1
|
Wang M, Huang JB, Zou J, Huang GF. Electroacupuncture attenuates intervertebral disc degeneration by upregulating aquaporins via the cAMP/PKA pathway. J Orthop Surg Res 2025; 20:310. [PMID: 40128722 PMCID: PMC11934544 DOI: 10.1186/s13018-025-05729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/17/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is characterized by a decrease in extracellular matrix (ECM) and water loss, which is a major cause of low back pain (LBP). Electroacupuncture (EA) has long been used to relieve LBP in IVDD. To investigate whether EA can upregulate aquaporins (AQPs) in IVDD via the cAMP/PKA pathway in a rabbit model of disc degeneration. METHODS A homemade loading device was adapted to trigger a disc degeneration model. After 28 days, EA treatment was performed. Magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and diffusion tensor imaging (DTI) were performed to evaluate AQP content and water diffusion. AQP protein expression in the slices was observed by Western blot and immunofluorescence (IF) staining. The pathology of the intervertebral discs was determined by staining. cAMP and PKA levels were examined using ELISA, and the expression of AQP genes as well as the cAMP/PKA pathway and its related molecules were examined using quantitative reverse transcription-PCR (qRT-PCR) and Western blot analysis. RESULTS The EA intervention reduced MRI Pfirrmann scores, fractional anisotropy (FA), and apparent diffusion coefficient (ADC) values. EA can upregulate the expression of AQP1 and AQP3, thereby improving the pathological morphology of the nucleus pulposus (NP) and the cartilage endplate of the intervertebral disc. cAMP and PKA levels were significantly increased after EA intervention in rabbits with IVDD. EA intervention can partially improve the expression of related molecules in the cAMP/PKA pathway, but H-89 reverses the effect of EA. CONCLUSION EA can attenuate intervertebral disc degeneration by regulating AQP expression, a process that may be mediated by the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Min Wang
- School of Acupuncture and Bone, Hubei University of Chinese Medicine, No. 1 Huangjiahu West Road, Hongshan District, Wuhan, Hubei, 430065, China
| | - Jia-Bao Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Zou
- Department of Acupuncture & Moxibustion, Wuhan No.1 Hospital, Wuhan, Medicine Tongji Medical College of Huazhong University of Science and Technology, Wuhan Hospital of Integrated Chinese & Western Medicine, NO. 215 Zhongshan Road, Wuhan, Hubei, 430022, China
| | - Guo-Fu Huang
- School of Acupuncture and Bone, Hubei University of Chinese Medicine, No. 1 Huangjiahu West Road, Hongshan District, Wuhan, Hubei, 430065, China.
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), NO.6 Ailong Road, Longcheng Street, Central City, Longgang District, Shenzhen City, Guangdong, 518172, China.
| |
Collapse
|
2
|
Pimpão C, da Silva IV, Soveral G. The Expanding Role of Aquaporin-1, Aquaporin-3 and Aquaporin-5 as Transceptors: Involvement in Cancer Development and Potential Druggability. Int J Mol Sci 2025; 26:1330. [PMID: 39941100 PMCID: PMC11818598 DOI: 10.3390/ijms26031330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Aquaporins (AQPs) are transmembrane proteins that facilitate the transport of water and small solutes, including glycerol, hydrogen peroxide and ions, across cell membranes. Beyond their established physiological roles in water regulation and metabolic processes, AQPs also exhibit receptor-like signaling activities in cancer-associated signaling pathways, integrating the dual roles of transporters and receptors, hence functioning as transceptors. This dual functionality underpins their critical involvement in cancer biology, where AQPs play key roles in promoting cell proliferation, migration, and invasion, contributing significantly to carcinogenesis. Among the AQPs, AQP1, AQP3 and AQP5 have been consistently identified as being aberrantly expressed in various tumor types. Their overexpression is strongly associated with tumor progression, metastasis, and poor patient prognosis. This review explores the pivotal roles of AQP1, AQP3 and AQP5 as transceptors in cancer biology, underscoring their importance as pharmacological targets. It highlights the urgent need for the development of effective modulators to target these AQPs, offering a promising avenue to enhance current therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
3
|
Vrettou CS, Issaris V, Kokkoris S, Poupouzas G, Keskinidou C, Lotsios NS, Kotanidou A, Orfanos SE, Dimopoulou I, Vassiliou AG. Exploring Aquaporins in Human Studies: Mechanisms and Therapeutic Potential in Critical Illness. Life (Basel) 2024; 14:1688. [PMID: 39768394 PMCID: PMC11676363 DOI: 10.3390/life14121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Aquaporins (AQPs) are membrane proteins facilitating water and other small solutes to be transported across cell membranes. They are crucial in maintaining cellular homeostasis by regulating water permeability in various tissues. Moreover, they regulate cell migration, signaling pathways, inflammation, tumor growth, and metastasis. In critically ill patients, such as trauma, sepsis, and patients with acute respiratory distress syndrome (ARDS), which are frequently encountered in intensive care units (ICUs), water transport regulation is crucial for maintaining homeostasis, as dysregulation can lead to edema or dehydration, with the latter also implicating hemodynamic compromise. Indeed, AQPs are involved in fluid transport in various organs, including the lungs, kidneys, and brain, where their dysfunction can exacerbate conditions like ARDS, acute kidney injury (AKI), or cerebral edema. In this review, we discuss the implication of AQPs in the clinical entities frequently encountered in ICUs, such as systemic inflammation and sepsis, ARDS, AKI, and brain edema due to different types of primary brain injury from a clinical perspective. Current and possible future therapeutic implications are also considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alice G. Vassiliou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (V.I.); (S.K.); (G.P.); (C.K.); (N.S.L.); (A.K.); (S.E.O.); (I.D.)
| |
Collapse
|
4
|
Romero-Munar A, Muñoz-Carrasco M, Balestrini R, De Rose S, Giovannini L, Aroca R, Ruiz-Lozano JM. Differential root and cell regulation of maize aquaporins by the arbuscular mycorrhizal symbiosis highlights its role in plant water relations. PLANT, CELL & ENVIRONMENT 2024; 47:4337-4353. [PMID: 38965812 DOI: 10.1111/pce.15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
This study aims to elucidate if the regulation of plant aquaporins by the arbuscular mycorrhizal (AM) symbiosis occurs only in roots or cells colonized by the fungus or at whole root system. Maize plants were cultivated in a split-root system, with half of the root system inoculated with the AM fungus and the other half uninoculated. Plant growth and hydraulic parameters were measured and aquaporin gene expression was determined in each root fraction and in microdissected cells. Under well-watered conditions, the non-colonized root fractions of AM plants grew more than the colonized root fraction. Total osmotic and hydrostatic root hydraulic conductivities (Lo and Lpr) were higher in AM plants than in non-mycorrhizal plants. The expression of most maize aquaporin genes analysed was different in the mycorrhizal root fraction than in the non-mycorrhizal root fraction of AM plants. At the cellular level, differential aquaporin expression in AM-colonized cells and in uncolonized cells was also observed. Results indicate the existence of both, local and systemic regulation of plant aquaporins by the AM symbiosis and suggest that such regulation is related to the availability of water taken up by fungal hyphae in each root fraction and to the plant need of water mobilization.
Collapse
Affiliation(s)
- Antonia Romero-Munar
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - María Muñoz-Carrasco
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Raffaella Balestrini
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche (CNR), Torino, Italy
| | - Silvia De Rose
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche (CNR), Torino, Italy
| | - Luca Giovannini
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche (CNR), Torino, Italy
| | - Ricardo Aroca
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, Spain
| |
Collapse
|
5
|
Turchetto-Zolet AC, Salgueiro F, Guzman F, Vetö NM, Rodrigues NF, Balbinott N, Margis-Pinheiro M, Margis R. Gene Expression Divergence in Eugenia uniflora Highlights Adaptation across Contrasting Atlantic Forest Ecosystems. PLANTS (BASEL, SWITZERLAND) 2024; 13:2719. [PMID: 39409589 PMCID: PMC11478965 DOI: 10.3390/plants13192719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Understanding the evolution and the effect of plasticity in plant responses to environmental changes is crucial to combat global climate change. It is particularly interesting in species that survive in distinct environments, such as Eugenia uniflora, which thrives in contrasting ecosystems within the Atlantic Forest (AF). In this study, we combined transcriptome analyses of plants growing in nature (Restinga and Riparian Forest) with greenhouse experiments to unveil the DEGs within and among adaptively divergent populations of E. uniflora. We compared global gene expression among plants from two distinct ecological niches. We found many differentially expressed genes between the two populations in natural and greenhouse-cultivated environments. The changes in how genes are expressed may be related to the species' ability to adapt to specific environmental conditions. The main difference in gene expression was observed when plants from Restinga were compared with their offspring cultivated in greenhouses, suggesting that there are distinct selection pressures underlying the local environmental and ecological factors of each Restinga and Riparian Forest ecosystem. Many of these genes engage in the stress response, such as water and nutrient transport, temperature, light intensity, and gene regulation. The stress-responsive genes we found are potential genes for selection in these populations. These findings revealed the adaptive potential of E. uniflora and contributed to our understanding of the role of gene expression reprogramming in plant evolution and niche adaptation.
Collapse
Affiliation(s)
- Andreia C. Turchetto-Zolet
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (A.C.T.-Z.); (N.M.V.); (N.B.); (M.M.-P.)
| | - Fabiano Salgueiro
- Laboratório de Biodiversidade e Evolução Molecular, Departamento de Botânica, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil;
| | - Frank Guzman
- Facultad de Medicina, Universidad Científica del Sur, Lima 15307, Peru;
| | - Nicole M. Vetö
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (A.C.T.-Z.); (N.M.V.); (N.B.); (M.M.-P.)
| | - Nureyev F. Rodrigues
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil
| | - Natalia Balbinott
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (A.C.T.-Z.); (N.M.V.); (N.B.); (M.M.-P.)
| | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (A.C.T.-Z.); (N.M.V.); (N.B.); (M.M.-P.)
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil
| | - Rogerio Margis
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (A.C.T.-Z.); (N.M.V.); (N.B.); (M.M.-P.)
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil
| |
Collapse
|
6
|
Arturo Tozzi, Minella R. Dynamics and metabolic effects of intestinal gases in healthy humans. Biochimie 2024; 221:81-90. [PMID: 38325747 DOI: 10.1016/j.biochi.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/06/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Many living beings use exogenous and/or endogenous gases to attain evolutionary benefits. We make a comprehensive assessment of one of the major gaseous reservoirs in the human body, i.e., the bowel, providing extensive data that may serve as reference for future studies. We assess the intestinal gases in healthy humans, including their volume, composition, source and local distribution in proximal as well as distal gut. We analyse each one of the most abundant intestinal gases including nitrogen, oxygen, nitric oxide, carbon dioxide, methane, hydrogen, hydrogen sulfide, sulfur dioxide and cyanide. For every gas, we describe diffusive patterns, active trans-barrier transport dynamics, chemical properties, intra-/extra-intestinal metabolic effects mediated by intracellular, extracellular, paracrine and distant actions. Further, we highlight the local and systemic roles of gasotransmitters, i.e., signalling gaseous molecules that can freely diffuse through the intestinal cellular membranes. Yet, we provide testable hypotheses concerning the still unknown effects of some intestinal gases on the myenteric and submucosal neurons.
Collapse
Affiliation(s)
- Arturo Tozzi
- Center for Nonlinear Science, Department of Physics, University of North Texas, 1155 Union Circle, #311427, Denton, TX, 76203-5017, USA.
| | | |
Collapse
|
7
|
O’Lone C, Juhász A, Nye-Wood M, Moody D, Dunn H, Ral JP, Colgrave ML. Advancing Sustainable Malting Practices: Aquaporins as Potential Breeding Targets for Improved Water Uptake during Controlled Germination of Barley ( Hordeum vulgare L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10149-10161. [PMID: 38635353 PMCID: PMC11066872 DOI: 10.1021/acs.jafc.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
The conversion of raw barley (Hordeum vulgare L.) to malt requires a process of controlled germination, where the grain is submerged in water to raise the moisture content to >40%. The transmembrane proteins, aquaporins, influence water uptake during the initial stage of controlled germination, yet little is known of their involvement in malting. With the current focus on sustainability, understanding the mechanisms of water uptake and usage during the initial stages of malting has become vital in improving efficient malting practices. In this study, we used quantitative proteomics analysis of two malting barley genotypes demonstrating differing water-uptake phenotypes in the initial stages of malting. Our study quantified 19 transmembrane proteins from nine families, including seven distinct aquaporin isoforms, including the plasma intrinsic proteins (PIPs) PIP1;1, PIP2;1, and PIP2;4 and the tonoplast intrinsic proteins (TIPs) TIP1;1, TIP2;3, TIP3;1, and TIP3;2. Our findings suggest that the presence of TIP1;1, TIP3;1, and TIP3;2 in the mature barley grain proteome is essential for facilitating water uptake, influencing cell turgor and the formation of large central lytic vacuoles aiding storage reserve hydrolysis and endosperm modification efficiency. This study proposes that TIP3s mediate water uptake in malting barley grain, offering potential breeding targets for improving sustainable malting practices.
Collapse
Affiliation(s)
- Clare
E. O’Lone
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
- Agriculture
and Food, Commonwealth Scientific and Industrial
Research Organization, Black
Mountain, Australian Capital Territory 2601, Australia
| | - Angéla Juhász
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
| | - Mitchell Nye-Wood
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
| | - David Moody
- InterGrain
Pty Ltd, Bibra
Lake 6163, Western Australia, Australia
| | - Hugh Dunn
- Pilot
Malting Australia, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
| | - Jean-Philippe Ral
- Agriculture
and Food, Commonwealth Scientific and Industrial
Research Organization, Black
Mountain, Australian Capital Territory 2601, Australia
| | - Michelle L. Colgrave
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
- Agriculture
and Food, Commonwealth Scientific and Industrial
Research Organization, St Lucia 4067, Queensland, Australia
| |
Collapse
|
8
|
Lv A, Su L, Fan N, Wen W, Gao L, Mo X, You X, Zhou P, An Y. The MsDHN1-MsPIP2;1-MsmMYB module orchestrates the trade-off between growth and survival of alfalfa in response to drought stress. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1132-1145. [PMID: 38048288 PMCID: PMC11022793 DOI: 10.1111/pbi.14251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Dehydrins and aquaporins play crucial roles in plant growth and stress responses by acting as protector and controlling water transport across membranes, respectively. MsDHN1 (dehydrin) and MsPIP2;1 (aquaporin) were demonstrated to interact with a membrane-anchored MYB protein, MsmMYB (as mMYB) in plasma membrane under normal condition. MsDHN1, MsPIP2;1 and MsDHN1-MsPIP2;1 positively regulated alfalfa tolerance to water deficiency. Water deficiency caused phosphorylation of MsPIP2;1 at Ser 272, which led to release C terminus of mMYB (mMYBΔ83) from plasma membrane and translocate to nucleus, where C terminus of MsDHN1 interacted with mMYBΔ83, and promoted mMYBΔ83 transcriptional activity in response to water deficiency. Overexpression of mMYB and mMYBΔ83 down-regulated the expression of MsCESA3, but up-regulated MsCESA7 expression by directly binding to their promoters, and resulted in high drought tolerance in transgenic hairy roots. These results indicate that the MsDHN1-MsPIP2;1-MsMYB module serves as a key regulator in alfalfa against drought stress.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina
| | - Liantai Su
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Nana Fan
- College of life scienceYulin UniversityYulinChina
| | - Wuwu Wen
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Li Gao
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Mo
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiangkai You
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Peng Zhou
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yuan An
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Urban AgricultureMinistry of AgricultureShanghaiChina
| |
Collapse
|
9
|
Liu X, Zhang Y, Tang C, Li H, Xia H, Fan S, Kong L. Bicarbonate-Dependent Detoxification by Mitigating Ammonium-Induced Hypoxic Stress in Triticum aestivum Root. BIOLOGY 2024; 13:101. [PMID: 38392319 PMCID: PMC10886950 DOI: 10.3390/biology13020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Ammonium (NH4+) toxicity is ubiquitous in plants. To investigate the underlying mechanisms of this toxicity and bicarbonate (HCO3-)-dependent alleviation, wheat plants were hydroponically cultivated in half-strength Hoagland nutrient solution containing 7.5 mM NO3- (CK), 7.5 mM NH4+ (SA), or 7.5 mM NH4+ + 3 mM HCO3- (AC). Transcriptomic analysis revealed that compared to CK, SA treatment at 48 h significantly upregulated the expression of genes encoding fermentation enzymes (pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH)) and oxygen consumption enzymes (respiratory burst oxidase homologs, dioxygenases, and alternative oxidases), downregulated the expression of genes encoding oxygen transporters (PIP-type aquaporins, non-symbiotic hemoglobins), and those involved in energy metabolism, including tricarboxylic acid (TCA) cycle enzymes and ATP synthases, but upregulated the glycolytic enzymes in the roots and downregulated the expression of genes involved in the cell cycle and elongation. The physiological assay showed that SA treatment significantly increased PDC, ADH, and LDH activity by 36.69%, 43.66%, and 61.60%, respectively; root ethanol concentration by 62.95%; and lactate efflux by 23.20%, and significantly decreased the concentrations of pyruvate and most TCA cycle intermediates, the complex V activity, ATP content, and ATP/ADP ratio. As a consequence, SA significantly inhibited root growth. AC treatment reversed the changes caused by SA and alleviated the inhibition of root growth. In conclusion, NH4+ treatment alone may cause hypoxic stress in the roots, inhibit energy generation, suppress cell division and elongation, and ultimately inhibit root growth, and adding HCO3- remarkably alleviates the NH4+-induced inhibitory effects on root growth largely by attenuating the hypoxic stress.
Collapse
Affiliation(s)
- Xiao Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chengming Tang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Huawei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Haiyong Xia
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
10
|
Venkataraghavan A, Schwerdt JG, Tyerman SD, Hrmova M. Barley Nodulin 26-like intrinsic protein permeates water, metalloids, saccharides, and ion pairs due to structural plasticity and diversification. J Biol Chem 2023; 299:105410. [PMID: 37913906 PMCID: PMC10716587 DOI: 10.1016/j.jbc.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
Aquaporins can facilitate the passive movement of water, small polar molecules, and some ions. Here, we examined solute selectivity for the barley Nodulin 26-like Intrinsic Protein (HvNIP2;1) embedded in liposomes and examined through stopped-flow light scattering spectrophotometry and Xenopus laevis oocyte swelling assays. We found that HvNIP2;1 permeates water, boric and germanic acids, sucrose, and lactose but not d-glucose or d-fructose. Other saccharides, such as neutral (d-mannose, d-galactose, d-xylose, d-mannoheptaose) and charged (N-acetyl d-glucosamine, d-glucosamine, d-glucuronic acid) aldoses, disaccharides (cellobiose, gentiobiose, trehalose), trisaccharide raffinose, and urea, glycerol, and acyclic polyols, were permeated to a much lower extent. We observed apparent permeation of hydrated KCl and MgSO4 ions, while CH3COONa and NaNO3 permeated at significantly lower rates. Our experiments with boric acid and sucrose revealed no apparent interaction between solutes when permeated together, and AgNO3 or H[AuCl4] blocked the permeation of all solutes. Docking of sucrose in HvNIP2;1 and spinach water-selective SoPIP2;1 aquaporins revealed the structural basis for sucrose permeation in HvNIP2;1 but not in SoPIP2;1, and defined key residues interacting with this permeant. In a biological context, sucrose transport could constitute a novel element of plant saccharide-transporting machinery. Phylogenomic analyses of 164 Viridiplantae and 2993 Archaean, bacterial, fungal, and Metazoan aquaporins rationalized solute poly-selectivity in NIP3 sub-clade entries and suggested that they diversified from other sub-clades to acquire a unique specificity of saccharide transporters. Solute specificity definition in NIP aquaporins could inspire developing plants for food production.
Collapse
Affiliation(s)
- Akshayaa Venkataraghavan
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Julian G Schwerdt
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Stephen D Tyerman
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Maria Hrmova
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, Australia.
| |
Collapse
|
11
|
Shadrin KV, Pakhomova VG, Kryukova OV, Rupenko AP, Yaroslavtsev RN. Influence of oxygen uptake through the liver surface on the metabolism of ex vivo perfused liver during hypoxia. Biochim Biophys Acta Gen Subj 2023; 1867:130429. [PMID: 37532088 DOI: 10.1016/j.bbagen.2023.130429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
The low quality of transplants having undergone hypoxic injury can lead to postoperative complications. The aim of the present research is to estimate, by means of mathematical modeling, how the process of oxygen uptake through the liver surface influences the metabolism of ex vivo perfused liver under hypoxia. The value of oxygen uptake through the surface was established to depend on the degree of oxygenation of the perfusion medium. A decrease in the oxygenation of the perfusion medium resulted in a decreased oxygen uptake through the liver surface. Stoichiometric modeling of the liver metabolism shows that upon the decreased oxygenation of the perfusion medium more energy is required for the process of oxygen uptake through the surface even at a lower level as compared to the normal oxygen supply. The application of the Pareto optimality allows estimating the optimum distribution of the energy resources in liver under ex vivo conditions. Both upon the normal and decreased oxygenation of the perfusion medium, the phenomenon of "free competition" for the resource was observed, with the energy being optimally distributed among all the metabolic fluxes. Moreover, this energy is also spent on the accompanying processes, e.g. for the transport of interstitial fluid.
Collapse
Affiliation(s)
- K V Shadrin
- Krasnoyarsk Scientific Center, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia; Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - V G Pakhomova
- Krasnoyarsk Scientific Center, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia
| | - O V Kryukova
- Krasnoyarsk Scientific Center, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia
| | - A P Rupenko
- Krasnoyarsk Scientific Center, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia
| | - R N Yaroslavtsev
- Krasnoyarsk Scientific Center, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia.
| |
Collapse
|
12
|
Login FH, Nejsum LN. Aquaporin water channels: roles beyond renal water handling. Nat Rev Nephrol 2023; 19:604-618. [PMID: 37460759 DOI: 10.1038/s41581-023-00734-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 08/18/2023]
Abstract
Aquaporin (AQP) water channels are pivotal to renal water handling and therefore in the regulation of body water homeostasis. However, beyond the kidney, AQPs facilitate water reabsorption and secretion in other cells and tissues, including sweat and salivary glands and the gastrointestinal tract. A growing body of evidence has also revealed that AQPs not only facilitate the transport of water but also the transport of several small molecules and gases such as glycerol, H2O2, ions and CO2. Moreover, AQPs are increasingly understood to contribute to various cellular processes, including cellular migration, adhesion and polarity, and to act upstream of several intracellular and intercellular signalling pathways to regulate processes such as cell proliferation, apoptosis and cell invasiveness. Of note, several AQPs are highly expressed in multiple cancers, where their expression can correlate with the spread of cancerous cells to lymph nodes and alter the response of cancers to conventional chemotherapeutics. These data suggest that AQPs have diverse roles in various homeostatic and physiological systems and may be exploited for prognostics and therapeutic interventions.
Collapse
Affiliation(s)
- Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
13
|
Vaziriyeganeh M, Khan S, Zwiazek JJ. Analysis of aquaporins in northern grasses reveal functional importance of Puccinellia nuttalliana PIP2;2 in salt tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:2159-2173. [PMID: 37051679 DOI: 10.1111/pce.14589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 06/08/2023]
Abstract
To better understand the roles of aquaporins in salt tolerance, we cloned PIP2;1, PIP2;2, PIP2;3, PIP1;1, PIP1;3, and TIP1;1 aquaporins from three northern grasses varying is salt tolerance including the halophytic grass Puccinellia nuttalliana, moderately salt tolerant Poa juncifolia, and relatively salt sensitive Poa pratensis. We analysed aquaporin expression in roots by exposing the plants to 0 and 150 mM for 6 days in hydroponic culture. NaCl treatment upregulated several PIP transcripts in P. nuttalliana while decreasing PnuTIP1;1. The PnuPIP2;2 transcripts increased by about six-fold in P. nuttalliana, two-fold in Poa juncifolia, and did not change in Poa pratensis. The NaCl treatment enhanced the rate of water transport in yeast expressing PnuPIP2;2 by 56% compared with control. PnuPIP2,2 expression also resulted in a higher Na+ uptake in yeast cells compared with an empty vector suggesting that PnuPIP2;2 may have both water and ion transporting functions. Structural analysis revealed that the transport properties of PnuPIP2;2 could be affected by its unique pore characteristics, which include a combination of hourglass, cylindrical, and increasing diameter conical entrance shape with pore hydropathy of -0.22.
Collapse
Affiliation(s)
| | - Shanjida Khan
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
15
|
Salvatierra A, Mateluna P, Toro G, Solís S, Pimentel P. Genome-Wide Identification and Gene Expression Analysis of Sweet Cherry Aquaporins ( Prunus avium L.) under Abiotic Stresses. Genes (Basel) 2023; 14:genes14040940. [PMID: 37107698 PMCID: PMC10138167 DOI: 10.3390/genes14040940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Aquaporins (AQPs) are integral transmembrane proteins well known as channels involved in the mobilization of water, small uncharged molecules and gases. In this work, the main objective was to carry out a comprehensive study of AQP encoding genes in Prunus avium (cv. Mazzard F12/1) on a genome-wide scale and describe their transcriptional behaviors in organs and in response to different abiotic stresses. A total of 28 non-redundant AQP genes were identified in Prunus spp. Genomes, which were phylogenetically grouped into five subfamilies (seven PIPs, eight NIPs, eight TIPs, three SIPs and two XIPs). Bioinformatic analyses revealed a high synteny and remarkable conservation of structural features among orthologs of different Prunus genomes. Several cis-acting regulatory elements (CREs) related to stress regulation were detected (ARE, WRE3, WUN, STRE, LTR, MBS, DRE, AT-rich and TC-rich). The above could be accounting for the expression variations associated with plant organs and, especially, each abiotic stress analyzed. Gene expressions of different PruavAQPs were shown to be preferentially associated with different stresses. PruavXIP2;1 and PruavXIP1;1 were up-regulated in roots at 6 h and 72 h of hypoxia, and in PruavXIP2;1 a slight induction of expression was also detected in leaves. Drought treatment strongly down-regulated PruavTIP4;1 but only in roots. Salt stress exhibited little or no variation in roots, except for PruavNIP4;1 and PruavNIP7;1, which showed remarkable gene repression and induction, respectively. Interestingly, PruavNIP4;1, the AQP most expressed in cherry roots subjected to cold temperatures, also showed this pattern in roots under high salinity. Similarly, PruavNIP4;2 consistently was up-regulated at 72 h of heat and drought treatments. From our evidence is possible to propose candidate genes for the development of molecular markers for selection processes in breeding programs for rootstocks and/or varieties of cherry.
Collapse
Affiliation(s)
- Ariel Salvatierra
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo 2940000, Chile
| | - Patricio Mateluna
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo 2940000, Chile
| | - Guillermo Toro
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo 2940000, Chile
| | - Simón Solís
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo 2940000, Chile
| | - Paula Pimentel
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo 2940000, Chile
| |
Collapse
|
16
|
Dual Inoculation with Rhizophagus irregularis and Bacillus megaterium Improves Maize Tolerance to Combined Drought and High Temperature Stress by Enhancing Root Hydraulics, Photosynthesis and Hormonal Responses. Int J Mol Sci 2023; 24:ijms24065193. [PMID: 36982272 PMCID: PMC10049376 DOI: 10.3390/ijms24065193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Climate change is leading to combined drought and high temperature stress in many areas, drastically reducing crop production, especially for high-water-consuming crops such as maize. This study aimed to determine how the co-inoculation of an arbuscular mycorrhizal (AM) fungus (Rhizophagus irregularis) and the PGPR Bacillus megaterium (Bm) alters the radial water movement and physiology in maize plants in order to cope with combined drought and high temperature stress. Thus, maize plants were kept uninoculated or inoculated with R. irregularis (AM), with B. megaterium (Bm) or with both microorganisms (AM + Bm) and subjected or not to combined drought and high temperature stress (D + T). We measured plant physiological responses, root hydraulic parameters, aquaporin gene expression and protein abundances and sap hormonal content. The results showed that dual AM + Bm inoculation was more effective against combined D + T stress than single inoculation. This was related to a synergistic enhancement of efficiency of the phytosystem II, stomatal conductance and photosynthetic activity. Moreover, dually inoculated plants maintained higher root hydraulic conductivity, which was related to regulation of the aquaporins ZmPIP1;3, ZmTIP1.1, ZmPIP2;2 and GintAQPF1 and levels of plant sap hormones. This study demonstrates the usefulness of combining beneficial soil microorganisms to improve crop productivity under the current climate-change scenario.
Collapse
|
17
|
Al-Samir S, Yildirim AÖ, Sidhaye VK, King LS, Breves G, Conlon TM, Stoeger C, Gailus-Durner V, Fuchs H, Hrabé de Angelis M, Gros G, Endeward V. Aqp5 -/- mice exhibit reduced maximal body O 2 consumption under cold exposure, normal pulmonary gas exchange, and impaired formation of brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 2023; 324:R109-R119. [PMID: 36409022 DOI: 10.1152/ajpregu.00130.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The fundamental body functions that determine maximal O2 uptake (V̇o2max) have not been studied in Aqp5-/- mice (aquaporin 5, AQP5). We measured V̇o2max to globally assess these functions and then investigated why it was found altered in Aqp5-/- mice. V̇o2max was measured by the Helox technique, which elicits maximal metabolic rate by intense cold exposure of the animals. We found V̇o2max reduced in Aqp5-/- mice by 20%-30% compared with wild-type (WT) mice. As AQP5 has been implicated to act as a membrane channel for respiratory gases, we studied whether this is caused by the known lack of AQP5 in the alveolar epithelial membranes of Aqp5-/- mice. Lung function parameters as well as arterial O2 saturation were normal and identical between Aqp5-/- and WT mice, indicating that AQP5 does not contribute to pulmonary O2 exchange. The cause for the decreased V̇o2max thus might be found in decreased O2 consumption of an intensely O2-consuming peripheral organ such as activated brown adipose tissue (BAT). We found indeed that absence of AQP5 greatly reduces the amount of interscapular BAT formed in response to 4 wk of cold exposure, from 63% in WT to 25% in Aqp5-/- animals. We conclude that lack of AQP5 does not affect pulmonary O2 exchange, but greatly inhibits transformation of white to brown adipose tissue. As under cold exposure, BAT is a major source of the animals' heat production, reduction of BAT likely causes the decrease in V̇o2max under this condition.
Collapse
Affiliation(s)
- Samer Al-Samir
- Zentrum Physiologie, AG Vegetative Physiologie, Medizinische Hochschule, Hannover, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), München, Germany
| | - Venkataramana K Sidhaye
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Landon S King
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Gerhard Breves
- Institut für Physiologie und Zellbiologie, Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Thomas M Conlon
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), München, Germany
| | - Claudia Stoeger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, GmbH, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, GmbH, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, GmbH, Neuherberg, Germany
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, GmbH, Neuherberg, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Chair of Experimental Genetics, Technische Universität München School of Life Sciences, Technische Universität München, Freising, Germany
| | - Gerolf Gros
- Zentrum Physiologie, AG Vegetative Physiologie, Medizinische Hochschule, Hannover, Germany
| | - Volker Endeward
- Zentrum Physiologie, AG Vegetative Physiologie, Medizinische Hochschule, Hannover, Germany
| |
Collapse
|
18
|
Transcriptomic Analysis of Distal Parts of Roots Reveals Potentially Important Mechanisms Contributing to Limited Flooding Tolerance of Canola ( Brassica napus) Plants. Int J Mol Sci 2022; 23:ijms232415469. [PMID: 36555110 PMCID: PMC9779561 DOI: 10.3390/ijms232415469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Since most of the root metabolic activities as well as root elongation and the uptake of water and mineral nutrients take place in the distal parts of roots, we aimed to gain insight into the physiological and transcriptional changes induced by root hypoxia in the distal parts of roots in canola (Brassica napus) plants, which are relatively sensitive to flooding conditions. Plants were subject to three days of root hypoxia via lowering oxygen content in hydroponic medium, and various physiological and anatomical features were examined to characterize plant responses. Untargeted transcriptomic profiling approaches were also applied to investigate changes in gene expression that took place in the distal root tissues in response to hypoxia. Plants responded to three days of root hypoxia by reducing growth and gas exchange rates. These changes were accompanied by decreases in leaf water potential (Ψleaf) and root hydraulic conductivity (Lpr). Increased deposition of lignin and suberin was also observed in the root tissues of hypoxic plants. The transcriptomic data demonstrated that the effect of hypoxia on plant water relations involved downregulation of most BnPIPs in the root tissues with the exception of BnPIP1;3 and BnPIP2;7, which were upregulated. Since some members of the PIP1 subfamily of aquaporins are known to transport oxygen, the increase in BnPIP1;3 may represent an important hypoxia tolerance strategy in plants. The results also demonstrated substantial rearrangements of different signaling pathways and transcription factors (TFs), which resulted in alterations of genes involved in the regulation of Lpr, TCA (tricarboxylic acid) cycle-related enzymes, antioxidant enzymes, and cell wall modifications. An integration of these data enabled us to draft a comprehensive model of the molecular pathways involved in the responses of distal parts of roots in B. napus. The model highlights systematic transcriptomic reprogramming aimed at explaining the relative sensitivity of Brassica napus to root hypoxia.
Collapse
|
19
|
Trono D, Pecchioni N. Candidate Genes Associated with Abiotic Stress Response in Plants as Tools to Engineer Tolerance to Drought, Salinity and Extreme Temperatures in Wheat: An Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233358. [PMID: 36501397 PMCID: PMC9737347 DOI: 10.3390/plants11233358] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 05/14/2023]
Abstract
Wheat represents one of the most important staple food crops worldwide and its genetic improvement is fundamental to meeting the global demand of the growing population. However, the environmental stresses, worsened by climate change, and the increasing deterioration of arable land make it very difficult to fulfil this demand. In light of this, the tolerance of wheat to abiotic stresses has become a key objective of genetic improvement, as an effective strategy to ensure high yields without increasing the cultivated land. Genetic erosion related to modern agriculture, whereby elite, high-yielding wheat varieties are the product of high selection pressure, has reduced the overall genetic diversity, including the allelic diversity of genes that could be advantageous for adaptation to adverse environmental conditions. This makes traditional breeding a less effective or slower approach to generating new stress-tolerant wheat varieties. Either mining for the diversity of not-adapted large germplasm pools, or generating new diversity, are the mainstream approaches to be pursued. The advent of genetic engineering has opened the possibility to create new plant variability and its application has provided a strong complement to traditional breeding. Genetic engineering strategies such as transgenesis and genome editing have then provided the opportunity to improve environmental tolerance traits of agronomic importance in cultivated species. As for wheat, several laboratories worldwide have successfully produced transgenic wheat lines with enhanced tolerance to abiotic stresses, and, more recently, significant improvements in the CRISPR/Cas9 tools available for targeted variations within the wheat genome have been achieved. In light of this, the present review aims to provide successful examples of genetic engineering applications for the improvement of wheat adaptation to drought, salinity and extreme temperatures, which represent the most frequent and most severe events causing the greatest losses in wheat production worldwide.
Collapse
|
20
|
Ruiz-Lozano JM, Quiroga G, Erice G, Pérez-Tienda J, Zamarreño ÁM, García-Mina JM, Aroca R. Using the Maize Nested Association Mapping (NAM) Population to Partition Arbuscular Mycorrhizal Effects on Drought Stress Tolerance into Hormonal and Hydraulic Components. Int J Mol Sci 2022; 23:ijms23179822. [PMID: 36077217 PMCID: PMC9456450 DOI: 10.3390/ijms23179822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a first experiment was conducted with the objective of determining how drought stress alters the radial water flow and physiology in the whole maize nested association mapping (NAM) population and to find out which contrasting maize lines should be tested in a second experiment for their responses to drought in combination with an arbuscular mycorrhizal (AM) fungus. Emphasis was placed on determining the role of plant aquaporins and phytohormones in the responses of these contrasting maize lines to cope with drought stress. Results showed that both plant aquaporins and hormones are altered by the AM symbiosis and are highly involved in the physiological responses of maize plants to drought stress. The regulation by the AM symbiosis of aquaporins involved in water transport across cell membranes alters radial water transport in host plants. Hormones such as IAA, SA, ABA and jasmonates must be involved in this process either by regulating the own plant-AM fungus interaction and the activity of aquaporins, or by inducing posttranscriptional changes in these aquaporins, which in turns alter their water transport capacity. An intricate relationship between root hydraulic conductivity, aquaporins and phytohormones has been observed, revealing a complex network controlling water transport in maize roots.
Collapse
Affiliation(s)
- Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda Nº 1, 18008 Granada, Spain
- Correspondence:
| | - Gabriela Quiroga
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda Nº 1, 18008 Granada, Spain
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080 Pontevedra, Spain
| | - Gorka Erice
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda Nº 1, 18008 Granada, Spain
- ATENS—Agrotecnologías Naturales S.L., Ctra.T-214, s/n, Km 4, La Riera de Gaia, 43762 Tarragona, Spain
| | - Jacob Pérez-Tienda
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda Nº 1, 18008 Granada, Spain
| | - Ángel María Zamarreño
- Departmento de Biología Ambiental, Facultad de Ciencias, Universidad de Navarra, Irunlarrea No 1, 31008 Pamplona, Spain
| | - José María García-Mina
- Departmento de Biología Ambiental, Facultad de Ciencias, Universidad de Navarra, Irunlarrea No 1, 31008 Pamplona, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda Nº 1, 18008 Granada, Spain
| |
Collapse
|
21
|
Abstract
Aquaporins (AQPs) are a family of transmembrane water channel proteins, which were initially characterized as a novel protein family that plays a vital role in transcellular and transepithelial water movement. AQP1, AQP2, AQP4, AQP5, and AQP8 are primarily water selective, whereas AQP3, AQP7, AQP9, and AQP10 (called “aqua-glyceroporins”) also transport glycerol and other small solutes. Recently, multiple reports have suggested that AQPs have important roles in cancer cell growth, migration, invasion, and angiogenesis, each of which is important in human carcinogenesis. Here, we review recent data concerning the involvement of AQPs in tumor growth, angiogenesis, and metastasis and explore the expression profiles from various resected cancer samples to further dissect the underlying molecular mechanisms. Moreover, we discuss the potential role of AQPs during the development of genomic instability and performed modeling to describe the integration of binding between AQPs with various SH3 domain binning adaptor molecules. Throughout review and discussion of numerous reports, we have tried to provide key evidence that AQPs play key roles in tumor biology, which may provide a unique opportunity in designing a novel class of anti-tumor agents.
Collapse
Affiliation(s)
- Chul So Moon
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD, United States.,HJM Cancer Research Foundation Corporation, Lutherville, MD, United States
| | - David Moon
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD, United States.,HJM Cancer Research Foundation Corporation, Lutherville, MD, United States
| | - Sung Koo Kang
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD, United States.,HJM Cancer Research Foundation Corporation, Lutherville, MD, United States
| |
Collapse
|
22
|
Salinity Tolerance of Halophytic Grass Puccinellia nuttalliana Is Associated with Enhancement of Aquaporin-Mediated Water Transport by Sodium. Int J Mol Sci 2022; 23:ijms23105732. [PMID: 35628537 PMCID: PMC9145133 DOI: 10.3390/ijms23105732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
In salt-sensitive plants, root hydraulic conductivity is severely inhibited by NaCl, rapidly leading to the loss of water balance. However, halophytic plants appear to effectively control plant water flow under salinity conditions. In this study, we tested the hypothesis that Na+ is the principal salt factor responsible for the enhancement of aquaporin-mediated water transport in the roots of halophytic grasses, and this enhancement plays a significant role in the maintenance of water balance, gas exchange, and the growth of halophytic plants exposed to salinity. We examined the effects of treatments with 150 mM of NaCl, KCl, and Na2SO4 to separate the factors that affect water relations and, consequently, physiological and growth responses in three related grass species varying in salt tolerance. The grasses included relatively salt-sensitive Poa pratensis, moderately salt-tolerant Poa juncifolia, and the salt-loving halophytic grass Puccinellia nuttalliana. Our study demonstrated that sustained growth, chlorophyll concentrations, gas exchange, and water transport in Puccinellia nuttalliana were associated with the presence of Na in the applied salt treatments. Contrary to the other examined grasses, the root cell hydraulic conductivity in Puccinellia nuttalliana was enhanced by the 150 mM NaCl and 150 mM Na2SO4 treatments. This enhancement was abolished by the 50 µM HgCl2 treatment, demonstrating that Na was the factor responsible for the increase in mercury-sensitive, aquaporin-mediated water transport. The observed increases in root Ca and K concentrations likely played a role in the transcriptional and (or) posttranslational regulation of aquaporins that enhanced root water transport capacity in Puccinellia nuttalliana. The study demonstrates that Na plays a key role in the aquaporin-mediated root water transport of the halophytic grass Puccinellia nuttalliana, contributing to its salinity tolerance.
Collapse
|
23
|
Hypoxia-Induced Aquaporins and Regulation of Redox Homeostasis by a Trans-Plasma Membrane Electron Transport System in Maize Roots. Antioxidants (Basel) 2022; 11:antiox11050836. [PMID: 35624700 PMCID: PMC9137787 DOI: 10.3390/antiox11050836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
In plants, flooding-induced oxygen deficiency causes severe stress, leading to growth reduction and yield loss. It is therefore important to understand the molecular mechanisms for adaptation to hypoxia. Aquaporins at the plasma membrane play a crucial role in water uptake. However, their role during hypoxia and membrane redox changes is still not fully understood. The influence of 24 h hypoxia induction on hydroponically grown maize (Zea mays L.) was investigated using an oil-based setup. Analyses of physiological parameters revealed typical flooding symptoms such as increased ethylene and H2O2 levels, an increased alcohol dehydrogenase activity, and an increased redox activity at the plasma membrane along with decreased oxygen of the medium. Transcriptomic analysis and shotgun proteomics of plasma membranes and soluble fractions were performed to determine alterations in maize roots. RNA-sequencing data confirmed the upregulation of genes involved in anaerobic metabolism, biosynthesis of the phytohormone ethylene, and its receptors. Transcripts of several antioxidative systems and other oxidoreductases were regulated. Mass spectrometry analysis of the plasma membrane proteome revealed alterations in redox systems and an increased abundance of aquaporins. Here, we discuss the importance of plasma membrane aquaporins and redox systems in hypoxia stress response, including the regulation of plant growth and redox homeostasis.
Collapse
|
24
|
Zimmermann MJ, Bose J, Kramer EM, Atkin OK, Tyerman SD, Baskin TI. Oxygen uptake rates have contrasting responses to temperature in the root meristem and elongation zone. PHYSIOLOGIA PLANTARUM 2022; 174:e13682. [PMID: 35373370 DOI: 10.1111/ppl.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Growing at either 15 or 25°C, roots of Arabidopsis thaliana, Columbia accession, produce cells at the same rate and have growth zones of the same length. To determine whether this constancy is related to energetics, we measured oxygen uptake by means of a vibrating oxygen-selective electrode. Concomitantly, the spatial distribution of elongation was measured kinematically, delineating meristem and elongation zone. All seedlings were germinated, grown, and measured at a given temperature (15 or 25°C). Columbia was compared to lines where cell production rate roughly doubles between 15 and 25°C: Landsberg and two Columbia mutants, er-105 and ahk3-3. For all genotypes and temperatures, oxygen uptake rate at any position was highest at the root cap, where mitochondrial density was maximal, based on the fluorescence of a reporter. Uptake rate declined through the meristem to plateau within the elongation zone. For oxygen uptake rate integrated over a zone, the meristem had steady-state Q10 values ranging from 0.7 to 2.1; by contrast, the elongation zone had values ranging from 2.6 to 3.3, implying that this zone exerts a greater respiratory demand. These results highlight a substantial energy consumption by the root cap, perhaps helpful for maintaining hypoxia in stem cells, and suggest that rapid elongation is metabolically more costly than is cell division.
Collapse
Affiliation(s)
- Maura J Zimmermann
- Plant Biology Program, University of Massachusetts, Amherst, Massachusetts, USA
- Biology Department, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jayakumar Bose
- School of Agriculture, Food and Wine, Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Eric M Kramer
- Physics Department, Bard College at Simon's Rock, Great Barrington, Massachusetts, USA
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stephen D Tyerman
- School of Agriculture, Food and Wine, Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Tobias I Baskin
- Biology Department, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
25
|
Alderdice R, Pernice M, Cárdenas A, Hughes DJ, Harrison PL, Boulotte N, Chartrand K, Kühl M, Suggett DJ, Voolstra CR. Hypoxia as a physiological cue and pathological stress for coral larvae. Mol Ecol 2021; 31:571-587. [PMID: 34716959 DOI: 10.1111/mec.16259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
Ocean deoxygenation events are intensifying worldwide and can rapidly drive adult corals into a state of metabolic crisis and bleaching-induced mortality, but whether coral larvae are subject to similar stress remains untested. We experimentally exposed apo-symbiotic coral larvae of Acropora selago to deoxygenation stress with subsequent reoxygenation aligned to their night-day light cycle, and followed their gene expression using RNA-Seq. After 12 h of deoxygenation stress (~2 mg O2 /L), coral planulae demonstrated a low expression of HIF-targeted hypoxia response genes concomitant with a significantly high expression of PHD2 (a promoter of HIFα proteasomal degradation), similar to corresponding adult corals. Despite exhibiting a consistent swimming phenotype compared to control samples, the differential gene expression observed in planulae exposed to deoxygenation-reoxygenation suggests a disruption of pathways involved in developmental regulation, mitochondrial activity, lipid metabolism, and O2 -sensitive epigenetic regulators. Importantly, we found that treated larvae exhibited a disruption in the expression of conserved HIF-targeted developmental regulators, for example, Homeobox (HOX) genes, corroborating how changes in external oxygen levels can affect animal development. We discuss how the observed deoxygenation responses may be indicative of a possible acclimation response or alternatively may imply negative latent impacts for coral larval fitness.
Collapse
Affiliation(s)
- Rachel Alderdice
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mathieu Pernice
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - David J Hughes
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter L Harrison
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW, Australia
| | - Nadine Boulotte
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW, Australia
| | - Katie Chartrand
- Centre of Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, Qld, Australia
| | - Michael Kühl
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia.,Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - David J Suggett
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | | |
Collapse
|
26
|
Vaziriyeganeh M, Khan S, Zwiazek JJ. Transcriptome and Metabolome Analyses Reveal Potential Salt Tolerance Mechanisms Contributing to Maintenance of Water Balance by the Halophytic Grass Puccinellia nuttalliana. FRONTIERS IN PLANT SCIENCE 2021; 12:760863. [PMID: 34777443 PMCID: PMC8586710 DOI: 10.3389/fpls.2021.760863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/29/2021] [Indexed: 06/08/2023]
Abstract
Elevated soil salinity exacerbated by human activities and global climate change poses serious threats to plant survival. Although halophytes provide many important clues concerning salt tolerance in plants, some unanswered questions remain to be addressed, including the processes of water and solute transport regulation. We performed high-throughput RNA-sequencing in roots and metabolome characterizations in roots and leaves of Puccinellia nuttalliana halophytic grass subjected to 0 (control) and 150 mM NaCl. In RNAseq, a total of 31 Gb clean bases generated were de novo assembled into 941,894 transcripts. The PIP2;2 and HKT1;5 transcript levels increased in response to the NaCl treatment implying their roles in water and ion homeostasis. Several transcription factors, including WRKY39, DEK3, HY5, and ABF2, were also overexpressed in response to NaCl. The metabolomic analysis revealed that proline and dopamine significantly increased due to the upregulation of the pathway genes under salt stress, likely contributing to salt tolerance mechanisms. Several phosphatidylcholines significantly increased in roots suggesting that the alterations of membrane lipid composition may be an important strategy in P. nuttalliana for maintaining cellular homeostasis and membrane integrity under salt stress. In leaves, the TCA cycle was enriched suggesting enhanced energy metabolism to cope with salt stress. Other features contributing to the ability of P. nuttalliana to survive under high salinity conditions include salt secretion by the salt glands and enhanced cell wall lignification of the root cells. While most of the reported transcriptomic, metabolomics, and structural alterations may have consequences to water balance maintenance by plants under salinity stress, the key processes that need to be further addressed include the role of the changes in the aquaporin gene expression profiles in the earlier reported enhancement of the aquaporin-mediated root water transport.
Collapse
Affiliation(s)
| | | | - Janusz J. Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
27
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
28
|
Lv A, Wen W, Fan N, Su L, Zhou P, An Y. Dehydrin MsDHN1 improves aluminum tolerance of alfalfa (Medicago sativa L.) by affecting oxalate exudation from root tips. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:441-458. [PMID: 34363255 DOI: 10.1111/tpj.15451] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
A SK3 -type dehydrin MsDHN1 was cloned from alfalfa (Medicago sativa L.). Its function and gene regulatory pathways were studied via overexpression and suppression of MsDHN1 in alfalfa seedlings or hairy roots. The results showed that MsDHN1 is a typical intrinsically disordered protein that exists in the form of monomers and homodimers in alfalfa. The plant growth rates increased as a result of MsDHN1 overexpression (MsDHN1-OE) and decreased upon MsDHN1 suppression (MsDHN1-RNAi) in seedlings or hairy roots of alfalfa compared with the wild-type or the vector line under Al stress. MsDHN1 interacting with aquaporin (AQP) MsPIP2;1 and MsTIP1;1 positively affected oxalate secretion from root tips and Al accumulation in root tips. MsABF2 was proven to be an upstream transcription factor of MsDHN1 and activated MsDHN1 expression by binding to the ABRE element of the MsDHN1 promoter. The transcriptional regulation of MsABF2 on MsDHN1 was dependent on the abscisic acid signaling pathway. These results indicate that MsDHN1 can increase alfalfa tolerance to Al stress via increasing oxalate secretion from root tips, which may involve in the interaction of MsDHN1 with two AQP.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China
| |
Collapse
|
29
|
A Novel Aquaporin Subfamily Imports Oxygen and Contributes to Pneumococcal Virulence by Controlling the Production and Release of Virulence Factors. mBio 2021; 12:e0130921. [PMID: 34399618 PMCID: PMC8406300 DOI: 10.1128/mbio.01309-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aquaporins, integral membrane proteins widely distributed in organisms, facilitate the transport of water, glycerol, and other small uncharged solutes across cellular membranes and play important physiological roles in eukaryotes. However, characterizations and physiological functions of the prokaryotic aquaporins remain largely unknown. Here, we report that Streptococcus pneumoniae (pneumococcus) AqpC (Pn-AqpC), representing a new aquaporin subfamily possessing a distinct substrate-selective channel, functions as an oxygen porin by facilitating oxygen movement across the cell membrane and contributes significantly to pneumococcal virulence. The use of a phosphorescent oxygen probe showed that Pn-AqpC facilitates oxygen permeation into pneumococcal and Pn-AqpC-expressing yeast cells. Reconstituting Pn-AqpC into liposomes prepared with pneumococcal and Escherichia coli cellular membranes further verified that Pn-AqpC transports O2 but not water or glycerol. Alanine substitution showed that Pro232 in the substrate channel is key for Pn-AqpC in O2 transport. The deletion of Pn-aqpC significantly reduced H2O2 production and resistance to H2O2 and NO of pneumococci, whereas low-H2O2 treatment helped the ΔPn-aqpC mutant resist higher levels of H2O2 and even NO, indicating that Pn-AqpC-facilitated O2 permeation contributes to pneumococcal resistance to H2O2 and NO. Remarkably, the lack of Pn-aqpC alleviated cell autolysis, thus reducing pneumolysin (Ply) release and decreasing the hemolysis of pneumococci. Accordingly, the ΔPn-aqpC mutant markedly reduced survival in macrophages, decreased damage to macrophages, and significantly reduced lethality in mice. Therefore, the oxygen porin Pn-AqpC, through modulating H2O2 production and pneumolysin release, the two major pneumococcal virulence factors, controls the virulence of pneumococcus. Pn-AqpC orthologs are widely distributed in various pneumococcal serotypes, highlighting that the oxygen porin is important for pneumococcal pathogenicity.
Collapse
|
30
|
Liu J, Qin G, Liu C, Liu X, Zhou J, Li J, Lu B, Zhao J. Genome-wide identification of candidate aquaporins involved in water accumulation of pomegranate outer seed coat. PeerJ 2021; 9:e11810. [PMID: 34316414 PMCID: PMC8286702 DOI: 10.7717/peerj.11810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/27/2021] [Indexed: 01/25/2023] Open
Abstract
Aquaporins (AQPs) are a class of highly conserved integral membrane proteins that facilitate the uptake and transport of water and other small molecules across cell membranes. However, little is known about AQP genes in pomegranate (Punica granatum L.) and their potential role in water accumulation of the outer seed coat. We identified 38 PgrAQP genes in the pomegranate genome and divided them into five subfamilies based on a comparative analysis. Purifying selection played a role in the evolution of PgrAQP genes and a whole-genome duplication event in Myrtales may have contributed to the expansion of PgrTIP, PgrSIP, and PgrXIP genes. Transcriptome data analysis revealed that the PgrAQP genes exhibited different tissue-specific expression patterns. Among them, the transcript abundance of PgrPIPs were significantly higher than that of other subfamilies. The mRNA transcription levels of PgrPIP1.3, PgrPIP2.8, and PgrSIP1.2 showed a significant linear relationship with water accumulation in seed coats, indicating that PgrPIP1.3/PgrPIP2.8 located in the plasma membrane and PgrSIP1.2 proteins located on the tonoplast may be involved in water accumulation and contribute to the cell expansion of the outer seed coat, which then develops into juicy edible flesh. Overall, our results provided not only information on the characteristics and evolution of PgrAQPs, but also insights on the genetic improvement of outer seed coats.
Collapse
Affiliation(s)
- Jianjian Liu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China.,Institute of Horticultural Research (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province), Anhui Academy of Agricultural Sciences, Hefei, China
| | - Gaihua Qin
- Institute of Horticultural Research (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province), Anhui Academy of Agricultural Sciences, Hefei, China.,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chunyan Liu
- Institute of Horticultural Research (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province), Anhui Academy of Agricultural Sciences, Hefei, China.,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiuli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiyu Li
- Institute of Horticultural Research (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province), Anhui Academy of Agricultural Sciences, Hefei, China.,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Bingxin Lu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Jianrong Zhao
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
31
|
Khoo J, Hagemeyer CE, Henstridge DC, Kumble S, Wang TY, Xu R, Gani L, King T, Soh SB, Puar T, Au V, Tan E, Tay TL, Kam C, Teo EK. Effects of water stably-enriched with oxygen as a novel method of tissue oxygenation on mitochondrial function, and as adjuvant therapy for type 2 diabetes in a randomized placebo-controlled trial. PLoS One 2021; 16:e0254619. [PMID: 34260650 PMCID: PMC8279347 DOI: 10.1371/journal.pone.0254619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/07/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Diabetes mellitus is associated with inadequate delivery of oxygen to tissues. Cellular hypoxia is associated with mitochondrial dysfunction which increases oxidative stress and hyperglycaemia. Hyperbaric oxygenation therapy, which was shown to improve insulin sensitivity, is impractical for regular use. We evaluated the effects of water which is stably-enriched with oxygen (ELO water) to increase arterial blood oxygen levels, on mitochondrial function in the presence of normal- or high-glucose environments, and as glucose-lowering therapy in humans. METHODS We compared arterial blood oxygen levels in Sprague-Dawley rats after 7 days of ad libitum ELO or tap water consumption. Mitochondrial stress testing, and flow cytometry analysis of mitochondrial mass and membrane potential, were performed on human HepG2 cells cultured in four Dulbecco's Modified Eagle Medium media, made with ELO water or regular (control) water, at normal (5.5 mM) or high (25 mM) glucose concentrations. We also randomized 150 adults with type 2 diabetes (mean age 53 years, glycated haemoglobin HbA1c 8.9% [74 mmol/mol], average duration of diabetes 12 years) to drink 1.5 litres daily of bottled ELO water or drinking water. RESULTS ELO water raised arterial oxygen tension pO2 significantly (335 ± 26 vs. 188 ± 18 mmHg, p = 0.006) compared with tap water. In cells cultured in control water, mitochondrial mass and membrane potential were both significantly lower at 25 mM glucose compared with 5.5 mM glucose; in contrast, mitochondrial mass and membrane potential did not differ significantly at normal or high glucose concentrations in cells cultured in ELO water. The high-glucose environment induced a greater mitochondrial proton leak in cells cultured in ELO water compared to cells cultured in control medium at similar glucose concentration. In type 2 diabetic adults, HbA1c decreased significantly (p = 0.002) by 0.3 ± 0.7% (4 ± 8 mmol/mol), with ELO water after 12 weeks of treatment but was unchanged with placebo. CONCLUSIONS ELO water raises arterial blood oxygen levels, appears to have a protective effect on hyperglycaemia-induced reduction in mitochondrial mass and mitochondrial dysfunction, and may be effective adjuvant therapy for type 2 diabetes.
Collapse
Affiliation(s)
- Joan Khoo
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | | | - Darren C. Henstridge
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Sumukh Kumble
- NanoBiotechnology Laboratory, Monash University, Melbourne, Victoria, Australia
| | - Ting-Yi Wang
- NanoBiotechnology Laboratory, Monash University, Melbourne, Victoria, Australia
| | - Rong Xu
- NanoBiotechnology Laboratory, Monash University, Melbourne, Victoria, Australia
| | - Linsey Gani
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | - Thomas King
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | - Shui-Boon Soh
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | - Troy Puar
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | - Vanessa Au
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | - Eberta Tan
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | - Tunn-Lin Tay
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | - Carmen Kam
- Clinical Trials and Research Unit, Changi General Hospital, Singapore, Singapore
| | - Eng-Kiong Teo
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| |
Collapse
|
32
|
Alterations of Endogenous Hormones, Antioxidant Metabolism, and Aquaporin Gene Expression in Relation to γ-Aminobutyric Acid-Regulated Thermotolerance in White Clover. Antioxidants (Basel) 2021; 10:antiox10071099. [PMID: 34356332 PMCID: PMC8301151 DOI: 10.3390/antiox10071099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022] Open
Abstract
Persistent high temperature decreases the yield and quality of crops, including many important herbs. White clover (Trifolium repens) is a perennial herb with high feeding and medicinal value, but is sensitive to temperatures above 30 °C. The present study was conducted to elucidate the impact of changes in endogenous γ-aminobutyric acid (GABA) level by exogenous GABA pretreatment on heat tolerance of white clover, associated with alterations in endogenous hormones, antioxidant metabolism, and aquaporin-related gene expression in root and leaf of white clover plants under high-temperature stress. Our results reveal that improvement in endogenous GABA level in leaf and root by GABA pretreatment could significantly alleviate the damage to white clover during high-temperature stress, as demonstrated by enhancements in cell membrane stability, photosynthetic capacity, and osmotic adjustment ability, as well as lower oxidative damage and chlorophyll loss. The GABA significantly enhanced gene expression and enzyme activities involved in antioxidant defense, including superoxide dismutase, catalase, peroxidase, and key enzymes of the ascorbic acid–glutathione cycle, thus reducing the accumulation of reactive oxygen species and the oxidative injury to membrane lipids and proteins. The GABA also increased endogenous indole-3-acetic acid content in roots and leaves and cytokinin content in leaves, associated with growth maintenance and reduced leaf senescence under heat stress. The GABA significantly upregulated the expression of PIP1-1 and PIP2-7 in leaves and the TIP2-1 expression in leaves and roots under high temperature, and also alleviated the heat-induced inhibition of PIP1-1, PIP2-2, TIP2-2, and NIP1-2 expression in roots, which could help to improve the water transportation and homeostasis from roots to leaves. In addition, the GABA-induced aquaporins expression and decline in endogenous abscisic acid level could improve the heat dissipation capacity through maintaining higher stomatal opening and transpiration in white clovers under high-temperature stress.
Collapse
|
33
|
Venisse JS, Õunapuu-Pikas E, Dupont M, Gousset-Dupont A, Saadaoui M, Faize M, Chen S, Chen S, Petel G, Fumanal B, Roeckel-Drevet P, Sellin A, Label P. Genome-Wide Identification, Structure Characterization, and Expression Pattern Profiling of the Aquaporin Gene Family in Betula pendula. Int J Mol Sci 2021; 22:7269. [PMID: 34298887 PMCID: PMC8304918 DOI: 10.3390/ijms22147269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/12/2023] Open
Abstract
Aquaporin water channels (AQPs) constitute a large family of transmembrane proteins present throughout all kingdoms of life. They play key roles in the flux of water and many solutes across the membranes. The AQP diversity, protein features, and biological functions of silver birch are still unknown. A genome analysis of Betula pendula identified 33 putative genes encoding full-length AQP sequences (BpeAQPs). They are grouped into five subfamilies, representing ten plasma membrane intrinsic proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), eight NOD26-like intrinsic proteins (NIPs), four X intrinsic proteins (XIPs), and three small basic intrinsic proteins (SIPs). The BpeAQP gene structure is conserved within each subfamily, with exon numbers ranging from one to five. The predictions of the aromatic/arginine selectivity filter (ar/R), Froger's positions, specificity-determining positions, and 2D and 3D biochemical properties indicate noticeable transport specificities to various non-aqueous substrates between members and/or subfamilies. Nevertheless, overall, the BpePIPs display mostly hydrophilic ar/R selective filter and lining-pore residues, whereas the BpeTIP, BpeNIP, BpeSIP, and BpeXIP subfamilies mostly contain hydrophobic permeation signatures. Transcriptional expression analyses indicate that 23 BpeAQP genes are transcribed, including five organ-related expressions. Surprisingly, no significant transcriptional expression is monitored in leaves in response to cold stress (6 °C), although interesting trends can be distinguished and will be discussed, notably in relation to the plasticity of this pioneer species, B. pendula. The current study presents the first detailed genome-wide analysis of the AQP gene family in a Betulaceae species, and our results lay a foundation for a better understanding of the specific functions of the BpeAQP genes in the responses of the silver birch trees to cold stress.
Collapse
Affiliation(s)
- Jean-Stéphane Venisse
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Eele Õunapuu-Pikas
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia; (E.Õ.-P.); (A.S.)
| | - Maxime Dupont
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Aurélie Gousset-Dupont
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Mouadh Saadaoui
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
- National Institute of Agronomy of Tunisia (INAT), Crop Improvement Laboratory, INRAT, Tunis CP 1004, Tunisia
| | - Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, Faculty of Sciences, University Chouaib Doukkali, El Jadida 24000, Morocco;
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (S.C.); (S.C.)
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (S.C.); (S.C.)
| | - Gilles Petel
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Boris Fumanal
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Patricia Roeckel-Drevet
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Arne Sellin
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia; (E.Õ.-P.); (A.S.)
| | - Philippe Label
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| |
Collapse
|
34
|
Ovrutska I. Aquaporins in regulation of plant protective responses to drought. UKRAINIAN BOTANICAL JOURNAL 2021. [DOI: 10.15407/ukrbotj78.03.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plasmolemma permeability is an integral indicator of the functional state of plant cells under stress. Aquaporins (AQPs), specialized transmembrane proteins that form water channels and play an important role in the adaptation of plants to adverse conditions and, in particular, to lack or excess of water, are involved in the formation of the response to drought. The main function of AQPs is to facilitate the movement of water across cell membranes and maintain aqueous cell homeostasis. Under stressful conditions, there is both an increase and decrease in the expression of individual aquaporin genes. Analysis of the data revealed differences in the expression of AQPs genes in stable and sensitive plant genotypes. It turned out that aquaporins in different stress-resistant varieties of the same species also respond differently to drought. The review provides brief information on the history of the discovery of aquaporins, the structure and function of these proteins, summarizes the latest information on the role of aquaporins in the regulation of metabolism and the response of plants to stressors, with particular emphasis on aquaporins in drought protection. The discovery and study of AQPs expands the possibilities of using genetic engineering methods for the selection of new plant species, in particular, more resistant to drought and salinization of the soil, as well as to increase their productivity. The use of aquaporins in biotechnology to improve drought resistance of various species has many prospects.
Collapse
|
35
|
Israel D, Khan S, Warren CR, Zwiazek JJ, Robson TM. The contribution of PIP2-type aquaporins to photosynthetic response to increased vapour pressure deficit. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5066-5078. [PMID: 33928350 PMCID: PMC8219038 DOI: 10.1093/jxb/erab187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The roles of different plasma membrane aquaporins (PIPs) in leaf-level gas exchange of Arabidopsis thaliana were examined using knockout mutants. Since multiple Arabidopsis PIPs are implicated in CO2 transport across cell membranes, we focused on identifying the effects of the knockout mutations on photosynthesis, and whether they are mediated through the control of stomatal conductance of water vapour (gs), mesophyll conductance of CO2 (gm), or both. We grew Arabidopsis plants in low and high humidity environments and found that the contribution of PIPs to gs was larger under low air humidity when the evaporative demand was high, whereas any effect of a lack of PIP function was minimal under higher humidity. The pip2;4 knockout mutant had 44% higher gs than wild-type plants under low humidity, which in turn resulted in an increased net photosynthetic rate (Anet). We also observed a 23% increase in whole-plant transpiration (E) for this knockout mutant. The lack of functional plasma membrane aquaporin AtPIP2;5 did not affect gs or E, but resulted in homeostasis of gm despite changes in humidity, indicating a possible role in regulating CO2 membrane permeability. CO2 transport measurements in yeast expressing AtPIP2;5 confirmed that this aquaporin is indeed permeable to CO2.
Collapse
Affiliation(s)
- David Israel
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), University of Helsinki, Finland
| | - Shanjida Khan
- Department of Renewable Resources, University of Alberta, Canada
| | - Charles R Warren
- School of Life and Environmental Sciences, University of Sydney, Australia
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Canada
| | - T Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), University of Helsinki, Finland
| |
Collapse
|
36
|
Tyerman SD, McGaughey SA, Qiu J, Yool AJ, Byrt CS. Adaptable and Multifunctional Ion-Conducting Aquaporins. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:703-736. [PMID: 33577345 DOI: 10.1146/annurev-arplant-081720-013608] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Aquaporins function as water and neutral solute channels, signaling hubs, disease virulence factors, and metabolon components. We consider plant aquaporins that transport ions compared to some animal counterparts. These are candidates for important, as yet unidentified, cation and anion channels in plasma, tonoplast, and symbiotic membranes. For those individual isoforms that transport ions, water, and gases, the permeability spans 12 orders of magnitude. This requires tight regulation of selectivity via protein interactions and posttranslational modifications. A phosphorylation-dependent switch between ion and water permeation in AtPIP2;1 might be explained by coupling between the gates of the four monomer water channels and the central pore of the tetramer. We consider the potential for coupling between ion and water fluxes that could form the basis of an electroosmotic transducer. A grand challenge in understanding the roles of ion transporting aquaporins is their multifunctional modes that are dependent on location, stress, time, and development.
Collapse
Affiliation(s)
- Stephen D Tyerman
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia; ,
| | - Samantha A McGaughey
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australian Capital Territory 0200, Australia; ,
| | - Jiaen Qiu
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia; ,
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia;
| | - Caitlin S Byrt
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australian Capital Territory 0200, Australia; ,
| |
Collapse
|
37
|
Tan X, Liu M, Du N, Zwiazek JJ. Ethylene enhances root water transport and aquaporin expression in trembling aspen (Populus tremuloides) exposed to root hypoxia. BMC PLANT BIOLOGY 2021; 21:227. [PMID: 34020594 PMCID: PMC8140438 DOI: 10.1186/s12870-021-02995-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Root hypoxia has detrimental effects on physiological processes and growth in most plants. The effects of hypoxia can be partly alleviated by ethylene. However, the tolerance mechanisms contributing to the ethylene-mediated hypoxia tolerance in plants remain poorly understood. RESULTS In this study, we examined the effects of root hypoxia and exogenous ethylene treatments on leaf gas exchange, root hydraulic conductance, and the expression levels of several aquaporins of the plasma membrane intrinsic protein group (PIP) in trembling aspen (Populus tremuloides) seedlings. Ethylene enhanced net photosynthetic rates, transpiration rates, and root hydraulic conductance in hypoxic plants. Of the two subgroups of PIPs (PIP1 and PIP2), the protein abundance of PIP2s and the transcript abundance of PIP2;4 and PIP2;5 were higher in ethylene-treated trembling aspen roots compared with non-treated roots under hypoxia. The increases in the expression levels of these aquaporins could potentially facilitate root water transport. The enhanced root water transport by ethylene was likely responsible for the increase in leaf gas exchange of the hypoxic plants. CONCLUSIONS Exogenous ethylene enhanced root water transport and the expression levels of PIP2;4 and PIP2;5 in hypoxic roots of trembling aspen. The results suggest that ethylene facilitates the aquaporin-mediated water transport in plants exposed to root hypoxia.
Collapse
Affiliation(s)
- Xiangfeng Tan
- Department of Renewable Resources, University of Alberta, AB, T6G 2E3, Edmonton, Canada
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Mengmeng Liu
- Department of Renewable Resources, University of Alberta, AB, T6G 2E3, Edmonton, Canada
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Science, Shandong University, 266237, Qingdao, China
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, AB, T6G 2E3, Edmonton, Canada.
| |
Collapse
|
38
|
Barzana G, Rios JJ, Lopez-Zaplana A, Nicolas-Espinosa J, Yepes-Molina L, Garcia-Ibañez P, Carvajal M. Interrelations of nutrient and water transporters in plants under abiotic stress. PHYSIOLOGIA PLANTARUM 2021; 171:595-619. [PMID: 32909634 DOI: 10.1111/ppl.13206] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 05/12/2023]
Abstract
Environmental changes cause abiotic stress in plants, primarily through alterations in the uptake of the nutrients and water they require for their metabolism and growth and to maintain their cellular homeostasis. The plasma membranes of cells contain transporter proteins, encoded by their specific genes, responsible for the uptake of nutrients and water (aquaporins). However, their interregulation has rarely been taken into account. Therefore, in this review we identify how the plant genome responds to abiotic stresses such as nutrient deficiency, drought, salinity and low temperature, in relation to both nutrient transporters and aquaporins. Some general responses or regulation mechanisms can be observed under each abiotic stress such as the induction of plasma membrane transporter expression during macronutrient deficiency, the induction of tonoplast transporters and reduction of aquaporins during micronutrients deficiency. However, drought, salinity and low temperatures generally cause an increase in expression of nutrient transporters and aquaporins in tolerant plants. We propose that both types of transporters (nutrients and water) should be considered jointly in order to better understand plant tolerance of stresses.
Collapse
Affiliation(s)
- Gloria Barzana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Juan J Rios
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Alvaro Lopez-Zaplana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Lucía Yepes-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| |
Collapse
|
39
|
Azad AK, Raihan T, Ahmed J, Hakim A, Emon TH, Chowdhury PA. Human Aquaporins: Functional Diversity and Potential Roles in Infectious and Non-infectious Diseases. Front Genet 2021; 12:654865. [PMID: 33796134 PMCID: PMC8007926 DOI: 10.3389/fgene.2021.654865] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins and found in all living organisms from bacteria to human. AQPs mainly involved in the transmembrane diffusion of water as well as various small solutes in a bidirectional manner are widely distributed in various human tissues. Human contains 13 AQPs (AQP0-AQP12) which are divided into three sub-classes namely orthodox aquaporin (AQP0, 1, 2, 4, 5, 6, and 8), aquaglyceroporin (AQP3, 7, 9, and 10) and super or unorthodox aquaporin (AQP11 and 12) based on their pore selectivity. Human AQPs are functionally diverse, which are involved in wide variety of non-infectious diseases including cancer, renal dysfunction, neurological disorder, epilepsy, skin disease, metabolic syndrome, and even cardiac diseases. However, the association of AQPs with infectious diseases has not been fully evaluated. Several studies have unveiled that AQPs can be regulated by microbial and parasitic infections that suggest their involvement in microbial pathogenesis, inflammation-associated responses and AQP-mediated cell water homeostasis. This review mainly aims to shed light on the involvement of AQPs in infectious and non-infectious diseases and potential AQPs-target modulators. Furthermore, AQP structures, tissue-specific distributions and their physiological relevance, functional diversity and regulations have been discussed. Altogether, this review would be useful for further investigation of AQPs as a potential therapeutic target for treatment of infectious as well as non-infectious diseases.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jahed Ahmed
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tanvir Hossain Emon
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | |
Collapse
|
40
|
Fungal X-Intrinsic Protein Aquaporin from Trichoderma atroviride: Structural and Functional Considerations. Biomolecules 2021; 11:biom11020338. [PMID: 33672420 PMCID: PMC7927018 DOI: 10.3390/biom11020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/24/2022] Open
Abstract
The major intrinsic protein (MIP) superfamily is a key part of the fungal transmembrane transport network. It facilitates the transport of water and low molecular weight solutes across biomembranes. The fungal uncharacterized X-Intrinsic Protein (XIP) subfamily includes the full protein diversity of MIP. Their biological functions still remain fully hypothetical. The aim of this study is still to deepen the diversity and the structure of the XIP subfamily in light of the MIP counterparts—the aquaporins (AQPs) and aquaglyceroporins (AQGPs)—and to describe for the first time their function in the development, biomass accumulation, and mycoparasitic aptitudes of the fungal bioagent Trichoderma atroviride. The fungus-XIP clade, with one member (TriatXIP), is one of the three clades of MIPs that make up the diversity of T. atroviride MIPs, along with the AQPs (three members) and the AQGPs (three members). TriatXIP resembles those of strict aquaporins, predicting water diffusion and possibly other small polar solutes due to particularly wider ar/R constriction with a Lysine substitution at the LE2 position. The XIP loss of function in ∆TriatXIP mutants slightly delays biomass accumulation but does not impact mycoparasitic activities. ∆TriatMIP forms colonies similar to wild type; however, the hyphae are slightly thinner and colonies produce rare chlamydospores in PDA and specific media, most of which are relatively small and exhibit abnormal morphologies. To better understand the molecular causes of these deviant phenotypes, a wide-metabolic survey of the ∆TriatXIPs demonstrates that the delayed growth kinetic, correlated to a decrease in respiration rate, is caused by perturbations in the pentose phosphate pathway. Furthermore, the null expression of the XIP gene strongly impacts the expression of four expressed MIP-encoding genes of T. atroviride, a plausible compensating effect which safeguards the physiological integrity and life cycle of the fungus. This paper offers an overview of the fungal XIP family in the biocontrol agent T. atroviride which will be useful for further functional analysis of this particular MIP subfamily in vegetative growth and the environmental stress response in fungi. Ultimately, these findings have implications for the ecophysiology of Trichoderma spp. in natural, agronomic, and industrial systems.
Collapse
|
41
|
Stieger B, Steiger J, Locher KP. Membrane lipids and transporter function. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166079. [PMID: 33476785 DOI: 10.1016/j.bbadis.2021.166079] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/12/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Transport proteins are essential for cells in allowing the exchange of substances between cells and their environment across the lipid bilayer forming a tight barrier. Membrane lipids modulate the function of transmembrane proteins such as transporters in two ways: Lipids are tightly and specifically bound to transport proteins and in addition they modulate from the bulk of the lipid bilayer the function of transport proteins. This overview summarizes currently available information at the ultrastructural level on lipids tightly bound to transport proteins and the impact of altered bulk membrane lipid composition. Human diseases leading to altered lipid homeostasis will lead to altered membrane lipid composition, which in turn affect the function of transporter proteins.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Julia Steiger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kaspar P Locher
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
42
|
Yepes-Molina L, Bárzana G, Carvajal M. Controversial Regulation of Gene Expression and Protein Transduction of Aquaporins under Drought and Salinity Stress. PLANTS 2020; 9:plants9121662. [PMID: 33261103 PMCID: PMC7761296 DOI: 10.3390/plants9121662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022]
Abstract
Enhancement of the passage of water through membranes is one of the main mechanisms via which cells can maintain their homeostasis under stress conditions, and aquaporins are the main participants in this process. However, in the last few years, a number of studies have reported discrepancies between aquaporin messenger RNA (mRNA) expression and the number of aquaporin proteins synthesised in response to abiotic stress. These observations suggest the existence of post-transcriptional mechanisms which regulate plasma membrane intrinsic protein (PIP) trafficking to the plasma membrane. This indicates that the mRNA synthesis of some aquaporins could be modulated by the accumulation of the corresponding encoded protein, in relation to the turnover of the membranes. This aspect is discussed in terms of the results obtained: on the one hand, with isolated vesicles, in which the level of proteins present provides the membranes with important characteristics such as resistance and stability and, on the other, with isolated proteins reconstituted in artificial liposomes as an in vitro method to address the in vivo physiology of the entire plant.
Collapse
|
43
|
Yadav E, Yadav N, Hus A, Yadav JS. Aquaporins in lung health and disease: Emerging roles, regulation, and clinical implications. Respir Med 2020; 174:106193. [PMID: 33096317 DOI: 10.1016/j.rmed.2020.106193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Aquaporins (AQPs) aka water channels are a family of conserved transmembrane proteins (~30 kDa monomers) expressed in various organ systems. Of the 13 AQPs (AQP0 through AQP12) in the human body, four (AQPs 1, 3, 4, and 5) are expressed in the respiratory system. These channels are conventionally known for mediating transcellular fluid movements. Certain AQPs (aquaglyceroporins) have the capability to transport glycerol and potentially other solutes. There is an emerging body of literature unveiling the non-conventional roles of AQPs such as in cell proliferation and migration, gas permeation, signal potentiation, etc. Initial gene knock-out studies established a physiological role for lung AQPs, particularly AQP5, in maintaining homeostasis, by mediating fluid secretion from submucosal glands onto the airway surface liquid (ASL) lining. Subsequent studies have highlighted the functional significance of AQPs, particularly AQP1 and AQP5 in lung pathophysiology and diseases, including but not limited to chronic and acute lung injury, chronic obstructive pulmonary disease (COPD), other inflammatory lung conditions, and lung cancer. AQP1 has been suggested as a potential prognostic marker for malignant mesothelioma. Recent efforts are directed toward exploiting AQPs as targets for diagnosis, prevention, intervention, and/or treatment of various lung conditions. Emerging information on regulatory pathways and directed mechanistic research are posited to unravel novel strategies for these clinical implications. Future considerations should focus on development of AQP inhibitors, blockers, and modulators for therapeutic needs, and better understanding the role of lung-specific AQPs in inter-individual susceptibility to chronic lung diseases such as COPD and cancer.
Collapse
Affiliation(s)
- Ekta Yadav
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Niket Yadav
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, 22908-0738, USA
| | - Ariel Hus
- Department of Biology, University of Miami, Coral Gables, Florida, 33146, USA
| | - Jagjit S Yadav
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
44
|
Bárzana G, Carvajal M. Genetic regulation of water and nutrient transport in water stress tolerance in roots. J Biotechnol 2020; 324:134-142. [PMID: 33038476 DOI: 10.1016/j.jbiotec.2020.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 01/11/2023]
Abstract
Drought stress is one of the major abiotic factors affecting the growth and development of crops. The primary effect of drought is the alteration of water and nutrient uptake and transport by roots, related essentially with aquaporins and ion transporters of the plasma membrane. Therefore, the efficiency of water and nutrient transport across cell layers is a main factor in tolerance mechanisms. The regulation of this transport under water stress - in relation to the differing degrees of tolerance of crops and the effect of arbuscular mycorrhizae, together with signaling mechanisms - is reviewed here. Three different phases in the response to stress (immediate, short-term and long-term), involving different signals and levels of gene regulation, are highlighted.
Collapse
Affiliation(s)
- Gloria Bárzana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, E-30100, Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, E-30100, Murcia, Spain.
| |
Collapse
|
45
|
Identification of nitric oxide (NO)-responsive genes under hypoxia in tomato (Solanum lycopersicum L.) root. Sci Rep 2020; 10:16509. [PMID: 33020554 PMCID: PMC7536229 DOI: 10.1038/s41598-020-73613-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/14/2020] [Indexed: 12/04/2022] Open
Abstract
Flooding periods, as one probable consequence of climate change, will lead more frequently to plant hypoxic stress. Hypoxia sensing and signaling in the root, as the first organ encountering low oxygen, is therefore crucial for plant survival under flooding. Nitric oxide has been shown to be one of the main players involved in hypoxia signaling through the regulation of ERFVII transcription factors stability. Using SNP as NO donor, we investigated the NO-responsive genes, which showed a significant response to hypoxia. We identified 395 genes being differentially regulated under both hypoxia and SNP-treatment. Among them, 251 genes showed up- or down-regulation under both conditions which were used for further biological analysis. Functional classification of these genes showed that they belong to different biological categories such as primary carbon and nitrogen metabolism (e.g. glycolysis, fermentation, protein and amino acid metabolism), nutrient and metabolites transport, redox homeostasis, hormone metabolism, regulation of transcription as well as response to biotic and abiotic stresses. Our data shed light on the NO-mediated gene expression modulation under hypoxia and provides potential targets playing a role in hypoxia tolerance. These genes are interesting candidates for further investigating their role in hypoxia signaling and survival.
Collapse
|
46
|
Qiu J, McGaughey SA, Groszmann M, Tyerman SD, Byrt CS. Phosphorylation influences water and ion channel function of AtPIP2;1. PLANT, CELL & ENVIRONMENT 2020; 43:2428-2442. [PMID: 32678928 DOI: 10.1111/pce.13851] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 05/24/2023]
Abstract
The phosphorylation state of two serine residues within the C-terminal domain of AtPIP2;1 (S280, S283) regulates its plasma membrane localization in response to salt and osmotic stress. Here, we investigated whether the phosphorylation state of S280 and S283 also influence AtPIP2;1 facilitated water and cation transport. A series of single and double S280 and S283 phosphomimic and phosphonull AtPIP2;1 mutants were tested in heterologous systems. In Xenopus laevis oocytes, phosphomimic mutants AtPIP2;1 S280D, S283D, and S280D/S283D had significantly greater ion conductance for Na+ and K+ , whereas the S280A single phosphonull mutant had greater water permeability. We observed a phosphorylation-dependent inverse relationship between AtPIP2;1 water and ion transport with a 10-fold change in both. The results revealed that phosphorylation of S280 and S283 influences the preferential facilitation of ion or water transport by AtPIP2;1. The results also hint that other regulatory sites play roles that are yet to be elucidated. Expression of the AtPIP2;1 phosphorylation mutants in Saccharomyces cerevisiae confirmed that phosphorylation influences plasma membrane localization, and revealed higher Na+ accumulation for S280A and S283D mutants. Collectively, the results show that phosphorylation in the C-terminal domain of AtPIP2;1 influences its subcellular localization and cation transport capacity.
Collapse
Affiliation(s)
- Jiaen Qiu
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Samantha A McGaughey
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australia
| | - Michael Groszmann
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australia
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Caitlin S Byrt
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australia
| |
Collapse
|
47
|
Chow PH, Bowen J, Yool AJ. Combined Systematic Review and Transcriptomic Analyses of Mammalian Aquaporin Classes 1 to 10 as Biomarkers and Prognostic Indicators in Diverse Cancers. Cancers (Basel) 2020; 12:E1911. [PMID: 32679804 PMCID: PMC7409285 DOI: 10.3390/cancers12071911] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Aquaporin (AQP) channels enable regulated transport of water and solutes essential for fluid homeostasis, but they are gaining attention as targets for anticancer therapies. Patterns of AQP expression and survival rates for patients were evaluated by systematic review (PubMed and Embase) and transcriptomic analyses of RNAseq data (Human Protein Atlas database). Meta-analyses confirmed predominantly negative associations between AQP protein and RNA expression levels and patient survival times, most notably for AQP1 in lung, breast and prostate cancers; AQP3 in esophageal, liver and breast cancers; and AQP9 in liver cancer. Patterns of AQP expression were clustered for groups of cancers and associated with risk of death. A quantitative transcriptomic analysis of AQP1-10 in human cancer biopsies similarly showed that increased transcript levels of AQPs 1, 3, 5 and 9 were most frequently associated with poor survival. Unexpectedly, increased AQP7 and AQP8 levels were associated with better survival times in glioma, ovarian and endometrial cancers, and increased AQP11 with better survival in colorectal and breast cancers. Although molecular mechanisms of aquaporins in pathology or protection remain to be fully defined, results here support the hypothesis that overexpression of selected classes of AQPs differentially augments cancer progression. Beyond fluid homeostasis, potential roles for AQPs in cancers (suggested from an expanding appreciation of their functions in normal tissues) include cell motility, membrane process extension, transport of signaling molecules, control of proliferation and apoptosis, increased mechanical compliance, and gas exchange. AQP expression also has been linked to differences in sensitivity to chemotherapy treatments, suggesting possible roles as biomarkers for personalized treatments. Development of AQP pharmacological modulators, administered in cancer-specific combinations, might inspire new interventions for controlling malignant carcinomas.
Collapse
Affiliation(s)
| | | | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia; (P.H.C.); (J.B.)
| |
Collapse
|
48
|
Candidate genes for monitoring hydrogen peroxide resistance in the salmon louse, Lepeophtheirus salmonis. Parasit Vectors 2020; 13:344. [PMID: 32650825 PMCID: PMC7350588 DOI: 10.1186/s13071-020-04211-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hydrogen peroxide (H2O2) is one of the delousing agents used to control sea lice infestations in salmonid aquaculture. However, some Lepeophtheirus salmonis populations have developed resistance towards H2O2. An increased gene expression and activity of catalase, an enzyme that breaks down H2O2, have been detected in resistant lice, being therefore introduced as a resistance marker in the salmon industry. In the present study the aim was to validate the use of catalase expression as a marker and to identify new candidate genes as additional markers to catalase, related to H2O2 resistance in L. salmonis. METHODS A sensitive and an H2O2 resistant laboratory strain (P0 generation, not exposed to H2O2 for several years) were batch crossed to generate a cohort with a wide range of H2O2 sensitivities (F2 generation). F2 adult females were then exposed to H2O2 to separate sensitive and resistant individuals. Those F2 lice, the P0 lice and field-collected resistant lice (exposed to H2O2 in the field) were used in an RNA sequencing study. RESULTS Catalase was upregulated in resistant lice exposed to H2O2 compared to sensitive lice. This was, however, not the case for unexposed resistant P0 lice. Several other genes were found differentially expressed between sensitive and resistant lice, but most of them seemed to be related to H2O2 exposure. However, five genes were consistently up- or downregulated in the resistant lice independent of exposure history. The upregulated genes were: one gene in the DNA polymerase family, one gene encoding a Nesprin-like protein and an unannotated gene encoding a small protein. The downregulated genes encoded endoplasmic reticulum resident protein 29 and an aquaporin (Glp1_v2). CONCLUSIONS Catalase expression seems to be induced by H2O2 exposure, since it was not upregulated in unexposed resistant lice. This may pose a challenge for its use as a resistance marker. The five new genes associated with resistance are put forward as complementary candidate genes. The most promising was Glp1_v2, an aquaglyceroporin that may serve as a passing channel for H2O2. Lower channel number can reduce the influx or distribution of H2O2 in the salmon louse, being directly involved in the resistance mechanism.
Collapse
|
49
|
Ahmed J, Mercx S, Boutry M, Chaumont F. Evolutionary and Predictive Functional Insights into the Aquaporin Gene Family in the Allotetraploid Plant Nicotiana tabacum. Int J Mol Sci 2020; 21:E4743. [PMID: 32635213 PMCID: PMC7370101 DOI: 10.3390/ijms21134743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Aquaporins (AQPs) are a class of integral membrane proteins that facilitate the membrane diffusion of water and other small solutes. Nicotiana tabacum is an important model plant, and its allotetraploid genome has recently been released, providing us with the opportunity to analyze the AQP gene family and its evolution. A total of 88 full-length AQP genes were identified in the N. tabacum genome, and the encoding proteins were assigned into five subfamilies: 34 plasma membrane intrinsic proteins (PIPs); 27 tonoplast intrinsic proteins (TIPs); 20 nodulin26-like intrinsic proteins (NIPs); 3 small basic intrinsic proteins (SIPs); 4 uncharacterized X intrinsic proteins (XIPs), including two splice variants. We also analyzed the genomes of two N. tabacum ancestors, Nicotiana tomentosiformis and Nicotiana sylvestris, and identified 49 AQP genes in each species. Functional prediction, based on the substrate specificity-determining positions (SDPs), revealed significant differences in substrate specificity among the AQP subfamilies. Analysis of the organ-specific AQP expression levels in the N. tabacum plant and RNA-seq data of N. tabacum bright yellow-2 suspension cells indicated that many AQPs are simultaneously expressed, but differentially, according to the organs or the cells. Altogether, these data constitute an important resource for future investigations of the molecular, evolutionary, and physiological functions of AQPs in N. tabacum.
Collapse
Affiliation(s)
| | | | | | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium; (J.A.); (S.M.); (M.B.)
| |
Collapse
|
50
|
Xu Y, Jin Z, Xu B, Li J, Li Y, Wang X, Wang A, Hu W, Huang D, Wei Q, Xu Z, Song S. Identification of transcription factors interacting with a 1274 bp promoter of MaPIP1;1 which confers high-level gene expression and drought stress Inducibility in transgenic Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:278. [PMID: 32546127 PMCID: PMC7298759 DOI: 10.1186/s12870-020-02472-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/26/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Drought stress can severely affect plant growth and crop yield. The cloning and identification of drought-inducible promoters would be of value for genetically-based strategies to improve resistance of crops to drought. RESULTS Previous studies showed that the MaPIP1;1 gene encoding an aquaporin is involved in the plant drought stress response. In this study, the promoter pMaPIP1;1, which lies 1362 bp upstream of the MaPIP1;1 transcriptional initiation site, was isolated from the banana genome..And the transcription start site(A) is 47 bp before the ATG. To functionally validate the promoter, various lengths of pMaPIP1;1 were deleted and fused to GUS to generate pMaPIP1;1::GUS fusion constructs that were then transformed into Arabidopsis to generate four transformants termed M-P1, M-P2, M-P3 and M-P4.Mannitol treatment was used to simulate drought conditions. All four transformants reacted well to mannitol treatment. M-P2 (- 1274 bp to - 1) showed the highest transcriptional activity among all transgenic Arabidopsis tissues, indicating that M-P2 was the core region of pMaPIP1;1. This region of the promoter also confers high levels of gene expression in response to mannitol treatment. Using M-P2 as a yeast one-hybrid bait, 23 different transcription factors or genes that interacted with MaPIP1;1 were screened. In an dual luciferase assay for complementarity verification, the transcription factor MADS3 positively regulated MaPIP1;1 transcription when combined with the banana promoter. qRT-PCR showed that MADS3 expression was similar in banana leaves and roots under drought stress. In banana plants grown in 45% soil moisture to mimic drought stress, MaPIP1;1 expression was maximized, which further demonstrated that the MADS3 transcription factor can synergize with MaPIP1;1. CONCLUSIONS Together our results revealed that MaPIP1;1 mediates molecular mechanisms associated with drought responses in banana, and will expand our understanding of how AQP gene expression is regulated. The findings lay a foundation for genetic improvement of banana drought resistance.
Collapse
Affiliation(s)
- Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jingyang Li
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yujia Li
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoyi Wang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Anbang Wang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Hu
- Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dongmei Huang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qing Wei
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhuye Xu
- Hainan University, Haikou, China
| | - Shun Song
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|