1
|
Sicurella M, De Chiara M, Neri LM. Hedgehog and PI3K/Akt/mTOR Signaling Pathways Involvement in Leukemic Malignancies: Crosstalk and Role in Cell Death. Cells 2025; 14:269. [PMID: 39996741 PMCID: PMC11853774 DOI: 10.3390/cells14040269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
The Hedgehog (Hh) and PI3K/Akt/mTOR signaling pathways play a pivotal role in driving the initiation and progression of various cancers, including hematologic malignancies such as acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and chronic lymphocytic leukemia (CLL). These pathways are often dysregulated in leukemia cells, leading to increased cell growth, survival, and drug resistance while also impairing mechanisms of cell death. In leukemia, the Hh pathway can be abnormally activated by genetic mutations. Additionally, the PI3K/Akt/mTOR pathway is frequently overactive due to genetic changes. A key aspect of these pathways is their interaction: activation of the PI3K/Akt pathway can trigger a non-canonical activation of the Hh pathway, which further promotes leukemia cell growth and survival. Targeted inhibitors of these pathways, such as Gli inhibitors and PI3K/mTOR inhibitors, have shown promise in preclinical and clinical studies.
Collapse
Affiliation(s)
- Mariaconcetta Sicurella
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy;
| | - Marica De Chiara
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
- LTTA-Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Han Y, Li C, Liu S, Gao J, He Y, Xiao H, Chen Q, Zheng Y, Chen H, Zhu X. Combined targeting of Hedgehog/GLI1 and Wnt/β-catenin pathways in mantle cell lymphoma. Hematol Oncol 2024; 42:e3305. [PMID: 39205619 DOI: 10.1002/hon.3305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Mantle cell lymphoma (MCL) is a rare and aggressive form of non-Hodgkin lymphoma. Challenges in its treatment include relapse, drug resistance, and a short survival period. The Hedgehog/GLI1 (Hh/GLI1) and Wnt/β-catenin pathways are crucial in cancer cell proliferation, survival, and drug resistance, making them significant targets for anticancer research. This study aimed to assess the effectiveness of combining inhibitors for both pathways against MCL and investigate the underlying molecular mechanisms. The co-expression of key proteins from the Hh/GLI1 and Wnt/β-catenin pathways was observed in MCL. Targeting the Hh/GLI1 pathway with the GLI1 inhibitor GANT61 and the Wnt/β-catenin pathway with the CBP/β-catenin transcription inhibitor ICG-001, dual-target therapy was demonstrated to synergistically suppressed the activity of MCL cells. This approach promoted MCL cell apoptosis, induced G0/G1 phase blockade, decreased the percentage of S-phase cells, and enhanced the sensitivity of MCL cells to the drugs adriamycin and ibrutinib. Both GANT61 and ICG-001 downregulated GLI1 and β-catenin while upregulating GSK-3β expression. The interaction between Hh/GLI1 and Wnt/β-catenin pathways was mediated by GANT61-dependent Hh/GLI1 inhibition. Moreover, GLI1 knockdown combined with ICG-001 synergistically induced apoptosis and increased drug sensitivity of MCL cells to doxorubicin and ibrutinib. GANT61 attenuated the overexpression of β-catenin and decreased the inhibition of GSK-3β in MCL cells. Overall, the combined targeting of both the Hh/GLI1 and Wnt/β-catenin pathways was more effective in suppressing proliferation, inducing G0/G1 cycle retardation, promoting apoptosis, and increasing drug sensitivity of MCL cells than mono treatments. These findings emphasize the potential of combinatorial therapy for treating MCL patients.
Collapse
Affiliation(s)
- Yan Han
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- Fujian Medical University, Fuzhou, China
| | - Chuntuan Li
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Shengquan Liu
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Jingjing Gao
- Department of Blood Transfusion, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yanjun He
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- Fujian Medical University, Fuzhou, China
| | - Huifang Xiao
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Qi Chen
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yan Zheng
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Hongyuan Chen
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- Fujian Medical University, Fuzhou, China
| | - Xiongpeng Zhu
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
3
|
Liu Y, Liu Y, Chen P, Chen G, Chen X. GLI1 polymorphisms influence remission rate and prognosis of young de novo acute myeloid leukemia patients treated with cytarabine-based chemotherapy. Ann Hematol 2024; 103:1967-1977. [PMID: 38676765 DOI: 10.1007/s00277-024-05777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematological malignancy. Cytarabine (Ara-C)-based chemotherapy is the primary treatment for AML, but currently known prognostic risk stratification factors cannot fully explain the individual differences in outcome of patients. In this article, we reported that patients with homozygous GLI1 rs2228224 mutation (AA genotype) had a significantly lower complete remission rate than those with GG wild type (54.17% vs.76.02%, OR = 1.993, 95% CI: 1.062-3.504, P = 0.031). GLI1 rs2229300 T allele carriers had remarkably shorter overall survival (513 vs. 645 days, P = 0.004) and disease-free survival (342 vs. 456 days, P = 0.033) than rs2229300 GG carriers. Rs2229300 G > T variation increased the transcriptional activity of GLI1. CCND1, CD44 and PROM1 were potential target genes differentially regulated by GLI1 rs2229300. Our results demonstrated for the first time that GLI1 polymorphisms influence chemosensitivity and prognosis of young de novo AML patients treated with Ara-C.
Collapse
Affiliation(s)
- Yanfeng Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Peng Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China
| | - Ge Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.
| |
Collapse
|
4
|
El Zaiat RS, Nabil R, Khalifa KA, El Feshawy AA. High GLI-1 Expression is a Reliable Indicator of Bad Prognosis in Newly Diagnosed Acute Leukemia Patients. Indian J Hematol Blood Transfus 2023; 39:376-382. [PMID: 37304485 PMCID: PMC10247660 DOI: 10.1007/s12288-022-01609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To explore the expression and prognostic significance of Hedgehog signaling transcription factor GLI-1 in newly diagnosed acute myeloid leukemia (AML) patients. METHODS Clinical specimens were obtained from 46 recently diagnosed AML patients. Real-time qPCR was used to measure the GLI-1 mRNA expression in bone marrow mononuclear cells.Also, the relationship between GLI-1 mRNA levels and clinical variables and prognostic variables was assessed. RESULTS GLI-1 was overexpressed in the bone marrow samples of our patients. GLI-1mRNA expression did not differ significantly across different age groups, between both sexes, or between different FAB subtypes (P = 0.882, P = 0.246, and P = 0.890, respectively). GLI-1 expression varied significantly in different risk categories, with the greatest levels observed in 11 patients with poor risk (24.6 versus 22.7) compared to intermediate risk (5.2 versus 3.9; P = 0.006) and favorable risk (4.2 versus 3; P = 0.001). Comparing patients with the wild FLT3 allele to those with the mutant one, GLI-1 gene levels were considerably greater in those with the mutant allele of FLT3.Following induction chemotherapy, the levels of GLI-1 mRNA were significantly higher in 22 patients who did not experience complete remission (CR) diagnosed with de novo non-acute promyelocytic leukemia (APL) compared to 17 patients who did (P = 0.017). Significantly greater levels of expression were observed in each category of the patients with favorable risk; wild FLT3 allele (P = 0.033) and CR failure P = 0.005). CONCLUSION GLI-1 overexpression is a risk factor for poor prognosis and could be a novel therapeutic target for AML.
Collapse
Affiliation(s)
- Reham S. El Zaiat
- Faculty of Medicine, Clinical Pathology Department, Menoufia University, Shebein El kom, Egypt
| | - Reem Nabil
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Khaled A. Khalifa
- Faculty of Medicine, Clinical Pathology Department, Menoufia University, Shebein El kom, Egypt
| | - Aliaa A. El Feshawy
- Faculty of Medicine, Clinical Pathology Department, Menoufia University, Shebein El kom, Egypt
| |
Collapse
|
5
|
Nigam M, Mishra AP, Deb VK, Dimri DB, Tiwari V, Bungau SG, Bungau AF, Radu AF. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed Pharmacother 2023; 164:115015. [PMID: 37321055 DOI: 10.1016/j.biopha.2023.115015] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Among the most extensively researched processes in the development and treatment of cancer is inflammatory condition. Although acute inflammation is essential for the wound healing and reconstruction of tissues that have been damaged, chronic inflammation may contribute to the onset and growth of a number of diseases, including cancer. By disrupting the signaling processes of cells, which result in cancer induction, invasion, and development, a variety of inflammatory molecules are linked to the development of cancer. The microenvironment surrounding the tumor is greatly influenced by inflammatory cells and their subsequent secretions, which also contribute significantly to the tumor's growth, survivability, and potential migration. These inflammatory variables have been mentioned in several publications as prospective diagnostic tools for anticipating the onset of cancer. Targeting inflammation with various therapies can reduce the inflammatory response and potentially limit or block the proliferation of cancer cells. The scientific medical literature from the past three decades has been studied to determine how inflammatory chemicals and cell signaling pathways related to cancer invasion and metastasis are related. The current narrative review updates the relevant literature while highlighting the specifics of inflammatory signaling pathways in cancer and their possible therapeutic possibilities.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, 9300 Bloemfontein, South Africa.
| | - Vishal Kumar Deb
- Dietetics and Nutrition Technology Division, CSIR Institute of Himalayan Bioresource Technology, 176061 Palampur, Himanchal Pradesh, India
| | - Deen Bandhu Dimri
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi 221005, Uttar Pradesh, India
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
6
|
Takahashi S. Combination Therapies with Kinase Inhibitors for Acute Myeloid Leukemia Treatment. Hematol Rep 2023; 15:331-346. [PMID: 37367084 DOI: 10.3390/hematolrep15020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/10/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Targeting kinase activity is considered to be an attractive therapeutic strategy to overcome acute myeloid leukemia (AML) since aberrant activation of the kinase pathway plays a pivotal role in leukemogenesis through abnormal cell proliferation and differentiation block. Although clinical trials for kinase modulators as single agents remain scarce, combination therapies are an area of therapeutic interest. In this review, the author summarizes attractive kinase pathways for therapeutic targets and the combination strategies for these pathways. Specifically, the review focuses on combination therapies targeting the FLT3 pathways, as well as PI3K/AKT/mTOR, CDK and CHK1 pathways. From a literature review, combination therapies with the kinase inhibitors appear more promising than monotherapies with individual agents. Therefore, the development of efficient combination therapies with kinase inhibitors may result in effective therapeutic strategies for AML.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| |
Collapse
|
7
|
Lemos T, Merchant A. The hedgehog pathway in hematopoiesis and hematological malignancy. Front Oncol 2022; 12:960943. [PMID: 36091167 PMCID: PMC9453489 DOI: 10.3389/fonc.2022.960943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
The Hedgehog (HH) pathway is a promising therapeutic target in hematological malignancies. Activation of the pathway has been tied to greater chances of relapse and poorer outcomes in several hematological malignancies and inhibiting the pathway has improved outcomes in several clinical trials. One inhibitor targeting the pathway via the protein Smoothened (SMO), glasdegib, has been approved by the FDA for use with a low dose cytarabine regiment in some high-risk acute myeloid leukemia patients (AML). If further clinical trials in glasdegib produce positive results, there may soon be more general use of HH inhibitors in the treatment of hematological malignancies.While there is clinical evidence that HH inhibitors may improve outcomes and help prevent relapse, a full understanding of any mechanism of action remains elusive. The bulk of AML cells exhibit primary resistance to SMO inhibition (SMOi), leading some to hypothesize that that clinical activity of SMOi is mediated through modulation of self-renewal and chemoresistance in rare cancer stem cells (CSC). Direct evidence that CSC are being targeted in patients by SMOi has proven difficult to produce, and here we present data to support the alternative hypothesis that suggests the clinical benefit observed with SMOi is being mediated through stromal cells in the tumor microenvironment.This paper's aims are to review the history of the HH pathway in hematopoiesis and hematological malignancy, to highlight the pre-clinical and clinical evidence for its use a therapeutic target, and to explore the evidence for stromal activation of the pathway acting to protect CSCs and enable self-renewal of AML and other diseases. Finally, we highlight gaps in the current data and present hypotheses for new research directions.
Collapse
Affiliation(s)
| | - Akil Merchant
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
8
|
El-Kishky AHM, Moussa N, Helmy MW, Haroun M. GANT61/BI-847325 combination: a new hope in lung cancer treatment. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:144. [PMID: 35834029 PMCID: PMC9283175 DOI: 10.1007/s12032-022-01738-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Despite the huge efforts employed to implement novel chemotherapeutic paradigms for lung cancer, the disease still remains a major concern worldwide. Targeting molecular pathways as Hedgehog (Hh) and Mitogen-activated protein kinase (MAPK) represent a new hope in lung cancer treatment. This work was undertaken to evaluate the antitumor effects of GANT61 (5 μM), BI-847325(30 μM), and GANT61 (5 μM)/BI-847325(30 μM) combination on A549 adenocarcinoma lung cancer cell line. The growth inhibition 50 (GI50) for both drugs was performed using MTT. The protein levels of Caspase-3, Bcl-2-associated X protein (Bax), Myeloid cell leukemia sequence 1 (MCL-1), cyclin D1, vascular endothelial growth factor (VEGF), extracellular signal-regulated kinases (ERK), p-Akt, and phosphohistone H3 (pHH3) were measured using ELISA. Glioma-associated oncogene homolog 1(Gli1) gene expression was assessed by quantitative real-time PCR. The GI50 for GANT61 and BI-8473255 were 5 µM and 30 µM, respectively. Caspase-3 and Bax protein levels were significantly elevated while MCL-1, cyclin D1, VEGF, ERK 1/2, p-Akt, and pHH3 levels were significantly reduced by both drugs and their combination relative to the control group. Gli1 gene expression was down-regulated in all groups relative to the control group. GANT61, BI-847325 and their combination inhibited proliferation and angiogenesis but activated the apoptotic pathway. Both drugs conferred a profound negative impact on the crosstalk between each of Hh and MAPK pathways and Phosphoinositide 3 -kinases (PI3K)/Akt/Mammalian target of Rapamycin (mTOR). To the best of our knowledge, the antitumor effects of BI-847325/GANT61 combination have not been tested before. Further in-vitro and in-vivo studies are warranted to support the findings.
Collapse
Affiliation(s)
- Abdel Halim M El-Kishky
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Nermine Moussa
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Maged W Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhur University, Damanhur, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Zhang X, Dong S. Protective effect of growth differentiation factor 15 in sepsis by regulating macrophage polarization and its mechanism. Bioengineered 2022; 13:9687-9707. [PMID: 35420978 PMCID: PMC9161903 DOI: 10.1080/21655979.2022.2059903] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
This study aims to investigate the protective effect of growth differentiation factor 15 (GDF15) in sepsis by regulating macrophage polarization and its mechanism. The mouse macrophages were cultured and treated with lipopolysaccharide (LPS), and some cells were intervened with GDF15 and LY294002. The proinflammatory activated (M1) macrophages and the anti-inflammatory activated (M2) macrophages were measured and observed, and the messenger RNA expression levels of their biomarkers, phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) were detected. The survival rate, cardiac function, and histopathological sections were observed. In the LPS group, after GDF15 intervention, the percentage of M1 macrophages decreased and M2 macrophages increased, the infiltration of monocytes/macrophages into the heart was inhibited, systemic and cardiac inflammation was reduced, and the survival time of the mice was prolonged. GDF15 regulated macrophage polarization and played an anti-inflammatory role by activating the phosphorylation of the PI3K/Akt signaling pathway. In patients with sepsis, the serum GDF15 level increased and was closely related to the severity of the sepsis and the 28-day mortality rate and could be used as a prognostic marker of sepsis. GDF15 regulates macrophage polarization through activating the PI3K/Akt signaling pathway and has a protective effect on survival and the cardiac function of patients with sepsis and sepsis mouse models. The increase in serum GDF15 level is closely related to severity and mortality in patients with sepsis and is therefore a prognostic marker of sepsis.
Collapse
Affiliation(s)
- Xinliang Zhang
- Department of Emergency Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shimin Dong
- Department of Emergency Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Chen S, Ni M, Hu T, Gu Y, Feng C, Pan C, Zhang S, Wen S, Zhao N, Wang W, Dai L, Wang J. TANK-binding kinase 1 inhibitor GSK8612 enhances daunorubicin sensitivity in acute myeloid leukemia cells via the AKT-CDK2 pathway. Am J Transl Res 2021; 13:13640-13653. [PMID: 35035703 PMCID: PMC8748083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE It has been established in previous studies that TANK-binding kinase 1 (TBK1) is upregulated in malignant tumors and is therefore associated with poor prognosis. However, the role of TBK1 in acute myeloid leukemia (AML) remains unclear. In this study, we investigated the expression levels and the function of TBK1 in AML. METHODS First, TBK1 expression was detected and analyzed using Western blot and qRT-PCR. Then, GSK8612, a novel TBK1 inhibitor, and TBK1-specific siRNA (si-TBK1) were used to inhibit TBK1 function and expression. The effects of TBK1 inhibition on AML were investigated first through a cell counting kit (CCK-8) assay, followed by trypan blue staining to assess cell apoptosis and cell cycle progression in vitro. Finally, the signaling pathway activities in HL-60 and Kasumi-1 cells and patients' mononuclear cells (MNCs) were explored using western blot. RESULTS We found a significantly higher TBK1 expression in AML patients with poor prognoses. GSK8612 successfully inhibited TBK1 expression, resulting in the increased sensitivity of AML cells to daunorubicin. Mechanistically, TBK1 inhibition (by GSK8612 and si-TBK1) regulated cyclin-dependent kinase 2 (CDK2) levels in AML cells via the AKT pathway. Moreover, it was observed that the inhibition of protein kinase B (AKT) activity also resulted in the increased sensitivity of AML cell lines to daunorubicin, validating the relationship between TBK1 and the AKT-CDK2 pathway. Similar results were obtained in MNCs from patients with AML. CONCLUSION TBK1 is a potential prognostic factor for AML, and its inhibition may improve the sensitivity of AML cells to daunorubicin. This regulatory effect is predicted to involve the TBK1-AKT-CDK2 pathway.
Collapse
Affiliation(s)
- Siyu Chen
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
| | - Ming Ni
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
| | - Tianzhen Hu
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Yangguang Gu
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
| | - Cheng Feng
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
| | - Chengyun Pan
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
| | - Siyu Zhang
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Shuangshuang Wen
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
| | - Naiqin Zhao
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
| | - Weili Wang
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Lihong Dai
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
| | - Jishi Wang
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation CentreGuiyang 550005, Guizhou, China
| |
Collapse
|
11
|
Ji M, Zhang Z, Lin S, Wang C, Jin J, Xue N, Xu H, Chen X. The PI3K Inhibitor XH30 Enhances Response to Temozolomide in Drug-Resistant Glioblastoma via the Noncanonical Hedgehog Signaling Pathway. Front Pharmacol 2021; 12:749242. [PMID: 34899305 PMCID: PMC8662317 DOI: 10.3389/fphar.2021.749242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant tumor of the central nervous system. Temozolomide (TMZ)-based adjuvant treatment has improved overall survival, but clinical outcomes remain poor; TMZ resistance is one of the main reasons for this. Here, we report a new phosphatidylinositide 3-kinase inhibitor, XH30; this study aimed to assess the antitumor activity of this compound against TMZ-resistant GBM. XH30 inhibited cell proliferation in TMZ-resistant GBM cells (U251/TMZ and T98G) and induced cell cycle arrest in the G1 phase. In an orthotopic mouse model, XH30 suppressed TMZ-resistant tumor growth. XH30 was also shown to enhance TMZ cytotoxicity both in vitro and in vivo. Mechanistically, the synergistic effect of XH30 may be attributed to its repression of the key transcription factor GLI1 via the noncanonical hedgehog signaling pathway. XH30 reversed sonic hedgehog-triggered GLI1 activation and decreased GLI1 activation by insulin-like growth factor 1 via the noncanonical hedgehog signaling pathway. These results indicate that XH30 may represent a novel therapeutic option for TMZ-resistant GBM.
Collapse
Affiliation(s)
- Ming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyang Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nina Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Jiang D, Mo Q, Sun X, Wang X, Dong M, Zhang G, Chen F, Zhao Q. Pyruvate dehydrogenase kinase 4-mediated metabolic reprogramming is involved in rituximab resistance in diffuse large B-cell lymphoma by affecting the expression of MS4A1/CD20. Cancer Sci 2021; 112:3585-3597. [PMID: 34252986 PMCID: PMC8409406 DOI: 10.1111/cas.15055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 12/18/2022] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) heterogeneity promotes recurrence and anti‐CD20‐based therapeutic resistance. Previous studies have shown that downregulation of MS4A1/CD20 expression after chemoimmunotherapy with rituximab leads to rituximab resistance. However, the mechanisms of CD20 loss remain unknown. We identified that pyruvate dehydrogenase kinase 4 (PDK4) is markedly elevated in DLBCL cells derived from both patients and cell lines with R‐CHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone) resistance. We found that overexpression of PDK4 in DLBCL cells resulted in cell proliferation and resistance to rituximab in vitro and in vivo. Furthermore, loss of PDK4 expression or treatment with the PDK4 inhibitor dichloroacetate was able to significantly increase rituximab‐induced cell apoptosis in DLBCL cells. Further studies suggested PDK4 mediates a metabolic shift, in that the main energy source was changed from oxidative phosphorylation to glycolysis, and the metabolic changes could play an important role in rituximab resistance. Importantly, by knocking down or overexpressing PDK4 in DLBCL cells, we showed that PDK4 has a negative regulation effect on MS4A1/CD20 expression. Collectively, this is the first study showing that targeting PDK4 has the potential to overcome rituximab resistance in DLBCL.
Collapse
Affiliation(s)
- Duanfeng Jiang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qiuyu Mo
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiaoying Sun
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, China
| | - Xiaotao Wang
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Min Dong
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Guozhen Zhang
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Fangping Chen
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangqiang Zhao
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, China.,Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Jiang D, He Y, Mo Q, Liu E, Li X, Huang L, Zhang Q, Chen F, Li Y, Shao H. PRICKLE1, a Wnt/PCP signaling component, is overexpressed and associated with inferior prognosis in acute myeloid leukemia. J Transl Med 2021; 19:211. [PMID: 34001134 PMCID: PMC8130533 DOI: 10.1186/s12967-021-02873-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/03/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Prickle planar cell polarity protein 1 (PRICKLE1), a core component of the non-canonical Wnt/planar cell polarity (PCP) pathway, was recently reported to be upregulated and correlated with poor prognosis in solid cancers. However, the effect of PRICKLE1 on acute myeloid leukemia (AML) remains unknown. This study aims to characterize the prognostic significance of PRICKLE1 expression in patients with AML. METHODS RNA-seq was performed to compare mRNA expression profiles of AML patients and healthy controls. qRT-PCR and western blotting were used to analyze the expression of PRICKLE1 in AML patients and cell lines, and two independent datasets (TCGA-LAML and TARGET-AML) online were used to validate the expression results. The correlations between the expression of PRICKLE1 and clinical features were further analyzed. RESULTS Our data showed that PRICKLE1 expression levels were markedly high in AML patients at the time of diagnosis, decreased after complete remission and increased again at relapse. Of note, PRICKLE1 was highly expressed in drug resistant AML cells and monocytic-AML patients. High PRICKLE1 expression was found in FLT3/DNMT3A/IDH1/IDH2-mutant AML and associated with poor prognosis. Furthermore, high expression of PRICKLE1 may be correlated with migration and invasion components upregulation in AML patients. CONCLUSIONS These results indicated that high PRICKLE1 expression may be a poor prognostic biomarker and therapeutic target of AML.
Collapse
Affiliation(s)
- Duanfeng Jiang
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanjuan He
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuyu Mo
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Enyi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Li
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihua Huang
- Center for Medical Experiments, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Zhang
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangping Chen
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Haigang Shao
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Lainez-González D, Serrano-López J, Alonso-Domínguez JM. Understanding the Hedgehog Signaling Pathway in Acute Myeloid Leukemia Stem Cells: A Necessary Step toward a Cure. BIOLOGY 2021; 10:biology10040255. [PMID: 33804919 PMCID: PMC8063837 DOI: 10.3390/biology10040255] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary The Hedgehog signaling pathway is related to the cell cycle. In particular, it is considered to play a fundamental role in the quiescence of leukemic stem cell (i.e., a temporary resting state without cell replication). Leukemic stem cells are the cells supposed to give rise to the relapses of the leukemia. Therefore, the Hedgehog pathway must be understood to improve the current treatments against acute myeloid leukemia and avoid the relapse of the disease. In this review, we gather the present knowledge about the physiological Hedgehog pathway function, the aberrant activation of Hedgehog in leukemia, and highlight the lack of evidence regarding some aspects of this important pathway. Finally, we summarize the acute myeloid leukemia treatments targeting this signaling pathway. Abstract A better understanding of how signaling pathways govern cell fate is fundamental to advances in cancer development and treatment. The initialization of different tumors and their maintenance are caused by the deregulation of different signaling pathways and cancer stem cell maintenance. Quiescent stem cells are resistant to conventional chemotherapeutic treatments and, consequently, are responsible for disease relapse. In this review we focus on the conserved Hedgehog (Hh) signaling pathway which is involved in regulating the cell cycle of hematopoietic and leukemic stem cells. Thus, we examine the role of the Hh signaling pathway in normal and leukemic stem cells and dissect its role in acute myeloid leukemia. We explain not only the connection between illness and the signaling pathway but also evaluate innovative therapeutic approaches that could affect the outcome of patients with acute myeloid leukemia. We found that many aspects of the Hedgehog signaling pathway remain unknown. The role of Hh has only been proven in embryo and hematopoietic stem cell development. Further research is needed to elucidate the role of GLI transcription factors for therapeutic targeting. Glasdegib, an SMO inhibitor, has shown clinical activity in acute myeloid leukemia; however, its mechanism of action is not clear.
Collapse
Affiliation(s)
- Daniel Lainez-González
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
| | - Juana Serrano-López
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
| | - Juan Manuel Alonso-Domínguez
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
- Hematology Department, Hospital Universitario Fundación Jiménez Díaz, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-918488100-2673
| |
Collapse
|
15
|
Zhou C, Du J, Zhao L, Liu W, Zhao T, Liang H, Fang P, Zhang K, Zeng H. GLI1 reduces drug sensitivity by regulating cell cycle through PI3K/AKT/GSK3/CDK pathway in acute myeloid leukemia. Cell Death Dis 2021; 12:231. [PMID: 33658491 PMCID: PMC7930050 DOI: 10.1038/s41419-021-03504-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/07/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with high incidence and recurrence rates. Gene expression profiling has revealed that transcriptional overexpression of glioma-associated oncogene 1 (GLI1), a vital gene in the Hedgehog (Hh) signaling pathway, occurs in poor-prognosis AML, and high levels of phosphoinositide-3-kinase, regulatory subunit 1 (PIK3R1) and AKT3 predict shorter overall survival in AML patients. In this study, we discovered that GLI1 overexpression promotes cell proliferation and reduces chemotherapy sensitivity in AML cells while knocking down GLI1 has the opposite effect. Moreover, GLI1 promoted cell cycle progression and led to elevated protein levels of cyclins and cyclin-dependent kinases (CDKs) in AML cells. By luciferase assays and co-immunoprecipitation, we demonstrated that the PI3K/AKT pathway is directly activated by GLI1. GLI1 overexpression significantly accelerates tumor growth and upregulated p-AKT, CDK4, and cyclinD3 in vivo. Notably, the GLI1 inhibitor GANT61 and the CDK4/6 inhibitor PD 0332991 had synergistic effects in promoting Ara-c sensitivity in AML cell lines and patient samples. Collectively, our data demonstrate that GLI1 reduces drug sensitivity by regulating cell cycle through the PI3K/AKT/GSK3/CDK pathway, providing a new perspective for involving GLI1 and CDK4/6 inhibitors in relapsed/refractory (RR) patient treatment.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Cell Cycle/drug effects
- Cell Proliferation/drug effects
- Cyclin-Dependent Kinases/antagonists & inhibitors
- Cyclin-Dependent Kinases/metabolism
- Cytarabine/pharmacology
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Leukemic
- Glycogen Synthase Kinase 3/metabolism
- HEK293 Cells
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Mice, Nude
- Phosphatidylinositol 3-Kinase/metabolism
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- Pyridines/pharmacology
- Pyrimidines/pharmacology
- Signal Transduction
- THP-1 Cells
- Tumor Burden/drug effects
- U937 Cells
- Xenograft Model Antitumor Assays
- Zinc Finger Protein GLI1/antagonists & inhibitors
- Zinc Finger Protein GLI1/genetics
- Zinc Finger Protein GLI1/metabolism
- Mice
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Liang Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wei Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Tianming Zhao
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Hui Liang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Peng Fang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Kaixuan Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
16
|
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is an aggressive blood cancer that proves fatal for the majority of affected individuals. Older patients are particularly vulnerable due to more unfavorable disease biology and diminished ability to tolerate intensive induction chemotherapy (ICT). Safer, more efficacious therapies are desperately needed. AREAS COVERED We briefly summarize the challenges facing AML treatment and introduce the rapidly expanding therapeutic landscape. Our focus is on the Hedgehog (Hh) pathway and how preclinical evidence has spurred the clinical development of selective inhibitors for oncology indications. Glasdegib is the first Hh pathway inhibitor approved for the treatment of a hematologic malignancy, and we review its pharmacology, safety, efficacy, and potential clinical impact in AML patients. EXPERT OPINION Advances in the mechanistic understanding of AML have started to translate into improved therapeutic options for patients with contraindications to ICT. Glasdegib improved overall survival in this population when combined with low-dose cytarabine. While an encouraging development for these difficult to treat patients, alternative combination therapy approaches such as venetoclax plus azacitidine have gained greater clinical traction. Further investigation of glasdegib combination strategies and predictive biomarkers, particularly in regard to overcoming chemoresistance and preventing relapse, is needed to better define its clinical utility.
Collapse
Affiliation(s)
- Shawn M Sarkaria
- Division of Hematology and Medical Oncology, Columbia University Irving Medical Center, NY, USA
| | - Mark L Heaney
- Division of Hematology and Medical Oncology, Columbia University Irving Medical Center, NY, USA
| |
Collapse
|
17
|
Liu W, Yi JM, Liu Y, Chen C, Zhang KX, Zhou C, Zhan HE, Zhao L, Morales S, Zhao XL, Zeng H. CDK6 Is a Potential Prognostic Biomarker in Acute Myeloid Leukemia. Front Genet 2021; 11:600227. [PMID: 33597968 PMCID: PMC7882723 DOI: 10.3389/fgene.2020.600227] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a threatening hematological malignant disease in which new successful approaches in therapy are needed. Cyclin-dependent kinase 6 (CDK6), a regulatory enzyme of the cell cycle that plays an important role in leukemogenesis and the maintenance of leukemia stem cells (LSC), has the potential to predict the prognosis of AML. By analyzing public databases, we observed that the messenger RNA (mRNA) levels of CDK6 were significantly overexpressed in AML cell lines and non-acute promyelocytic leukemia (non-APL) AML patients when compared to healthy donors. Furthermore, CDK6 expression was significantly reduced in AML patients who achieved complete remission (CR) compared to that at the time of diagnosis in our validated cohort. The expression of CDK6 was tightly correlated with peripheral blood blasts, French-American-British (FAB) subtypes, CCAAT-enhancer-binding protein α (CEBPA) mutation, and chromosomal abnormalities of t(8;21). However, the clinical significance and effects of CDK6 expression on the prognosis of non-APL AML patients remain uncertain. We found that CDK6 expression was inversely correlated with overall survival (OS) among non-APL AML patients using the Kaplan-Meier analysis. CDK6 was also found to be positively associated with genes identified to contribute to the development of leukemia, including CCND2, DNMT3B, SOX4, and IKZF2, as well as being negatively associated with anticancer microRNAs, including miR-187, miR-9, miR-582, miR708, and miR-362. In summary, our study revealed that CDK6 might be a potential diagnostic and prognostic biomarker in non-APL AML patients.
Collapse
Affiliation(s)
- Wei Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Mou Yi
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Kai-Xuan Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Zhou
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui-En Zhan
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liang Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Stephanie Morales
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Xie-Lan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Ramachandran S, Srivastava SK. Repurposing Pimavanserin, an Anti-Parkinson Drug for Pancreatic Cancer Therapy. Mol Ther Oncolytics 2020; 19:19-32. [PMID: 33024816 PMCID: PMC7527685 DOI: 10.1016/j.omto.2020.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Despite major advances in cancer treatment, pancreatic cancer is still incurable and the treatment outcomes are limited. The aggressive and therapy-resistant nature of pancreatic cancer warrants the need for novel treatment options for pancreatic cancer management. Drug repurposing is emerging as an effectual strategy in the treatment of various diseases, including cancer. In the present study, we evaluated the anticancer effects of pimavanserin tartrate (PVT), an antipsychotic drug used for the treatment of Parkinson disease psychosis. PVT significantly suppressed the proliferation and induced apoptosis in various pancreatic cancer cells and gemcitabine-resistant cells with minimal effects on normal pancreatic epithelial cells and lung fibroblasts. Growth-suppressive and apoptotic effects of PVT were mediated by the inhibition of the Akt/Gli1 signaling axis. The oral administration of PVT suppressed subcutaneous and orthotopic pancreatic tumor xenografts by 51%-77%. The chronic administration of PVT did not demonstrate any general signs of toxicity or change in behavioral activity of mice. Our results indicate that pancreatic tumor growth suppression by PVT was orchestrated by the inhibition of Akt/Gli1 signaling. Since PVT is already available in the clinic with an established safety profile, our results will accelerate its clinical development for the treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Sharavan Ramachandran
- Department of Immunotherapeutics and Biotechnology, Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K. Srivastava
- Department of Immunotherapeutics and Biotechnology, Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| |
Collapse
|
19
|
Huang Y, Wei J, Huang X, Zhou W, Xu Y, Deng DH, Cheng P. Comprehensively analyze the expression and prognostic role for ten-eleven translocations (TETs) in acute myeloid leukemia. Transl Cancer Res 2020; 9:7259-7283. [PMID: 35117329 PMCID: PMC8798779 DOI: 10.21037/tcr-20-3149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/06/2020] [Indexed: 12/02/2022]
Abstract
BACKGROUND The ten-eleven translocation (TET) family oxidize 5-methylcytosines (5mCs) and promote the locus-specific reversal of DNA. The role of TETs in acute myeloid leukemia (AML) is mostly unknown. METHODS TETs mRNA expression levels were analyzed via Gene Expression Profiling Interactive Analysis (GEPIA). The association TETs expression levels and methylation with prognosis by UALCAN GenomicScape, and METHsurv. We analyzed TETs' aberration types, located mutations, and structures via cBioPortal. GeneMANIA performed the functional network. Gene ontology (GO) enrichment was analyzed via LinkedOmics. MiWalK identified miRNAs, miTarbase, and TargetScan. Transcription factor (TF) targets were analyzed via ChEA3. GSCAlite analyzed the role of these defined genes in cancer pathways and potential drug targets. Finally, we selected AML patients in our department to investigate the mutated types of TETs. RESULTS TETs expression level results showed TET1 (P=0.003) and TET2 (P=0.004) overexpressed in Haferlach leukemia samples, TET3 (P=4.04e-8) downregulation in Andersson leukemia samples. TET2 and TET3 overexpression but TET1 downregulation in the GEPIA database. Overexpression of TET2 leads to positive outcomes (P=0.0091). The upregulation of TET2 led to poor survival for CN-AML patients, but downregulation of TET3 indicated a satisfactory prognosis. The hypermethylation of TETs like cg24705708 (P=0.036), cg05976228 (P=0.022), cg19127638 (P=0.022), cg15254238 (P=0.025), cg07669489 (P=0.037) indicate poor outcomes. Overexpression of GALNS (P=0.024) as an adverse biomarker, downregulation of E2F5 (P=0.037), MAP7 (P=0.019), and NRIP1 (P=0.0013) indicated good prognosis. Regulatory network analysis indicated TETs' functions, including covalent chromatin modification, histone modification, DNA methylation, or demethylation. Enrichment functions involving. TETs participate in several cancer pathways, including DNA repair response and receptor tyrosine kinase (RTK) signaling pathway. TETs are sensitive to belinostat, ceranib-2, docetaxel, tivantinib, and vincristine. CONCLUSION Present study showed that TETs have different expressions in AML, and the expression levels of TETs lead to different outcomes of AML. The TETs cancer pathway analysis will also provide potential therapy methods for AML patients with TETs aberrations.
Collapse
Affiliation(s)
- Yan Huang
- Department of Hematology and Rheumatology, People’s Hospital of Baise, Baise, China
| | - Jie Wei
- Department of Hematology and Rheumatology, People’s Hospital of Baise, Baise, China
| | - Xunjun Huang
- Department of Hematology and Rheumatology, People’s Hospital of Baise, Baise, China
| | - Weijie Zhou
- Department of Hematology and Rheumatology, People’s Hospital of Baise, Baise, China
| | - Yuling Xu
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dong-Hong Deng
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peng Cheng
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Downregulation of GLI3 Expression Mediates Chemotherapy Resistance in Acute Myeloid Leukemia. Int J Mol Sci 2020; 21:ijms21145084. [PMID: 32708452 PMCID: PMC7404064 DOI: 10.3390/ijms21145084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022] Open
Abstract
Aberrant activation of the hedgehog (HH) pathway is observed in many neoplasms, including acute myeloid leukemia (AML). The glioma-associated oncogene homolog (GLI) transcription factors are the main downstream effectors of the HH signaling cascade and are responsible for the proliferation and maintenance of leukemic stem cells, which support chemotherapy resistance and leukemia relapse. Cytarabine (Ara-C)-resistant variants of AML cell lines were established through long-term cultivation with successively increasing Ara-C concentrations. Subsequently, differences in GLI expression were analyzed by RT-qPCR. GLI3 mRNA levels were detectable in parental Kasumi-1, OCI-AML3, and OCI-AML5 cells, whereas GLI3 expression was completely silenced in all resistant counterparts. Therefore, we generated GLI3-knockdown cell lines using small hairpin RNAs (shRNA) and evaluated their sensitivity to Ara-C in vitro. The knockdown of GLI3 partly abolished the effect of Ara-C on colony formation and induction of apoptosis, indicating that GLI3 downregulation results in Ara-C resistance. Moreover, we analyzed the expression of several genes involved in Ara-C metabolism and transport. Knockdown of GLI3 resulted in the upregulation of SAM and HD domain-containing protein 1 (SAMHD1), cytidine deaminase (CDA), and ATP-binding cassette C11 (ABCC11)/multidrug resistance-associated protein 8 (MRP8), each of which has been identified as a predictive marker for Ara-C response in acute myeloid leukemia. Our results demonstrate that GLI3 downregulation is a potential mechanism to induce chemotherapy resistance in AML.
Collapse
|
21
|
Wu J, He J, Tian X, Li H, Wen Y, Shao Q, Cheng C, Wang G, Sun X. Upregulation of miRNA-9-5p Promotes Angiogenesis after Traumatic Brain Injury by Inhibiting Ptch-1. Neuroscience 2020; 440:160-174. [PMID: 32502567 DOI: 10.1016/j.neuroscience.2020.05.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
MicroRNA-9-5p (miRNA-9-5p) is an important regulator of angiogenesis in many pathological states. However, the effect of miRNA-9-5p on angiogenesis after traumatic brain injury (TBI) has not been elucidated. In this study, a controlled cortical impact (CCI) model was used to induce TBI in Sprague-Dawley rats, and an oxygen glucose deprivation (OGD) model was used to mimic the pathological state in vitro. Brain microvascular endothelial cells (BMECs) were extracted from immature rats. The results showed that the level of miRNA-9-5p was significantly increased in the traumatic foci after TBI, and the upregulation of miRNA9-5p promoted the recovery of neurological function. Moreover, the upregulation of miRNA-9-5p with miRNA agomir significantly increased the density of the microvascular and neurons around the traumatic foci in rats after TBI. The results of the in vitro experiments confirmed that the upregulation of miRNA-9-5p with a miRNA mimic improved cellular viability and alleviated cellular apoptosis. Dual luciferase reporter assay validated that miRNA-9-5p was a posttranscriptional modulator of Ptch-1. Activation of the Hedgehog pathway by increasing the level of miRNA-9-5p promoted the migration and tube formation of BMECs in vitro. In addition, we found that the upregulation of miRNA-9-5p activated the Hedgehog pathway and increased the phosphorylation of AKT, which promoted the expression of cyclin D1, MMP-9 and VEGF in BMECs. All these results indicate that the upregulation of miRNA-9-5p promotes angiogenesis and improves neurological functional recovery after TBI, mainly by activating the Hedgehog pathway. MiRNA-9-5p may be a potential new therapeutic target for TBI.
Collapse
Affiliation(s)
- Jingchuan Wu
- Department of Neurosurgery, General Hospital of The YangTze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, China; Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junchi He
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaocui Tian
- College of Pharmacy, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, District of Yuzhong, Chongqing 400016, China
| | - Hui Li
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Wen
- Department of Neurosurgery, General Hospital of The YangTze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, China
| | - Qiang Shao
- Department of Neurosurgery, General Hospital of The YangTze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, China
| | - Chongjie Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Guangyu Wang
- Department of Neurosurgery, Qi lu Children's Hospital of Shandong University, Jinan, Shandong 250022, China.
| | - Xiaochuan Sun
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
22
|
Long L, Assaraf YG, Lei ZN, Peng H, Yang L, Chen ZS, Ren S. Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia. Drug Resist Updat 2020; 52:100703. [PMID: 32599434 DOI: 10.1016/j.drup.2020.100703] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy with complex heterogenous genetic and biological nature. Thus, prognostic prediction and targeted therapies might contribute to better chemotherapeutic response. However, the emergence of multidrug resistance (MDR) markedly impedes chemotherapeutic efficacy and dictates poor prognosis. Therefore, prior evaluation of chemoresistance is of great importance in therapeutic decision making and prognosis. In recent years, preclinical studies on chemoresistance have unveiled a compendium of underlying molecular basis, which facilitated the development of targetable small molecules. Furthermore, routing genomic sequencing has identified various genomic aberrations driving cellular response during the course of therapeutic treatment through adaptive mechanisms of drug resistance, some of which serve as prognostic biomarkers in risk stratification. However, the underlying mechanisms of MDR have challenged the certainty of the prognostic significance of some mutations. This review aims to provide a comprehensive understanding of the role of MDR in therapeutic decision making and prognostic prediction in AML. We present an updated genetic landscape of the predominant mechanisms of drug resistance with novel targeted therapies and potential prognostic biomarkers from preclinical and clinical chemoresistance studies in AML. We particularly highlight the unfolded protein response (UPR) that has emerged as a critical regulatory pathway in chemoresistance of AML with promising therapeutic horizon. Futhermore, we outline the most prevalent mutations associated with mechanisms of chemoresistance and delineate the future directions to improve the current prognostic tools. The molecular analysis of chemoresistance integrated with genetic profiling will facilitate decision making towards personalized prognostic prediction and enhanced therapeutic efficacy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Disease-Free Survival
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Molecular Targeted Therapy/methods
- Mutation
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/prevention & control
- Precision Medicine/methods
- Prognosis
- Unfolded Protein Response/genetics
Collapse
Affiliation(s)
- Luyao Long
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, P.R. China
| | - Hongwei Peng
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Lin Yang
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
23
|
Zhang T, Wei D, Lu T, Ma D, Yu K, Fang Q, Zhang Z, Wang W, Wang J. CAY10683 and imatinib have synergistic effects in overcoming imatinib resistance via HDAC2 inhibition in chronic myeloid leukemia. RSC Adv 2020; 10:828-844. [PMID: 35494464 PMCID: PMC9048251 DOI: 10.1039/c9ra07971h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Imatinib (IM) is utilized for targeting the BCR-ABL fusion protein and as such, chronic myeloid leukemia (CML) is considered to be a curable disorder for which patients can achieve a long survival. However, 15-20% CML cases end up with IM resistance that will develop into the accelerated stage and eventually the blast crisis, thereby restricting the treatment choices and giving rise to a dismal survival rate. Histone deacetylases (HDACs) have been identified to modulate the oncogene as well as tumor suppressor gene activities, and they play crucial parts in tumorigenesis. It is found recently that IM combined with HDAC inhibitors (HDACi) can serve as a promising means of overcoming IM resistance in CML cases. Santacruzamate A (CAY10683) has been developed as one of the selective and powerful HDACi to resist HDAC2. Therefore, in this study, we aimed to examine whether CAY10683 combined with IM could serve as the candidate antitumor treatment for CML cases with IM resistance. The influences of CAY10683 combined with IM on the cell cycle arrest, apoptosis, and viability of CML cells with IM resistance were investigated, and it was discovered that the combined treatment exerted synergistic effects on managing the IM resistance. Moreover, further studies indicated that CAY10683 combined with IM mainly exerted synergistic effects through inhibiting HDAC2 in K562-R and LAMA84-R cells with IM resistance. Besides, the PI3K/Akt signal transduction pathway was found to mediate the HDAC2 regulation of CML cells with IM resistance. Eventually, it was also discovered, based on the xenograft mouse model, that the combined treatment dramatically suppressed CML proliferation in vivo. To sum up, findings in the current study indicate that CAY10683 combined with IM can be potentially used as the candidate treatment for CML with IM resistance.
Collapse
Affiliation(s)
- Tianzhuo Zhang
- Department of Clinical Medical School, Guizhou Medical University Guiyang 550004 PR China.,Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Danna Wei
- Department of Hematology and Oncology, Guiyang Maternal and Child Health Hospital Guiyang 550002 PR China
| | - Tingting Lu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Kunlin Yu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China
| | - Zhaoyuan Zhang
- Department of Clinical Medical School, Guizhou Medical University Guiyang 550004 PR China.,Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Weili Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Jishi Wang
- Department of Clinical Medical School, Guizhou Medical University Guiyang 550004 PR China.,Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| |
Collapse
|
24
|
Qian S, Golubnitschaja O, Zhan X. Chronic inflammation: key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J 2019; 10:365-381. [PMID: 31832112 PMCID: PMC6882964 DOI: 10.1007/s13167-019-00194-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022]
Abstract
A strong relationship exists between tumor and inflammation, which is the hot point in cancer research. Inflammation can promote the occurrence and development of cancer by promoting blood vessel growth, cancer cell proliferation, and tumor invasiveness, negatively regulating immune response, and changing the efficacy of certain anti-tumor drugs. It has been demonstrated that there are a large number of inflammatory factors and inflammatory cells in the tumor microenvironment, and tumor-promoting immunity and anti-tumor immunity exist simultaneously in the tumor microenvironment. The typical relationship between chronic inflammation and tumor has been presented by the relationships between Helicobacter pylori, chronic gastritis, and gastric cancer; between smoking, development of chronic pneumonia, and lung cancer; and between hepatitis virus (mainly hepatitis virus B and C), development of chronic hepatitis, and liver cancer. The prevention of chronic inflammation is a factor that can prevent cancer, so it effectively inhibits or blocks the occurrence, development, and progression of the chronic inflammation process playing important roles in the prevention of cancer. Monitoring of the causes and inflammatory factors in chronic inflammation processes is a useful way to predict cancer and assess the efficiency of cancer prevention. Chronic inflammation-based biomarkers are useful tools to predict and prevent cancer.
Collapse
Affiliation(s)
- Shehua Qian
- 1Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 2Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 3State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Olga Golubnitschaja
- 4Radiological Clinic, UKB, Excellence Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str 25, 53105 Bonn, Germany
- 5Breast Cancer Research Centre, UKB, Excellence Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
- 6Centre for Integrated Oncology, Cologne-Bonn, Excellence Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Xianquan Zhan
- 1Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 2Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 3State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 7Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan People's Republic of China
- 8National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan People's Republic of China
| |
Collapse
|
25
|
Liu S, Li C, Xin P, Zheng Y, Peng Q, Xu Y, Luo Y, Wu Y, Zhu X. Sonidegib, a Smoothened Inhibitor, Promotes Apoptosis and Suppresses Proliferation of Natural Killer/T-Cell Lymphoma. Med Sci Monit 2019; 25:8579-8586. [PMID: 31724562 PMCID: PMC6873646 DOI: 10.12659/msm.918812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Dysregulation of the Hedgehog (Hh) pathway modulates various aspects of hematologic and solid tumors, but its effects in human Natural killer/T-cell lymphoma (NKTCL) are unclear. Moreover, no study has examined the consequences of pharmacologically inhibiting Hh signaling in NKTCL cell lines. Material/Methods In this study, the expression of Smoothened (Smo) and Glioma-associated oncogene 1 (Gli1) in NKTCL tissue were scrutinized. Two human NKTCL cell lines, SNK6 and SNT8, were subjected to various doses of sonidegib (a Smo inhibitor) and incubated for distinct durations. The cell apoptosis was examined by flow cytometry, CCK-8 assay was run to assess proliferation, and protein levels were quantified by Western blotting. Results Both Smo and Gli1 expression were higher in NKTCL tissue than in Lymphoid Reactive Hyperplasia (LRH). Sonidegib significantly suppressed proliferation in NKTCL cells and the effect was dose-dependent. Further analysis revealed that sonidegib treatment elevated the number of apoptotic cells in a dose- and time-dependent manner. In addition, sonidegib downregulated Smo and Gli1expression in NKTCL cells. Conclusions The Hh pathway is crucial to the development of NKTCL and thus holds huge promise as a treatment for this disease.
Collapse
Affiliation(s)
- Shengquan Liu
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Chuntuan Li
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Pengliang Xin
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Yan Zheng
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Qunyi Peng
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Yahong Xu
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Ying Luo
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Yishen Wu
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Xiongpeng Zhu
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| |
Collapse
|
26
|
Liu Y, Jia Y, Fu X, He P. TAF-Iβ deficiency inhibits proliferation and promotes apoptosis by rescuing PP2A and inhibiting the AKT/GSK-3β pathway in leukemic cells. Exp Ther Med 2019; 18:3801-3808. [PMID: 31611934 PMCID: PMC6781801 DOI: 10.3892/etm.2019.8012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Template-activating factor Iβ (TAF-Iβ) has been associated with numerous pathophysiological processes and has been reported as an oncogene responsible for the regulation of important signaling pathways in various types of solid tumor; however, few studies have investigated the role of TAF-Iβ in leukemia. The present study reported the upregulated expression of TAF-Iβ in 36 patients with acute leukemia and six leukemic cell lines. In addition, TAF-Iβ-knockdown (KD) cells were generated via RNA interference. TAF-Iβ KD not only inhibited the proliferation of leukemia cells but also induced apoptosis. Furthermore, it was revealed that the mechanism underlying these effects may be associated with the upregulation of protein phosphatase type 2A and inhibition of the protein kinase B/glycogen synthase kinase-3β signaling pathway. Collectively, the findings demonstrated that TAF-Iβ serves an important role in various types of leukemia and may be considered as a potential therapeutic target for the treatment of leukemia.
Collapse
Affiliation(s)
- Yanfeng Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yan Jia
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiao Fu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
27
|
Shallis RM, Bewersdorf JP, Boddu PC, Zeidan AM. Hedgehog pathway inhibition as a therapeutic target in acute myeloid leukemia. Expert Rev Anticancer Ther 2019; 19:717-729. [PMID: 31422721 DOI: 10.1080/14737140.2019.1652095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: The Hedgehog (HH) pathway constitutes a collection of signaling molecules which critically influence embryogenesis. In adults, however, the HH pathway remains integral to the proliferation, maintenance, and apoptosis of adult stem cells including hematopoietic stem cells. Areas covered: We discuss the current understanding of the HH pathway as it relates to normal hematopoiesis, the pathology of acute myeloid leukemia (AML), the rationale for and data from combination therapies including HH pathway inhibitors, and ultimately the prospects that might offer promise in targeting this pathway in AML. Expert opinion: Efforts to target the HH pathway have been focused on impeding this disposition and restoring chemosensitivity to conventional myeloid neoplasm therapies. The year 2018 saw the first approval of a HH pathway inhibitor (glasdegib) for AML, though for an older population and in combination with an uncommonly-used therapy. Several other clinical trials with agents targeting modulators of HH signaling in AML and MDS are underway. Further study and understanding of the interplay between the numerous aspects of HH signaling and how it relates to the augmented survival of AML will provide a more reliable substrate for therapeutic strategies in patients with this poor-risk disease.
Collapse
Affiliation(s)
- Rory M Shallis
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Jan Philipp Bewersdorf
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Prajwal C Boddu
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Amer M Zeidan
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA.,Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University , New Haven , CT , USA
| |
Collapse
|
28
|
Xu Y, Dong Q, Li F, Xu Y, Hu C, Wang J, Shang D, Zheng X, Yang H, Zhang C, Shao M, Meng M, Xiong Z, Li X, Zhang Y. Identifying subpathway signatures for individualized anticancer drug response by integrating multi-omics data. J Transl Med 2019; 17:255. [PMID: 31387579 PMCID: PMC6685260 DOI: 10.1186/s12967-019-2010-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Background Individualized drug response prediction is vital for achieving personalized treatment of cancer and moving precision medicine forward. Large-scale multi-omics profiles provide unprecedented opportunities for precision cancer therapy. Methods In this study, we propose a pipeline to identify subpathway signatures for anticancer drug response of individuals by integrating the comprehensive contributions of multiple genetic and epigenetic (gene expression, copy number variation and DNA methylation) alterations. Results Totally, 46 subpathway signatures associated with individual responses to different anticancer drugs were identified based on five cancer-drug response datasets. We have validated the reliability of subpathway signatures in two independent datasets. Furthermore, we also demonstrated these multi-omics subpathway signatures could significantly improve the performance of anticancer drug response prediction. In-depth analysis of these 46 subpathway signatures uncovered the essential roles of three omics types and the functional associations underlying different anticancer drug responses. Patient stratification based on subpathway signatures involved in anticancer drug response identified subtypes with different clinical outcomes, implying their potential roles as prognostic biomarkers. In addition, a landscape of subpathways associated with cellular responses to 191 anticancer drugs from CellMiner was provided and the mechanism similarity of drug action was accurately unclosed based on these subpathways. Finally, we constructed a user-friendly web interface-CancerDAP (http://bio-bigdata.hrbmu.edu.cn/CancerDAP/) available to explore 2751 subpathways relevant with 191 anticancer drugs response. Conclusions Taken together, our study identified and systematically characterized subpathway signatures for individualized anticancer drug response prediction, which may promote the precise treatment of cancer and the study for molecular mechanisms of drug actions. Electronic supplementary material The online version of this article (10.1186/s12967-019-2010-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Qun Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yingqi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Congxue Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jingwen Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Desi Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xuan Zheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Haixiu Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Mengting Shao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Mohan Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Zhiying Xiong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
29
|
Yuan XQ, Chen P, Du YX, Zhu KW, Zhang DY, Yan H, Liu H, Liu YL, Cao S, Zhou G, Zeng H, Chen SP, Zhao XL, Yang J, Zeng WJ, Chen XP. Influence of DNMT3A R882 mutations on AML prognosis determined by the allele ratio in Chinese patients. J Transl Med 2019; 17:220. [PMID: 31291961 PMCID: PMC6621981 DOI: 10.1186/s12967-019-1959-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/21/2019] [Indexed: 01/13/2023] Open
Abstract
Background The influence of DNMT3A R882 mutations on adult acute myeloid leukemia (AML) prognosis is still controversial presently. The influence of R882 allele ratio on drug response and prognosis of AML is unknown yet. Besides, it is obscure whether anthracyclines are involved in chemoresistance resulted from R882 mutations. Methods DNMT3A R882 mutations in 870 adult AML patients receiving standard induction therapy were detected by pyrosequencing. Associations of the mutants with responses to induction therapy and disease prognosis were analyzed. Results DNMT3A R882 mutations were detected in 74 (8.51%) patients and allele ratio of the mutations ranged from 6 to 50% in the cohort. After the first and second courses of induction therapy including aclarubicin, complete remission rates were significantly lower in carriers of the DNMT3A R882 mutants as compared with R882 wildtype patients (P = 0.022 and P = 0.038, respectively). Compared with R882 wild-type patients, those with the R882 mutations showed significantly shorter overall survival (OS) and disease-free survival (DFS) (P = 1.92 × 10−4 and P = 0.004, respectively). Patients with higher allele ratio of R882 mutations showed a significantly shorter OS as compared with the lower allele ratio group (P = 0.035). Conclusion Our results indicate that the impact of DNMT3A R882 mutations on AML prognosis was determined by the mutant-allele ratio and higher allele ratio could predict a worse prognosis, which might improve AML risk stratification. In addition, DNMT3A R882 mutations were associated with an inferior response to induction therapy with aclarubicin in Chinese AML patients. Electronic supplementary material The online version of this article (10.1186/s12967-019-1959-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Qing Yuan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Peng Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Yin-Xiao Du
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Ke-Wei Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Dao-Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Han Yan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Han Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Yan-Ling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Hui Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shu-Ping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xie-Lan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Wen-Jing Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
30
|
Ahmed ESA, Ahmed NH, Medhat AM, Said UZ, Rashed LA, Abdel Ghaffar ARB. Mesenchymal stem cells targeting PI3K/AKT pathway in leukemic model. Tumour Biol 2019; 41:1010428319846803. [PMID: 31018830 DOI: 10.1177/1010428319846803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells have therapeutic properties that are related to their potentials for trans-differentiation, immunomodulation, anti-inflammatory, inhibitory effect on tumor proliferation, and induction of apoptosis. This study was performed to analyze the role of mesenchymal stem cells as an alternative for cellular signaling growth factors involved in the pathogenesis of leukemogenesis in rats. Treatment of rats with 7,12-dimethyl benz [a] anthracene induced leukemogenesis appeared as a significant decrease in hematological parameters with concomitant significant increase in bone marrow oxidative and inflammatory indices (transforming growth factor beta and interleukin-6) in comparison with normal groups. On the contrary, Western immunoblotting showed a significant increase in the signaling growth factors: PI3K, AKT, mTOR proteins and a significant decrease in PTEN in 7,12-dimethyl benz [a] anthracene-treated group. In addition, a significant increase in the transcript levels of B cell lymphoma-2 protein gene in the 7,12-dimethyl benz [a] anthracene group, while that of C-X-C motif chemokine receptor-4 and B cell lymphoma-2 protein associated x-protein were significantly downregulated compared to controls. Meanwhile, therapeutic mesenchymal stem cells treatment predict a significant improvement versus 7,12-dimethyl benz [a] anthracene group through the modulation of growth factors that confront bone marrow dysplasia. In the same direction treatment of 7,12-dimethyl benz [a] anthracene group with mesenchymal stem cells, it induced apoptosis and increased the homing efficacy to bone marrow. In conclusion, mesenchymal stem cells improve hematopoiesis and alleviate inflammation, and modulated PI3K/AKT signaling pathway contributed to experimental leukemogenesis.
Collapse
Affiliation(s)
- Esraa S A Ahmed
- 1 National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Neamat H Ahmed
- 1 National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Amina M Medhat
- 2 Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ussama Z Said
- 1 National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Laila A Rashed
- 3 Biochemistry & Molecular Biology Department, Medicine Faculty, Cairo University, Cairo, Egypt
| | | |
Collapse
|
31
|
Li Y, Lv X, Ge X, Yuan D, Ding M, Zhen C, Zhao W, Liu X, Wang X, Xu H, Li Y, Wang X. Mutational spectrum and associations with clinical features in patients with acute myeloid leukaemia based on next‑generation sequencing. Mol Med Rep 2019; 19:4147-4158. [PMID: 30942411 PMCID: PMC6471684 DOI: 10.3892/mmr.2019.10081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to examine the associations between 112 acute myeloid leukaemia (AML)-associated genes and the prognosis and clinical features of AML using bioinformatics analysis in 62 patients with AML. A total of 61 gene mutations were identified, and ≥1 mutations were detected in 96.77% of the patients. A total of 11 frequent mutations were identified, including nucleophosmin 1 (NPM1), Fms related tyrosine kinase 3 (FLT3), DNA methyltransferase 3α (DNMT3A) and Notch 2 (NOTCH2), with a mutation rate of ≥10%. The FLT3 mutation was significantly associated with the white blood cell count at the time of diagnosis, and DNMT3A was significantly associated with the French-American-British subtype and cytogenetics of patients with AML. The FLT3, NPM1 and DNMT3A mutations were significantly associated with a poor overall survival (OS) in patients with AML. In addition, the co-mutation of DNMT3A-CCAAT enhancer binding protein α (CEBPA) was observed to be significantly associated with a poor OS in patients with AML. Furthermore, the functional enrichment analysis revealed that the co-mutations of FLT3-NOTCH2, SETBP1-CREBBP and DNMT3A-CEBPA were significantly enriched in processes of ‘negative regulation of cell differentiation’ and ‘immune system development’, indicating that these mutations may serve crucial roles in the diagnosis and treatment of AML.
Collapse
Affiliation(s)
- Ying Li
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiao Lv
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xueling Ge
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dai Yuan
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Mei Ding
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Changqing Zhen
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wenbo Zhao
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Liu
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xianghua Wang
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hongzhi Xu
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ying Li
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
32
|
Liang X, Xin X, Qi D, Fu C, Ding M. Silencing the PIK3CA Gene Enhances the Sensitivity of Childhood Leukemia Cells to Chemotherapy Drugs by Suppressing the Phosphorylation of Akt. Yonsei Med J 2019; 60:182-190. [PMID: 30666840 PMCID: PMC6342719 DOI: 10.3349/ymj.2019.60.2.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE This study aimed to investigate the effects of PIK3CA on the sensitivity of acute B lymphocytic leukemia cells (Nalm-6 cells) to chemotherapy drugs. MATERIALS AND METHODS Children's normal B lymphocytes and Nalm-6 cells were cultured. Nalm-6 cells were transfected with PIK3CA siRNA (siPIK3CA group) or its negative control (PIK3CA-Control group). Normal Nalm-6 cells were named Mock group. Nalm-6 cells transfected by PIK3CA siRNA were treated with Akt inhibitor (siPIK3CA+Akti-1/2 group). mRNA and protein expression was detected by qRT-PCR and Western blot. Proliferation and sensitivity to chemotherapeutic drugs was detected by MTT assay. Cell cycle and apoptosis was explored by low cytometry. Transwell assay was performed to test invasion. RESULTS PIK3CA mRNA (p=0.008) and protein (p=0.006) expression was higher in Nalm-6 cells than that in normal B lymphocytes. Compared with the Mock group and PIK3CA-Control group, Nalm-6 cells of the siPIK3CA group had lower OD495 values (all p<0.05) and invasion cell numbers (p=0.03 and p=0.025), as well as a higher proportion of G0/G1 phase cells (p=0.020 and p=0.022), percentage of apoptosis (p=0.016 and p=0.022), and inhibition rate (all p<0.05). pAkt expression in the siPIK3CA group (p=0.026 and p=0.031) and siPIK3CA+Akti-1/2 group (p=0.019 and p=0.023) was lower than that in the Mock group. CONCLUSION PIK3CA silencing inhibited Nalm-6 cell proliferation and invasion, and promoted their apoptosis and sensitivity to chemotherapeutic drugs, potentially through regulation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiuling Liang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, China
| | - Xianfang Xin
- Department of Pediatric Internal Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, China
| | - Dongmei Qi
- Department of Pediatric Internal Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, China
| | - Chengyan Fu
- Department of Pediatric Internal Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, China
| | - Mingde Ding
- Department of Gynecology, Affiliated Hospital of Taishan Medical University, Tai'an, China.
| |
Collapse
|
33
|
Pession A, Lonetti A, Bertuccio S, Locatelli F, Masetti R. Targeting Hedgehog pathway in pediatric acute myeloid leukemia: challenges and opportunities. Expert Opin Ther Targets 2018; 23:87-91. [PMID: 30556755 DOI: 10.1080/14728222.2019.1559822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Andrea Pession
- a Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit , University of Bologna , Bologna , Italy
| | - Annalisa Lonetti
- a Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit , University of Bologna , Bologna , Italy
| | - Salvatore Bertuccio
- a Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit , University of Bologna , Bologna , Italy
| | - Franco Locatelli
- b Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù , Sapienza University , Rome , Italy
| | - Riccardo Masetti
- a Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit , University of Bologna , Bologna , Italy
| |
Collapse
|
34
|
Luo M, Zhang Q, Xia M, Hu F, Ma Z, Chen Z, Guo AY. Differential Co-expression and Regulatory Network Analysis Uncover the Relapse Factor and Mechanism of T Cell Acute Leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:184-194. [PMID: 30195757 PMCID: PMC6023839 DOI: 10.1016/j.omtn.2018.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/02/2018] [Accepted: 05/04/2018] [Indexed: 01/17/2023]
Abstract
The pediatric T cell acute lymphoblastic leukemia (T-ALL) still remains a cancer with worst prognosis for high recurrence. Massive studies were conducted for the leukemia relapse based on diagnosis and relapse paired samples. However, the initially diagnostic samples may contain the relapse information and mechanism, which were rarely studied. In this study, we collected mRNA and microRNA (miRNA) data from initially diagnosed pediatric T-ALL samples with their relapse or remission status after treatment. Integrated differential co-expression and miRNA-transcription factor (TF)-gene regulatory network analyses were used to reveal the possible relapse mechanisms for pediatric T-ALL. We detected miR-1246/1248 and NOTCH2 served as key nodes in the relapse network, and they combined with TF WT1/SOX4/REL to form regulatory modules that influence the progress of T-ALL. A regulatory loop miR-429-MYCN-MFHAS1 was found potentially associated with the remission of T-ALL. Furthermore, we proved miR-1246/1248 combined with NOTCH2 could promote cell proliferation in the T-ALL cell line by experiments. Meanwhile, analysis based on the miRNA-drug relationships demonstrated that drugs 5-fluorouracil, ascorbate, and trastuzumab targeting miR-1246 could serve as potential supplements for the standard therapy. In conclusion, our findings revealed the potential molecular mechanisms of T-ALL relapse by the combination of co-expression and regulatory network, and they provide preliminary clues for precise treatment of T-ALL patients.
Collapse
Affiliation(s)
- Mei Luo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiong Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengxuan Xia
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feifei Hu
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaowu Ma
- Laboratory of Neuronal Network and Brain Diseases Modulation, School of Medicine, Yangtze University, Jingzhou, Hubei 434023, China
| | - Zehua Chen
- Joint Laboratory for the Research of Pharmaceutics-Huazhong University of Science and Technology and Infinitus, Wuhan, China
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
35
|
Tanese K, Emoto K, Kubota N, Fukuma M, Sakamoto M. Immunohistochemical visualization of the signature of activated Hedgehog signaling pathway in cutaneous epithelial tumors. J Dermatol 2018; 45:1181-1186. [PMID: 30035333 DOI: 10.1111/1346-8138.14543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022]
Abstract
Activation of the Hedgehog (HH) signaling pathway plays a critical role in the development of basal cell carcinoma (BCC). HH signaling activity is produced by nuclear translocation of transcription factors, glioma-associated oncogene homolog (GLI). Among three GLI subfamilies, GLI1 is the only full-length transcriptional activator, and its nuclear localization is recognized as a signature event in HH signaling activation. However, limited published work has investigated the nuclear staining of GLI1 protein in human tumor tissue samples by immunohistochemical analysis. In this study, we performed immunohistochemical staining of GLI1 in 382 cases of cutaneous epithelial tumors, including 196 BCC cases, using rabbit monoclonal antihuman GLI1 antibody (C68H3). As a result, 98.2% cases of BCC showed a diffuse and strong nuclear staining pattern regardless of the histological subtype. Positive staining was mainly restricted to the tumor nests, while the overlying epidermis was negative suggesting specificity of the antibody. In further analysis of other cutaneous epithelial tumors, 100% (4/4) cases of trichoblastoma, 15.1% (5/33) Bowen's disease, 3.5% (1/28) actinic keratosis and 12.5% (4/32) squamous cell carcinoma showed the nuclear staining pattern of GLI1. This suggested that HH signaling is also dysregulated in some other cutaneous malignant tumors. In conclusion, the C68H3 antibody is a useful tool for revealing activation of HH signaling in immunohistochemical analysis.
Collapse
Affiliation(s)
- Keiji Tanese
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.,Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Katsura Emoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Naoto Kubota
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mariko Fukuma
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Chen P, Zhu KW, Zhang DY, Yan H, Liu H, Liu YL, Cao S, Zhou G, Zeng H, Chen SP, Zhao XL, Yang J, Chen XP. Influence of UGT1A1 polymorphisms on the outcome of acute myeloid leukemia patients treated with cytarabine-base regimens. J Transl Med 2018; 16:197. [PMID: 30016963 PMCID: PMC6050722 DOI: 10.1186/s12967-018-1579-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUNDS UDP-glucuronosyltransferase 1A subfamily (UGT1A) enzymes can inactivate cytarabine (Ara-C) by glucuronidation, and thus serves as candidate genes for interindividual difference in Ara-C response. UGT1A1 is a major UGT1A isoform expressed in human liver. METHODS UGT1A1*6 and *28 polymorphisms resulting in reduced UGT1A1 activity were genotyped in 726 adult acute myeloid leukemia (AML) patients treated with Ara-C based regimens. Influences of both polymorphisms on chemosensitivity and disease prognosis of the patients were evaluated. RESULTS After one or two courses of Ara-C based induction chemotherapy, the complete remission (CR) rate was significantly higher in patients carrying the UGT1A1*6 (77.0%) or the UGT1A1*28 (76.4%) alleles as compared with corresponding wild-type homozygotes (66.9 and 68.5%, respectively). Carriers of the UGT1A1*6 or *28 alleles showed significantly decreased risk of non-CR (OR = 0.528, 95% CI 0.379-0.737, P = 1.7 × 10-4) and better overall survival (HR = 0.787, 95% CI 0.627-0.990, P = 0.040) as compared with homozygotes for both polymorphisms. CONCLUSION Our results suggest that UGT1A1*28 and UGT1A1*6 are associated with improved clinical outcomes in Chinese AML patients treated with Ara-C.
Collapse
Affiliation(s)
- Peng Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Ke-Wei Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Dao-Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Han Yan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Han Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Yan-Ling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Hui Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shu-Ping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xie-Lan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
37
|
Cheng B, Tang S, Zhe N, Ma D, Yu K, Wei D, Zhou Z, Lu T, Wang J, Fang Q. Low expression of GFI-1 Gene is associated with Panobinostat-resistance in acute myeloid leukemia through influencing the level of HO-1. Biomed Pharmacother 2018; 100:509-520. [DOI: 10.1016/j.biopha.2018.02.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023] Open
|
38
|
Wan L, Tian Y, Zhang R, Peng Z, Sun J, Zhang W. MicroRNA-103 confers the resistance to long-treatment of adriamycin to human leukemia cells by regulation of COP1. J Cell Biochem 2018; 119:3843-3852. [PMID: 29058777 DOI: 10.1002/jcb.26431] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022]
Abstract
Adriamycin (ADR) is an anti-cancer drug which offers improvement in survival for acute myeloid leukemia (AML) patients. However, the drug resistance is almost inevitable. Increasing evidences suggested that microRNAs (miRNAs) were associated with cancer chemo-resistance. Here, we aimed to explore the possible mechanism of miR-103 affected resistance to ADR in AML cells. Different concentrations of ADR were used to induce K562 and KASUMI-1 cells, and miR-103 mimic, inhibitor were transfected into K562 and KASUMI-1 cells. Cell viability and proliferation were determined by trypan blue staining and MTT assays for evaluating K562 and KASUMI-1 cells drug resistance. The relationship of miR-103 and COP1, Trib1, and C/EBPα were analyzed by qRT-PCR and Western blot. Cell proliferation, viability were detected again. Besides, the expressions of main factors of cell cycle and PI3K/AKT signal pathway were analyzed by Western blot. Results showed that ADR inhibited cell viability and proliferation in K562 and KASUMI-1 cells. However, K562 and KASUMI-1 cells appeared drug resistance for 50 passages at 0.8 µM of ADR. In addition, miR-103 expression was up-regulated in ADR-resistant K562 cells (K562/ADR) and overexpression of miR-103 increased K562 cells drug resistance via promoting cell viability and cell cycle-related factors expressions. COP1 was positively regulated by miR-103, suppression of miR-103 recovered K562/ADR cells drug resistance by regulation of COP1, Trib1, and C/EBPα. Besides, miR-103 blocked PI3K/AKT signal pathway by regulation of COP1. These data indicated that miR-103 was up-regulated in drug resistant cells and it may regulate ADR-resistance by regulation of COP1 in AML cells.
Collapse
Affiliation(s)
- Lin Wan
- Emergency Department, Hospital of Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yanlong Tian
- Department of Pathology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, China
| | - Rui Zhang
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhuo Peng
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiangli Sun
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wanggang Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
39
|
Huang R, Liao X, Li Q. Identification of key pathways and genes in TP53 mutation acute myeloid leukemia: evidence from bioinformatics analysis. Onco Targets Ther 2017; 11:163-173. [PMID: 29343974 PMCID: PMC5749383 DOI: 10.2147/ott.s156003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Tumor protein p53 (TP53) mutations are not only a risk factor in acute myeloid leukemia (AML) but also a potential biomarker for individualized treatment options. This study aimed to investigate potential pathways and genes associated with TP53 mutations in adult de novo AML. Methods An RNA sequencing dataset of adult de novo AML was downloaded from The Cancer Genome Atlas database. Differentially expressed genes (DEGs) were identified by edgeR of the R platform. Key pathways and genes were identified using the following bioinformatics tools: gene set enrichment analysis (GSEA), gene ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), Search Tool for the Retrieval of Interacting Genes/Proteins, and Molecular Complex Detection. Results GSEA suggested that TP53 mutations were significantly associated with cell differentiation, proliferation, cell adhesion biological processes, and MAPK pathway. In total, 1,287 genes were identified as DEGs. GO and KEGG analysis suggested that upregulation of DEGs was significantly enriched in categories associated with cell adhesion biological processes, Ras-associated protein 1, PI3K-Akt pathway, and cell adhesion molecules. The top ten genes ranked by degree, CDH1, BMP2, KDR, LEP, CASR, ITGA2B, APOE, MNX1, NMU, and TRH, were identified as hub genes from the protein-protein interaction network. Survival analysis suggested that patients with TP53 mutations had a significantly increased risk of death, while the mRNA expression level in patients with TP53 mutation was similar to those carrying TP53 wild type. Conclusion Our findings have indicated that multiple genes and pathways may play a crucial role in TP53 mutation AML, offering candidate targets and strategies for TP53 mutation AML individualized treatment.
Collapse
Affiliation(s)
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | | |
Collapse
|
40
|
Yucel B, Sonmez M. Repression of oxidative phosphorylation sensitizes leukemia cell lines to cytarabine. Hematology 2017; 23:330-336. [DOI: 10.1080/10245332.2017.1402454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Burcu Yucel
- Medical Faculty, Department of Medical Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Sonmez
- Medical Faculty, Department of Internal Medicine, Division of Hematology, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
41
|
Zhao Z, Jia Q, Wu MS, Xie X, Wang Y, Song G, Zou CY, Tang Q, Lu J, Huang G, Wang J, Lin DC, Koeffler HP, Yin JQ, Shen J. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits Growth and Metastasis of Osteosarcoma through GSK3β Inactivation-Mediated Repression of the Hedgehog/Gli1 Pathway. Clin Cancer Res 2017; 24:130-144. [PMID: 28951519 DOI: 10.1158/1078-0432.ccr-17-0692] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/23/2017] [Accepted: 09/20/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Agents extracted from natural sources with antitumor property have attracted considerable attention from researchers and clinicians because of their safety, efficacy, and immediate availability. Degalactotigonin (DGT), extracted from Solanum nigrum L, has anticancer properties without serious side effects. Here, we explored whether DGT can inhibit the growth and metastasis of osteosarcoma.Experimental Design: MTT, colony formation, and apoptosis assays were performed to analyze the effects of DGT on osteosarcoma cell viability in vitro The migration and invasion abilities were measured using a Transwell assay. Animal models were used to assess the roles of DGT in both tumor growth and metastasis of osteosarcoma. Gli1 expression and function were measured in osteosarcoma cells and clinical samples. After DGT treatment, Gli1 activation and the phosphorylation status of multiple cellular kinases were measured with a luciferase reporter and phospho-kinase antibody array.Results: DGT inhibited proliferation, induced apoptosis, and suppressed migration and invasion in osteosarcoma cells. DGT, injected intraperitoneally after tumor inoculation, significantly decreased the volume of osteosarcoma xenografts and dramatically diminished the occurrence of osteosarcoma xenograft metastasis to the lungs. Mechanistically, DGT inhibited osteosarcoma growth and metastasis through repression of the Hedgehog/Gli1 pathway, which maintains malignant phenotypes and is involved in the prognosis of osteosarcoma patients. DGT decreased the activity of multiple intracellular kinases that affect the survival of osteosarcoma patients, including GSK3β. In addition, DGT represses the Hedgehog/Gli1 pathway mainly through GSK3β inactivation.Conclusions: Our studies provide evidence that DGT can suppress the growth and metastasis of human osteosarcoma through modulation of GSK3β inactivation-mediated repression of the Hedgehog/Gli1 pathway. Clin Cancer Res; 24(1); 130-44. ©2017 AACR.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiang Jia
- Guangzhou City Polytechnic, Guangzhou, China.,Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Man-Si Wu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China. .,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yongqian Wang
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guohui Song
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chang-Ye Zou
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qinglian Tang
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinchang Lu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Gang Huang
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jin Wang
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jun-Qiang Yin
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|