = 0.006, FC = 1.6), and guanosine (p = 0.004, FC = 0.3). Pathway analysis revealed branched-chain amino acids, purine and histidine metabolisms to be downregulated, and vitamin B6 metabolism upregulated in patients compared to controls. Conclusion Using a combination of LC-MS and NMR methodologies we identified several altered mechanisms possibly related to AD pathology. EVs require additional optimization prior to their possible utilization as a biological material for AD-related metabolomics studies.
Collapse
Key Words
- ACE, Addenbrooke's cognitive examination
- AD, Alzheimer's Disease
- AUC, Area under the curve
- Alzheimer
- Aβ, Amyloid-β
- BBB, Blood-brain barrier
- BCAA, Branched-chain amino acid
- Blood
- CNS, Central nervous system
- CSF, Cerebrospinal fluid
- CV, Cross-validation
- EVs, Extracellular vesicles
- Extracellular vesicles
- FAQ, Functional activities questionnaire
- FDR, False discovery rate
- MCI, Mild cognitive impairment
- MMSE, Mini-mental state examination
- Mass spectrometry
- Metabolites
- Nuclear magnetic resonance
- PCA, Principal component analysis
- ROC, Receiver operating characteristics
- p-tau, Phospho-tau
- sPLS-DA, Sparse partial least squared discriminant analysis
- t-tau, Total-tau
Collapse
Affiliation(s)
- Jonas Ellegaard Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Raluca Georgiana Maltesen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, Australia.,Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Aalborg, Denmark
| | - Jesper F Havelund
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | | | - Søren Risom Kristensen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Shona Pedersen
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Qatar Health, Doha, Qatar
| |
Collapse
|
5
|
Simonsen C, Magnusdottir SO, Andreasen JJ, Wimmer R, Rasmussen BS, Kjaergaard B, Maltesen RG. Metabolic changes during carbon monoxide poisoning: An experimental study. J Cell Mol Med 2021; 25:5191-5201. [PMID: 33949122 PMCID: PMC8178256 DOI: 10.1111/jcmm.16522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022] Open
Abstract
Carbon monoxide (CO) is the leading cause of death by poisoning worldwide. The aim was to explore the effects of mild and severe poisoning on blood gas parameters and metabolites. Eleven pigs were exposed to CO intoxication and had blood collected before and during poisoning. Mild CO poisoning (carboxyhaemoglobin, COHb 35.2 ± 7.9%) was achieved at 32 ± 13 minutes, and severe poisoning (69.3 ± 10.2% COHb) at 64 ± 23 minutes from baseline (2.9 ± 0.5% COHb). Blood gas parameters and metabolites were measured on a blood gas analyser and nuclear magnetic resonance spectrometer, respectively. Unsupervised principal component, analysis of variance and Pearson's correlation tests were applied. A P-value ≤ .05 was considered statistically significant. Mild poisoning resulted in a 28.4% drop in oxyhaemoglobin (OHb) and 12-fold increase in COHb, while severe poisoning in a 65% drop in OHb and 24-fold increase in COHb. Among others, metabolites implicated in regulation of metabolic acidosis (lactate, P < .0001), energy balance (pyruvate, P < .0001; 3-hydroxybutyrc acid, P = .01), respiration (citrate, P = .007; succinate, P = .0003; fumarate, P < .0001), lipid metabolism (glycerol, P = .002; choline, P = .0002) and antioxidant-oxidant balance (glutathione, P = .03; hypoxanthine, P < .0001) were altered, especially during severe poisoning. Our study adds new insights into the deranged metabolism of CO poisoning and leads the way for further investigation.
Collapse
Affiliation(s)
- Carsten Simonsen
- Department of Cardiothoracic Surgery, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Sigriður Olga Magnusdottir
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Biomedical Research Laboratory, Aalborg University Hospital, Aalborg, Denmark
| | - Jan Jesper Andreasen
- Department of Cardiothoracic Surgery, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Bodil Steen Rasmussen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Anaesthesiology and Intensive Care, Pulmonary Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Benedict Kjaergaard
- Department of Cardiothoracic Surgery, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Biomedical Research Laboratory, Aalborg University Hospital, Aalborg, Denmark
| | - Raluca Georgiana Maltesen
- Department of Anaesthesiology and Intensive Care, Pulmonary Research Center, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
6
|
Khan T, Loftus TJ, Filiberto AC, Ozrazgat-Baslanti T, Ruppert MM, Bandhyopadyay S, Laiakis EC, Arnaoutakis DJ, Bihorac A. Metabolomic Profiling for Diagnosis and Prognostication in Surgery: A Scoping Review. Ann Surg 2021; 273:258-268. [PMID: 32482979 PMCID: PMC7704904 DOI: 10.1097/sla.0000000000003935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This review assimilates and critically evaluates available literature regarding the use of metabolomic profiling in surgical decision-making. BACKGROUND Metabolomic profiling is performed by nuclear magnetic resonance spectroscopy or mass spectrometry of biofluids and tissues to quantify biomarkers (ie, sugars, amino acids, and lipids), producing diagnostic and prognostic information that has been applied among patients with cardiovascular disease, inflammatory bowel disease, cancer, and solid organ transplants. METHODS PubMed was searched from 1995 to 2019 to identify studies investigating metabolomic profiling of surgical patients. Articles were included and assimilated into relevant categories per PRISMA-ScR guidelines. Results were summarized with descriptive analytical methods. RESULTS Forty-seven studies were included, most of which were retrospective studies with small sample sizes using various combinations of analytic techniques and types of biofluids and tissues. Results suggest that metabolomic profiling has the potential to effectively screen for surgical diseases, suggest diagnoses, and predict outcomes such as postoperative complications and disease recurrence. Major barriers to clinical adoption include a lack of high-level evidence from prospective studies, heterogeneity in study design regarding tissue and biofluid procurement and analytical methods, and the absence of large, multicenter metabolome databases to facilitate systematic investigation of the efficacy, reproducibility, and generalizability of metabolomic profiling diagnoses and prognoses. CONCLUSIONS Metabolomic profiling research would benefit from standardization of study design and analytic approaches. As technologies improve and knowledge garnered from research accumulates, metabolomic profiling has the potential to provide personalized diagnostic and prognostic information to support surgical decision-making from preoperative to postdischarge phases of care.
Collapse
Affiliation(s)
- Tabassum Khan
- Department of Surgery, University of Florida, Gainesville,
FL, USA
| | - Tyler J. Loftus
- Department of Surgery, University of Florida, Gainesville,
FL, USA
| | | | - Tezcan Ozrazgat-Baslanti
- Department of Medicine, University of Florida, Gainesville,
FL, USA
- Precision and Intelligent Systems in Medicine (PrismaP),
University of Florida, Gainesville, FL
| | | | - Sabyasachi Bandhyopadyay
- Department of Medicine, University of Florida, Gainesville,
FL, USA
- Precision and Intelligent Systems in Medicine (PrismaP),
University of Florida, Gainesville, FL
| | - Evagelia C. Laiakis
- Department of Oncology, Georgetown University, Washington
DC, USA
- Department of Biochemistry and Molecular & Cellular
Biology, Georgetown University, Washington DC, USA
| | | | - Azra Bihorac
- Department of Medicine, University of Florida, Gainesville,
FL, USA
- Precision and Intelligent Systems in Medicine (PrismaP),
University of Florida, Gainesville, FL
| |
Collapse
|
7
|
Kemp PR, Paul R, Hinken AC, Neil D, Russell A, Griffiths MJ. Metabolic profiling shows pre-existing mitochondrial dysfunction contributes to muscle loss in a model of ICU-acquired weakness. J Cachexia Sarcopenia Muscle 2020; 11:1321-1335. [PMID: 32677363 PMCID: PMC7567140 DOI: 10.1002/jcsm.12597] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/01/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Surgery can lead to significant muscle loss, which increases recovery time and associates with increased mortality. Muscle loss is not uniform, with some patients losing significant muscle mass and others losing relatively little, and is likely to be accompanied by marked changes in circulating metabolites and proteins. Determining these changes may help understand the variability and identify novel therapeutic approaches or markers of muscle wasting. METHODS To determine the association between muscle loss and circulating metabolites, we studied 20 male patients (median age, 70.5, interquartile range, 62.5-75) undergoing aortic surgery. Muscle mass was determined before and 7 days after surgery and blood samples were taken before surgery, and 1, 3, and 7 days after surgery. The circulating metabolome and proteome were determined using commercial services (Metabolon and SomaLogic). RESULTS Ten patients lost more than 10% of the cross-sectional area of the rectus femoris (RFCSA ) and were defined as wasting. Metabolomic analysis showed that 557 circulating metabolites were altered following surgery (q < 0.05) in the whole cohort and 104 differed between wasting and non-wasting patients (q < 0.05). Weighted genome co-expression network analysis, identified clusters of metabolites, both before and after surgery, that associated with muscle mass and function (r = -0.72, p = 6 × 10-4 with RFCSA on Day 0, P = 3 × 10-4 with RFCSA on Day 7 and r = -0.73, P = 5 × 10-4 with hand-grip strength on Day 7). These clusters were mainly composed of acyl carnitines and dicarboxylates indicating that pre-existing mitochondrial dysfunction contributes to muscle loss following surgery. Surgery elevated cortisol to the same extent in wasting and non-wasting patients, but the cortisol:cortisone ratio was higher in the wasting patients (Day 3 P = 0.043 and Day 7 P = 0.016). Wasting patients also showed a greater increase in circulating nucleotides 3 days after surgery. Comparison of the metabolome with inflammatory markers identified by SOMAscan® showed that pre-surgical mitochondrial dysfunction was associated with growth differentiation factor 15 (GDF-15) (r = 0.79, P = 2 × 10-4 ) and that GDF-15, interleukin (IL)-8), C-C motif chemokine 23 (CCL-23), and IL-15 receptor subunit alpha (IL-15RA) contributed to metabolic changes in response to surgery. CONCLUSIONS We show that pre-existing mitochondrial dysfunction and reduced cortisol inactivation contribute to muscle loss following surgery. The data also implicate GDF-15 and IL-15RA in mitochondrial dysfunction.
Collapse
Affiliation(s)
- Paul R Kemp
- Cardiovascular and Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK
| | - Richard Paul
- Cardiovascular and Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK.,Department of Intensive Care, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Aaron C Hinken
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, Inc, Collegeville, PA, USA
| | - David Neil
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, Inc, Collegeville, PA, USA
| | - Alan Russell
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, Inc, Collegeville, PA, USA.,Edgewise Therapeutics, Boulder, CO, USA
| | - Mark J Griffiths
- Cardiovascular and Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
8
|
A longitudinal serum NMR-based metabolomics dataset of ischemia-reperfusion injury in adult cardiac surgery. Sci Data 2020; 7:198. [PMID: 32581368 PMCID: PMC7314852 DOI: 10.1038/s41597-020-0545-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/27/2020] [Indexed: 01/20/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and cardiac surgery is a key treatment. This study explores metabolite changes as a consequence of ischemia-reperfusion due to cardiac surgery with the use of cardiopulmonary bypass (CPB). To describe the ischemia-reperfusion injury, metabolite changes were monitored in fifty patients before and after CPB at multiple time points. We describe a longitudinal metabolite dataset containing nearly 600 serum nuclear magnetic resonance (NMR) spectra obtained from samples collected simultaneously from the pulmonary artery (deoxygenated blood) and left atrium (oxygenated blood) before ischemia (pre-CPB), immediately after reperfusion (end-CPB), and the following 2, 4, 8, and 20 hours postoperatively. In addition, a longitudinal dataset including 57 quantified metabolites is also provided. These datasets will help researchers studying ischemia-reperfusion injury, as well as the time-dependent alterations related to the surgical trauma and the subsequent processes required in regaining metabolite balance. The datasets could also be used for the development of processing algorithms for NMR-based metabolomics studies and methods for the analysis of longitudinal multivariate data. Measurement(s) | human blood serum metabolite | Technology Type(s) | one-dimensional nuclear magnetic resonance spectroscopy | Factor Type(s) | cardiac surgery • time series • pulmonary artery and left atrium | Sample Characteristic - Organism | Homo sapiens |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12249065
Collapse
|
9
|
Hanifa MA, Maltesen RG, Rasmussen BS, Buggeskov KB, Ravn HB, Skott M, Nielsen S, Frøkiær J, Ring T, Wimmer R. Citrate NMR peak irreproducibility in blood samples after reacquisition of spectra. Metabolomics 2019; 16:7. [PMID: 31858270 DOI: 10.1007/s11306-019-1629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND In our metabolomics studies we have noticed that repeated NMR acquisition on the same sample can result in altered metabolite signal intensities. AIMS To investigate the reproducibility of repeated NMR acquisition on selected metabolites in serum and plasma from two large human metabolomics studies. METHODS Two peak regions for each metabolite were integrated and changes occurring after reacquisition were correlated. RESULTS Integral changes were generally small, but serum citrate signals decreased significantly in some samples. CONCLUSIONS Several metabolite integrals were not reproducible in some of the repeated spectra. Following established protocols, randomising analysis order and biomarker validation are important.
Collapse
Affiliation(s)
- Munsoor A Hanifa
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
- Department of Anesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | - Raluca G Maltesen
- Department of Anesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000, Aalborg, Denmark
| | - Bodil S Rasmussen
- Department of Anesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | - Katrine B Buggeskov
- Department of Cardiothoracic Anesthesiology, Rigshospitalet, Copenhagen University Hospital, 2100, Copenhagen, Denmark
| | - Hanne B Ravn
- Department of Cardiothoracic Anesthesiology, Rigshospitalet, Copenhagen University Hospital, 2100, Copenhagen, Denmark
| | - Martin Skott
- Department of Urology, Aarhus University Hospital, 8250, Aarhus N, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
| | - Troels Ring
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- The Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburg, PA, 15261, USA
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| |
Collapse
|
10
|
Metabolomic Profile of ARDS by Nuclear Magnetic Resonance Spectroscopy in Patients With H1N1 Influenza Virus Pneumonia. Shock 2019; 50:504-510. [PMID: 29293175 DOI: 10.1097/shk.0000000000001099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE The integrated analysis of changes in the metabolic profile could be critical for the discovery of biomarkers of lung injury, and also for generating new pathophysiological hypotheses and designing novel therapeutic targets for the acute respiratory distress syndrome (ARDS). This study aimed at developing a nuclear magnetic resonance (NMR)-based approach for the identification of the metabolomic profile of ARDS in patients with H1N1 influenza virus pneumonia. METHODS Serum samples from 30 patients (derivation set) diagnosed of H1N1 influenza virus pneumonia were analyzed by unsupervised principal component analysis to identify metabolic differences between patients with and without ARDS by NMR spectroscopy. A predictive model of partial least squares discriminant analysis (PLS-DA) was developed for the identification of ARDS. PLS-DA was trained with the derivation set and tested in another set of samples from 26 patients also diagnosed of H1N1 influenza virus pneumonia (validation set). RESULTS Decreased serum glucose, alanine, glutamine, methylhistidine and fatty acids concentrations, and elevated serum phenylalanine and methylguanidine concentrations, discriminated patients with ARDS versus patients without ARDS. PLS-DA model successfully identified the presence of ARDS in the validation set with a success rate of 92% (sensitivity 100% and specificity 91%). The classification functions showed a good correlation with the Sequential Organ Failure Assessment score (R = 0.74, P < 0.0001) and the PaO2/FiO2 ratio (R = 0.41, P = 0.03). CONCLUSIONS The serum metabolomic profile is sensitive and specific to identify ARDS in patients with H1N1 influenza A pneumonia. Future studies are needed to determine the role of NMR spectroscopy as a biomarker of ARDS.
Collapse
|
11
|
Hyperoxia affects the lung tissue: A porcine histopathological and metabolite study using five hours of apneic oxygenation. Metabol Open 2019; 4:100018. [PMID: 32812938 PMCID: PMC7424812 DOI: 10.1016/j.metop.2019.100018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background Oxygen is a liberally dosed medicine; however, too much oxygen can be harmful. In certain situations, treatment with high oxygen concentration is necessary, e.g. after cardiopulmonary resuscitation. The amount of oxygen and duration of hyperoxia causing pulmonary damage is not fully elucidated. The aim of this study was to investigate pathophysiological and metabolite changes in lung tissue during hyperoxia while the lungs were kept open under constant low pressure. Methods Seven pigs were exposed to 100% oxygen for five hours, using an apneic oxygenation technique with one long uninterrupted inspiration, while carbon dioxide was removed with an interventional lung assist. Arterial blood samples were collected every 30 minutes. Lung biopsies were obtained before and after hyperoxia. Microscopy and high-resolution magic angle spinning nuclear magnetic resonance spectroscopy were used to detect possible pathological and metabolite changes, respectively. Unsupervised multivariate analysis of variance and paired sample tests were performed. A two-tailed p-value ≤ 0.05 was considered significant. Results No significant changes in arterial pH, and partial pressure of carbon dioxide, and no clear histopathological changes were observed after hyperoxia. While blood glucose and lactate levels changed to a minor degree, their levels dropped significantly in the lung after hyperoxia (p ≤ 0.04). Reduced levels of antioxidants (p ≤ 0.05), tricarboxylic acid cycle and energy (p ≤ 0.04) metabolites and increased levels of several amino acids (p ≤ 0.05) were also detected. Conclusion Despite no histological changes, tissue metabolites were altered, indicating that exposure to hyperoxia affects lung tissue matrix on a molecular basis. No significant histopathological changes in lung tissue after five hours hyperoxia. Five hours hyperoxia induces significant metabolite changes in lung tissue. Hyperoxia affects cellular energy, Krebs cycle, and oxidant-antioxidant defense.
Collapse
|
12
|
Buggeskov KB, Maltesen RG, Rasmussen BS, Hanifa MA, Lund MAV, Wimmer R, Ravn HB. Lung Protection Strategies during Cardiopulmonary Bypass Affect the Composition of Blood Electrolytes and Metabolites-A Randomized Controlled Trial. J Clin Med 2018; 7:E462. [PMID: 30469433 PMCID: PMC6262287 DOI: 10.3390/jcm7110462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Cardiac surgery with cardiopulmonary bypass (CPB) causes an acute lung ischemia-reperfusion injury, which can develop to pulmonary dysfunction postoperatively. This sub-study of the Pulmonary Protection Trial aimed to elucidate changes in arterial blood gas analyses, inflammatory protein interleukin-6, and metabolites of 90 chronic obstructive pulmonary disease patients following two lung protective regimens of pulmonary artery perfusion with either hypothermic histidine-tryptophan-ketoglutarate (HTK) solution or normothermic oxygenated blood during CPB, compared to the standard CPB with no pulmonary perfusion. Blood was collected at six time points before, during, and up to 20 h post-CPB. Blood gas analysis, enzyme-linked immunosorbent assay, and nuclear magnetic resonance spectroscopy were used, and multivariate and univariate statistical analyses were performed. All patients had decreased gas exchange, augmented inflammation, and metabolite alteration during and after CPB. While no difference was observed between patients receiving oxygenated blood and standard CPB, patients receiving HTK solution had an excess of metabolites involved in energy production and detoxification of reactive oxygen species. Also, patients receiving HTK suffered a transient isotonic hyponatremia that resolved within 20 h post-CPB. Additional studies are needed to further elucidate how to diminish lung ischemia-reperfusion injury during CPB, and thereby, reduce the risk of developing severe postoperative pulmonary dysfunction.
Collapse
Affiliation(s)
- Katrine B Buggeskov
- Department of Cardiothoracic Anesthesiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark.
| | - Raluca G Maltesen
- Department of Anesthesia and Intensive Care, Aalborg University Hospital, 9000 Aalborg, Denmark.
| | - Bodil S Rasmussen
- Department of Anesthesia and Intensive Care, Aalborg University Hospital, 9000 Aalborg, Denmark.
- Department of Clinical Medicine, School of Medicine and Health, Aalborg University, 9000 Aalborg, Denmark.
| | - Munsoor A Hanifa
- Department of Anesthesia and Intensive Care, Aalborg University Hospital, 9000 Aalborg, Denmark.
- Department of Clinical Medicine, School of Medicine and Health, Aalborg University, 9000 Aalborg, Denmark.
| | - Morten A V Lund
- Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| | - Hanne B Ravn
- Department of Cardiothoracic Anesthesiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark.
| |
Collapse
|
13
|
Maltesen RG, Buggeskov KB, Andersen CB, Plovsing R, Wimmer R, Ravn HB, Rasmussen BS. Lung Protection Strategies during Cardiopulmonary Bypass Affect the Composition of Bronchoalveolar Fluid and Lung Tissue in Cardiac Surgery Patients. Metabolites 2018; 8:metabo8040054. [PMID: 30241409 PMCID: PMC6316472 DOI: 10.3390/metabo8040054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/31/2018] [Accepted: 09/19/2018] [Indexed: 11/18/2022] Open
Abstract
Pulmonary dysfunction is among the most frequent complications to cardiac surgeries. Exposure of blood to the cardiopulmonary bypass (CPB) circuit with subsequent lung ischemia-reperfusion leads to the production of inflammatory mediators and increases in microvascular permeability. The study aimed to elucidate histological, cellular, and metabolite changes following two lung protective regimens during CPB with Histidine-Tryptophan-Ketoglutarate (HTK) enriched or warm oxygenated blood pulmonary perfusion compared to standard regimen with no pulmonary perfusion. A total of 90 patients undergoing CPB were randomized to receiving HTK, oxygenated blood or standard regimen. Of these, bronchoalveolar lavage fluid (BALF) and lung tissue biopsies were obtained before and after CPB from 47 and 25 patients, respectively. Histopathological scores, BALF cell counts and metabolite screening were assessed. Multivariate and univariate analyses were performed. Profound histological, cellular, and metabolic changes were identified in all patients after CPB. Histological and cellular changes were similar in the three groups; however, some metabolite profiles were different in the HTK patients. While all patients presented an increase in inflammatory cells, metabolic acidosis, protease activity and oxidative stress, HTK patients seemed to be protected against severe acidosis, excessive fatty acid oxidation, and inflammation during ischemia-reperfusion. Additional studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Raluca G Maltesen
- Department of Anesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark.
| | - Katrine B Buggeskov
- Department of Cardiothoracic Anesthesia, Heart Centre, Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Claus B Andersen
- Department of Forensic Medicine, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Ronni Plovsing
- Department of Intensive Care, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
- Department of Anesthesiology, Hvidovre Hospital, University of Copenhagen, 2650 Hvidovre, Denmark.
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| | - Hanne B Ravn
- Department of Cardiothoracic Anesthesia, Heart Centre, Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Bodil S Rasmussen
- Department of Anesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark.
- Department of Clinical Medicine, School of Medicine and Health, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
14
|
Yamamoto M, Nishimori H, Fukutomi T, Yamaguchi T, Orihashi K. Dynamics of Oxidative Stress Evoked by Myocardial Ischemia Reperfusion After Off-Pump Coronary Artery Bypass Grafting Elucidated by Bilirubin Oxidation. Circ J 2017; 81:1678-1685. [PMID: 28592749 DOI: 10.1253/circj.cj-16-1116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
BACKGROUND Revascularization therapy relieves myocardial ischemia, but can also result in ischemia-reperfusion injury caused by oxidative stress. However, the biokinetics of oxidative stress after myocardial ischemia-reperfusion are uncertain. This study aimed to evaluate the dynamics of oxidative stress after off-pump coronary artery bypass grafting (OPCAB) by measuring urinary biopyrrin levels. Biopyrrin is an oxidative metabolite of bilirubin thought to reflect oxidative stress, along with reactive nitrogen species (RNS). METHODS AND RESULTS The study included 18 patients who underwent OPCAB; patients were divided into effort angina pectoris (EAP; n=11) and unstable angina pectoris (UAP; n=7). Urinary biopyrrin and RNS levels were measured during the perioperative period (≤48 h after surgery). Biopyrrin levels transiently increased 4-12 h post-surgery (early phase), followed by a prolonged increase approximately 24-32 h post-surgery (late phase). The delayed increase in biopyrrin tended to be higher in patients with UAP, with a simultaneous increase in RNS. The patients in the UAP group had generally high pulmonary capillary wedge pressure (PCWP), although the cardiac index was within a normal range during the delay phase. CONCLUSIONS The dynamics of biopyrrin levels revealed a biphasic pattern of oxidative stress after OPCAB. Delayed production of oxidative stress may be influenced by preoperative severity of myocardial ischemia and delayed RNS production.
Collapse
Affiliation(s)
- Masaki Yamamoto
- Departments of Surgery 2 and Cardiovascular Surgery, Kochi Medical School
| | - Hideaki Nishimori
- Departments of Surgery 2 and Cardiovascular Surgery, Kochi Medical School
| | - Takashi Fukutomi
- Departments of Surgery 2 and Cardiovascular Surgery, Kochi Medical School
| | - Tokio Yamaguchi
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University
| | - Kazumasa Orihashi
- Departments of Surgery 2 and Cardiovascular Surgery, Kochi Medical School
| |
Collapse
|