1
|
Chen J, Zhang S, Wang M, Kang G, Lu L, Chang N, Wang N, Xie Z, Liu Y, Zhang H, Shen W. Investigating the impact of landfill age and season on the occurrence and dissemination of antibiotic resistance genes in leachate and the underlying mechanisms using metagenomics. J Appl Microbiol 2025; 136:lxaf091. [PMID: 40251030 DOI: 10.1093/jambio/lxaf091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/20/2025]
Abstract
AIMS Antibiotic resistance genes (ARGs) pose a critical public health concern, with landfill leachate serving as a significant environmental reservoir. While ARG dynamics in leachate have been investigated in various contexts, their occurrence and influence factors in semi-arid regions remain poorly understood. This study investigated the occurrence and influence factors of ARG profiles, their potential hosts, and underlying mechanisms driving their proliferation. METHODS AND RESULTS Comprehensive metagenomic analysis of leachate samples collected from landfills of varying landfill ages (5, 10, and 20 years) in Hohhot, Inner Mongolia-a representative semi-arid region of northern China-across three seasons (autumn, spring, and summer). Metagenomic analysis revealed distinct patterns in core ARG abundances modulated by both landfill age and seasonal variations. Notably, landfill age predominantly influenced tetracycline- and glycopeptide-ARGs, while seasonal fluctuations primarily affected glycopeptide- and multidrug-ARGs. Taxonomic analysis identified Pseudomonas aeruginosa and P. fluorescens as the predominant resistant pathogens, with elevated prevalence during spring and winter compared to summer. Network analysis and metabolic pathway reconstruction demonstrated that landfill age maybe impacted ARG dissemination through modulation of carbohydrate and nitrogen metabolic pathways. This novel finding suggests a previously unrecognized mechanism linking waste decomposition stages to ARG proliferation. CONCLUSIONS Our study provides the first systematic characterization of ARG dynamics in semi-arid landfill leachate, offering crucial insights for developing targeted strategies to mitigate ARG dissemination in these distinct ecological contexts. These findings establish a theoretical framework for understanding ARG transmission in semi-arid environments, while providing empirical evidence to inform environmental management practices.
Collapse
Affiliation(s)
- Jianqiu Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China
- Department of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China
- Department of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Jimo District, Qingdao 266237, China
| | - Guodong Kang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China
| | - Leilei Lu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China
| | - Ning Chang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China
| | - Ning Wang
- Department of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China
| | - Zhilei Xie
- Inner Mongolia Environmental Monitoring Station, 39 Tengfei Road, Saihan District, Hohhot 010000, China
| | - Yanhua Liu
- Department of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Houhu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China
| | - Weitao Shen
- Department of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China
| |
Collapse
|
2
|
Yu J, Fang M, Shi L, Zhu J, Fu C, Zhang Y, Xu H, Li L, Shen Y, Wang M. High efficiency removal of antibiotic resistance gene with designer zinc-finger protein. BIORESOURCE TECHNOLOGY 2024; 413:131462. [PMID: 39260734 DOI: 10.1016/j.biortech.2024.131462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
The use of agricultural biomass-based fertilizers, and the release of feces into the environment leads to last-lasting pollution of antibiotic resistance genes that cannot be removed from waters via traditional methods, resulting in significant health threats. To solve this issue, an antibiotic resistance gene removal method was proposed and tested that used sequence-specific DNA-binding designer zinc finger proteins, which target an 18-bp DNA sequence for specific antibiotic resistance gene binding and removal. Targeting the sulfonamide-resistant sul1 gene, sul1-binding zinc-finger protein was designed, overexpressed, and purified. This protein showed specific binding with sul1 over tetA that do not have the targeted sequence. This protein was further immobilized on agarose-based resins to prepare a sul1-removal column. When loaded with 10 mg protein, this column can remove over 99 % sul1 in water, suggesting high efficiency. This work presents a new method attempting to eliminate environmental and health threats posed by antibiotic resistance genes.
Collapse
Affiliation(s)
- Jianghao Yu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Meng Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Lulu Shi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Jiaming Zhu
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
3
|
Wang YF, Liu YJ, Fu YM, Xu JY, Zhang TL, Cui HL, Qiao M, Rillig MC, Zhu YG, Zhu D. Microplastic diversity increases the abundance of antibiotic resistance genes in soil. Nat Commun 2024; 15:9788. [PMID: 39532872 PMCID: PMC11557862 DOI: 10.1038/s41467-024-54237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The impact of microplastics on antibiotic resistance has attracted widespread attention. However, previous studies primarily focused on the effects of individual microplastics. In reality, diverse microplastic types accumulate in soil, and it remains less well studied whether microplastic diversity (i.e., variations in color, shape or polymer type) can be an important driver of increased antibiotic resistance gene (ARG) abundance. Here, we employed microcosm studies to investigate the effects of microplastic diversity on soil ARG dynamics through metagenomic analysis. Additionally, we evaluated the associated potential health risks by profiling virulence factor genes (VFGs) and mobile genetic elements (MGEs). Our findings reveal that as microplastic diversity increases, there is a corresponding rise in the abundance of soil ARGs, VFGs and MGEs. We further identified microbial adaptive strategies involving genes (changed genetic diversity), community (increased specific microbes), and functions (enriched metabolic pathways) that correlate with increased ARG abundance and may thus contribute to ARG dissemination. Additional global change factors, including fungicide application and plant diversity reduction, also contributed to elevated ARG abundance. Our findings suggest that, in addition to considering contamination levels, it is crucial to monitor microplastic diversity in ecosystems due to their potential role in driving the dissemination of antibiotic resistance through multiple pathways.
Collapse
Affiliation(s)
- Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Yan-Jie Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Yan-Mei Fu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jia-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Lun Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Ling Cui
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China.
| |
Collapse
|
4
|
Yusuf F, Ahmed SM, Dy D, Baney K, Waseem H, Gilbride KA. Occurrence and characterization of plasmid-encoded qnr genes in quinolone-resistant bacteria across diverse aquatic environments in southern Ontario. Can J Microbiol 2024; 70:492-506. [PMID: 39083844 DOI: 10.1139/cjm-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Antimicrobial resistance is an ever-increasing threat. The widespread usage of ciprofloxacin has led to the manifestation of resistance due to chromosomal mutations or the acquisition of plasmid-mediated quinolone resistance (PMQR) traits. Some particular PMQR traits, qnr genes, have been identified globally in clinical and environmental isolates. This study aimed to determine the prevalence of ciprofloxacin-resistant bacteria in aquatic environments in southern Ontario and investigate the extent of dissemination of ciprofloxacin resistance traits among the bacterial communities. We surveyed the prevalence of plasmid encoding qnr genes using a multiplex PCR assay of associated PMQR genes, qnrA, qnrB, and qnrS, on 202 isolates. Despite the absence of significant impacts on minimum inhibitory concentration levels, the presence of qnr genes correlates with heightened resistance to quinolones and nalidixic acid in some isolates. Taxonomic analysis highlights distinct differences in the composition and diversity of ciprofloxacin-sensitive (CipS) and ciprofloxacin-resistant (CipR) populations, with Proteobacteria dominating both groups. Importantly, CipR populations exhibit lower genetic diversity but higher prevalence of multiple antibiotic resistances, suggesting co-selection mechanisms. Co-occurrence analysis highlights significant associations between ciprofloxacin resistance and other antibiotic resistances, implicating complex genetic linkages. The results of our study signified the critical role of environmental monitoring in public health.
Collapse
Affiliation(s)
- Farhan Yusuf
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Saher M Ahmed
- Urban Water, Toronto Metropolitan University, Toronto, ON, Canada
| | - Danica Dy
- Department of Molecular and Cell Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katherine Baney
- Department of Cell Biology and Physiology, University of California, Berkeley, CA, USA
| | - Hassan Waseem
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Kimberley A Gilbride
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
- Urban Water, Toronto Metropolitan University, Toronto, ON, Canada
| |
Collapse
|
5
|
Toyting J, Supha N, Thongpanich Y, Thapa J, Nakajima C, Suzuki Y, Utrarachkij F. Wide distribution of plasmid mediated quinolone resistance gene, qnrS, among Salmonella spp. isolated from canal water in Thailand. J Appl Microbiol 2024; 135:lxae134. [PMID: 38908908 DOI: 10.1093/jambio/lxae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
AIMS This research focused on assessing the prevalence of plasmid-mediated quinolone resistance (PMQR) determinants and antimicrobial susceptibility in Salmonella strains isolated from Thai canal water. METHODS AND RESULTS From 2016 to 2020, 333 water samples were collected from six canals across Bangkok, Thailand. Salmonella spp. was isolated, PMQR genes were detected through polymerase chain reactions, and the antimicrobial susceptibility was examined using the disk diffusion method. The results indicated a 92.2% prevalence of Salmonella spp. in canal water, being serogroups B and C the most frequently detected. Overall, 35.3% of isolates harbored PMQR genes, being qnrS the most prevalent gene (97.2%, n = 137/141). Other PMQR genes, including qnrB, qnrD, oqxAB, and aac(6')-Ib-cr, were detected. Notably, six isolates harbored multiple PMQR genes. Furthermore, 9.3% and 3.8% of the overall isolates were resistant to nalidixic acid (NAL) and ciprofloxacin (CIP), respectively. PMQR-positive isolates showed higher rates of non-susceptibility to both NAL (48.2%, n = 68/141) and CIP (92.2%, n = 130/141) compared to PMQR-negative isolates (NAL: 8.9%, n = 23/258; CIP: 11.2%, n = 30/258). CONCLUSIONS The high prevalence of Salmonella spp., significant PMQR-positive, and reduced susceptibility isolates in canal water is of public health concern in Bangkok.
Collapse
Affiliation(s)
- Jirachaya Toyting
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Neunghatai Supha
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Yuwanda Thongpanich
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Division of Research Support, Hokkaido University Institute for Vaccine Research & Development, Sapporo 001-0020, Japan
| | - Fuangfa Utrarachkij
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Afsharian M, Asadi S, Danesh C, Sedighi R, Karimi K, Miladi N, Miladi R, Azizi M, Madadi-Goli N, Ahmadi K, Zamanian MH. The Abundance of Plasmid-Mediated Quinolone Resistance Genes in Enterobacter cloacae Strains Isolated from Clinical Specimens in Kermanshah, Iran. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:8849097. [PMID: 38623587 PMCID: PMC11018368 DOI: 10.1155/2024/8849097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
Background Enterobacter cloacae (E. cloacae) is one of the most common Enterobacteriaceae causing nosocomial infections. Plasmid-mediated quinolone resistance (PMQR) determinants have been considered recently. This study evaluated the abundance of PMQR genes in strains of E. cloacae obtained from clinical samples in Kermanshah, Iran. Methods In this descriptive cross-sectional study, after collecting 113 isolates of E. cloacae, their identity was confirmed using specific biochemical tests. After determining their drug resistance patterns using disc diffusion, the phenotypic frequency of extended-spectrum beta-lactamase (ESBL)-producing isolates was measured by the double-disk synergy test (DDST) method. The isolates were examined for the presence of qnrA, qnrB, qnrS, and aac(6')-Ib-cr genes by the polymerase chain reaction (PCR) assay. Results The antibiotic resistance rate of E. cloacae isolates varied from 9.7% to 60.2%; among them, 78% were multidrug-resistant (MDR). The highest quinolone resistance was observed in ESBL-producing strains of E. cloacae. The frequency of positive isolates for PMQR and ESBL was 79.6% and 57.5%, respectively. The genes aac(6')-ib-cr (70.8%) and qnrB (38.1%) had the highest frequency among other genes. The number of isolates simultaneously carrying 2 and 3 genes was 64 and 5 isolates, respectively. Conclusion The obtained results indicate a high degree of quinolone resistance among ESBL-producing E. cloacae strains. Nevertheless, there was a significant relationship between the PMQR gene and ESBL-positive isolates. Therefore, special attention should be paid to molecular epidemiological studies on antibiotic resistance to quinolones and beta-lactamases in these strains.
Collapse
Affiliation(s)
- Mandana Afsharian
- Department of Infectious Disease, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Somayeh Asadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Camellia Danesh
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Sedighi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kohsar Karimi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nooshin Miladi
- Department of Pediatrics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ronak Miladi
- Department of Infectious Disease, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Azizi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nahid Madadi-Goli
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Kamal Ahmadi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hossein Zamanian
- Department of Infectious Disease, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Shen W, Zhang H, Li X, Qi D, Liu R, Kang G, Liu J, Li N, Zhang S, Hu S. Pathogens and antibiotic resistance genes during the landfill leachate treatment process: Occurrence, fate, and impact on groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165925. [PMID: 37544439 DOI: 10.1016/j.scitotenv.2023.165925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Landfill leachate is an essential source of pathogens and antibiotic resistance genes (ARGs) in the environment. However, information on the removal behavior of pathogens and ARGs during the leachate treatment and the impact on surrounding groundwater is limited. In this study, we investigated the effects of leachate treatment on the removal of pathogens and ARGs with metagenomic sequencing, as well as the impact of landfill effluent on groundwater. It is shown that the leachate treatment could not completely remove pathogens and ARGs. Twenty-nine additional pathogens and twenty-nine ARGs were newly identified in the landfill effluent. The relative abundance of pathogens and multiple antibiotic resistance genes decreased after ultrafiltration but relative abundance increased after reverse osmosis. In addition, the relative abundances of Acinetobacter baumannii, Erwinia amylovora, Escherichia coli, Fusarium graminearum, Klebsiella pneumoniae, and Magnaporthe oryzae, as well as mdtH, VanZ, and blaOXA-53 increased significantly in the landfill effluent compared to the untreated leachate. The relative abundance of some mobile genetic elements (tniA, tniB, tnpA, istA, IS91) in leachate also increased after ultrafiltration and reverse osmosis. The size of pathogens, the size and properties of ARGs and mobile genetic elements, and the materials of ultrafiltration and reverse osmosis membranes may affect the removal effect of pathogens, ARGs and mobile genetic elements in leachate treatment process. Interestingly, the pathogens and ARGs in landfill effluent were transferred to groundwater according to SourceTracker. The ARGs, mobile genetic elements, and pathogens that are difficult to remove in the leachate treatment process, provide a reference for optimizing the leachate treatment process and improving the control of pathogens and ARGs. Furthermore, this study clarifies the effect of landfill leachate sources of pathogens and ARGs in groundwater.
Collapse
Affiliation(s)
- Weitao Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Houhu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xuejian Li
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Department of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dan Qi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ran Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guodong Kang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jinglong Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Nan Li
- Zhongda Hospital Southeast University, Nanjing 210009, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| |
Collapse
|
8
|
Wolak I, Bajkacz S, Harnisz M, Stando K, Męcik M, Korzeniewska E. Digestate from Agricultural Biogas Plants as a Reservoir of Antimicrobials and Antibiotic Resistance Genes-Implications for the Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2672. [PMID: 36768038 PMCID: PMC9915926 DOI: 10.3390/ijerph20032672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobials and antibiotic resistance genes (ARGs) in substrates processed during anaerobic digestion in agricultural biogas plants (BPs) can reach the digestate (D), which is used as fertilizer. Antimicrobials and ARGs can be transferred to agricultural land, which increases their concentrations in the environment. The concentrations of 13 antibiotics in digestate samples from biogas plants (BPs) were investigated in this study. The abundance of ARGs encoding resistance to beta-lactams, tetracyclines, sulfonamides, fluoroquinolones, macrolide-lincosamide-streptogramin antibiotics, and the integrase genes were determined in the analyzed samples. The presence of cadmium, lead, nickel, chromium, zinc, and mercury was also examined. Antimicrobials were not eliminated during anaerobic digestion. Their concentrations differed in digestates obtained from different substrates and in liquid and solid fractions (ranging from 62.8 ng/g clarithromycin in the solid fraction of sewage sludge digestate to 1555.9 ng/L doxycycline in the liquid fraction of cattle manure digestate). Digestates obtained from plant-based substrates were characterized by high concentrations of ARGs (ranging from 5.73 × 102 copies/gDcfxA to 2.98 × 109 copies/gDsul1). The samples also contained mercury (0.5 mg/kg dry mass (dm)) and zinc (830 mg/kg dm). The results confirmed that digestate is a reservoir of ARGs (5.73 × 102 to 8.89 × 1010 copies/gD) and heavy metals (HMs). In addition, high concentrations of integrase genes (105 to 107 copies/gD) in the samples indicate that mobile genetic elements may be involved in the spread of antibiotic resistance. The study suggested that the risk of soil contamination with antibiotics, HMs, and ARGs is high in farms where digestate is used as fertilizer.
Collapse
Affiliation(s)
- Izabela Wolak
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Sylwia Bajkacz
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Klaudia Stando
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland
| | - Magdalena Męcik
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| |
Collapse
|
9
|
Spatially and Temporally Confined Response of Gastrointestinal Antibiotic Resistance Gene Levels to Sulfadiazine and Extracellular Antibiotic Resistance Gene Exposure in Mice. BIOLOGY 2023; 12:biology12020210. [PMID: 36829487 PMCID: PMC9953105 DOI: 10.3390/biology12020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023]
Abstract
This work aims to investigate the impact of antibiotics and extracellular antibiotic resistance genes (eARGs) on the dynamics of gastrointestinal antimicrobial resistance (AMR). The antibiotic resistance gene (ARG) levels of different segments of the gastrointestinal tract of mouse models were analyzed and compared after exposure to clinical concentrations of sulfadiazine and environmental levels of eARGs carried by the conjugative plasmid pR55. Exposure to sulfadiazine and eARGs led to significant changes in ARG levels by as many as four log-folds. Further analysis showed that the response of ARG levels appeared from 12-16 days after exposure and diminished 20 days after exposure. The responses in ARG levels were also restricted to different gastrointestinal segments for sulfadiazine and eARGs. Combined exposure of sulfadiazine and eARGs was unable to further increase ARG levels. From these findings, we concluded that the short-term consumption of environmental levels of eARGs and uptake of clinical levels of antibiotics lead to a spatially and temporally confined response in gastrointestinal AMR. These findings further clarify the detrimental impacts of antibiotic and eARG uptake, and the complexity of AMR development and dissemination dynamics in the gastrointestinal tract.
Collapse
|
10
|
Zhang M, Ma Y, Xu H, Wang M, Li L. Surfaces of gymnastic equipment as reservoirs of microbial pathogens with potential for transmission of bacterial infection and antimicrobial resistance. Front Microbiol 2023; 14:1182594. [PMID: 37152727 PMCID: PMC10157288 DOI: 10.3389/fmicb.2023.1182594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Gymnastic equipment surfaces are shared by many people, and could mediate the transfer of bacterial pathogens. To better understand this detrimental potential, investigations on the reservoirs of bacterial pathogens and antimicrobial resistance on the surfaces of gymnastic equipment were performed by analyzing the bacterial community structures, prevalence of viable bacteria, and presence of antimicrobial resistance on both indoor and outdoor gymnastic facilities. The results of high-throughput 16S rDNA amplicon sequencing showed that Gram-positive bacteria on the surfaces of indoor gymnastic equipment significantly enriched, including the opportunistic pathogen Staphylococcus strains, while Enterobacteriaceae significantly enriched on surfaces of outdoor gymnastic equipment. The analysis of α-diversities showed a higher richness and diversity for bacterial communities on the surfaces of gymnastic equipment than the environment. Analysis of β-diversities showed that the bacterial communities on the surfaces of gymnastic equipment differ significantly from environmental bacterial communities, while the bacterial communities on indoor and outdoor equipment are also significantly different. Thirty-four bacterial isolates were obtained from the surfaces of gymnastic equipment, including three multidrug Staphylococcus and one multidrug resistant Pantoea. In particular, Staphylococcus hemolyticus 5-6, isolated from the dumbbell surface, is a multidrug resistant, hemolytic, high- risk pathogen. The results of quantitative PCR targeting antibiotic resistance related genes (intI1, sul1 and bla TEM) showed that the abundances of sul1 and bla TEM genes on the surfaces of gymnastic equipment are higher than the environment, while the abundances of sul1 gene on indoor equipment are higher than outdoor equipment. These results lead to the conclusion that the surfaces of gymnastic equipment are potential dissemination pathways for highly dangerous pathogens as well as antimicrobial resistance, and the risks of indoor equipment are higher than outdoor equipment.
Collapse
|
11
|
Ferri G, Lauteri C, Vergara A. Antibiotic Resistance in the Finfish Aquaculture Industry: A Review. Antibiotics (Basel) 2022; 11:1574. [PMID: 36358229 PMCID: PMC9686606 DOI: 10.3390/antibiotics11111574] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 11/07/2023] Open
Abstract
Significant challenges to worldwide sustainable food production continue to arise from environmental change and consistent population growth. In order to meet increasing demand, fish production industries are encouraged to maintain high growth densities and to rely on antibiotic intervention throughout all stages of development. The inappropriate administering of antibiotics over time introduces selective pressure, allowing the survival of resistant bacterial strains through adaptive pathways involving transferable nucleotide sequences (i.e., plasmids). This is one of the essential mechanisms of antibiotic resistance development in food production systems. This review article focuses on the main international regulations and governing the administering of antibiotics in finfish husbandry and summarizes recent data regarding the distribution of bacterial resistance in the finfish aquaculture food production chain. The second part of this review examines promising alternative approaches to finfish production, sustainable farming techniques, and vaccination that circumvents excessive antibiotic use, including new animal welfare measures. Then, we reflect on recent adaptations to increasingly interdisciplinary perspectives in the field and their greater alignment with the One Health initiative.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Faculty of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy
| | | | | |
Collapse
|
12
|
Miranda CD, Concha C, Godoy FA, Lee MR. Aquatic Environments as Hotspots of Transferable Low-Level Quinolone Resistance and Their Potential Contribution to High-Level Quinolone Resistance. Antibiotics (Basel) 2022; 11:1487. [PMID: 36358142 PMCID: PMC9687057 DOI: 10.3390/antibiotics11111487] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/27/2023] Open
Abstract
The disposal of antibiotics in the aquatic environment favors the selection of bacteria exhibiting antibiotic resistance mechanisms. Quinolones are bactericidal antimicrobials extensively used in both human and animal medicine. Some of the quinolone-resistance mechanisms are encoded by different bacterial genes, whereas others are the result of mutations in the enzymes on which those antibiotics act. The worldwide occurrence of quinolone resistance genes in aquatic environments has been widely reported, particularly in areas impacted by urban discharges. The most commonly reported quinolone resistance gene, qnr, encodes for the Qnr proteins that protect DNA gyrase and topoisomerase IV from quinolone activity. It is important to note that low-level resistance usually constitutes the first step in the development of high-level resistance, because bacteria carrying these genes have an adaptive advantage compared to the highly susceptible bacterial population in environments with low concentrations of this antimicrobial group. In addition, these genes can act additively with chromosomal mutations in the sequences of the target proteins of quinolones leading to high-level quinolone resistance. The occurrence of qnr genes in aquatic environments is most probably caused by the release of bacteria carrying these genes through anthropogenic pollution and maintained by the selective activity of antimicrobial residues discharged into these environments. This increase in the levels of quinolone resistance has consequences both in clinical settings and the wider aquatic environment, where there is an increased exposure risk to the general population, representing a significant threat to the efficacy of quinolone-based human and animal therapies. In this review the potential role of aquatic environments as reservoirs of the qnr genes, their activity in reducing the susceptibility to various quinolones, and the possible ways these genes contribute to the acquisition and spread of high-level resistance to quinolones will be discussed.
Collapse
Affiliation(s)
- Claudio D. Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Christopher Concha
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Félix A. Godoy
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| | - Matthew R. Lee
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| |
Collapse
|
13
|
Regionalization and Shaping Factors for Microbiomes and Core Resistomes in Atmospheric Particulate Matters. mSystems 2022; 7:e0069822. [PMID: 36154139 PMCID: PMC9600985 DOI: 10.1128/msystems.00698-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) seriously threatens public health by reducing antibiotic effectiveness in curing bacterial infections. Atmospheric particulate matter (APM) is a common environmental hazard that affects human health by causing various diseases and disseminating bacterial pathogenesis, of which pathogenic bacteria and AMR are essential parts. The properties of APM microbiomes and resistomes, along with their shaping factors and mutual relationships, need further examination. To address this, we analyzed APMs collected from 13 cities within four clusters (North and South China, Inner Mongolia, and Tibet). Significant regionalization was found for both the microbiomes (P < 0.001) and core resistomes (P < 0.001) for APMs, with statistical analyses showing significant differences in different regions. Principal coordinate analysis (PCoA) and accompanying ANOSIM analyses showed that microbiomes and core resistomes followed the same regional subclustering hierarchy patterns. This finding, together with response analysis of APM microbiomes and core resistomes to environmental parameters that showed similar response patterns, as well as Procrustes analysis (M2 = 0.963, P < 0.05) between APM microbiomes and core resistomes, strongly suggested that APM microbiomes and core resistomes are correlated. Co-occurrence network analysis further revealed key taxa and antimicrobial resistance determinants in the interactions between APM microbiomes and core resistomes. Thus, it was concluded that APM microbiome and resistome compositions were highly regional, that environmental pollutants and APM levels impacted APM microbiomes and resistomes, and that microbiomes and resistomes in APMs are significantly correlated (P < 0.05). IMPORTANCE Bacteria associated with atmospheric particulate matter (APMs) can transmit over long distances. A large portion of these bacteria can potentially threaten human health. The antimicrobial resistance (AMR) of pathogenic bacteria carried by APMs prevents curing from infections. Therefore, both the pathogenic bacteria in APMs and their AMR are receiving more attention. The literature suggests a knowledge gap that exists for bacterial AMR and bacterial pathogenesis in APMs, including their distribution patterns, mutual relationships, and factors influencing their compositions. This work aimed to bridge this knowledge gap by studying APM samples collected from 13 cities. The results demonstrated that both bacteria and antibiotic resistance determinants were highly regional and that their composition patterns were significantly correlated, and influenced by the same group of environmental factors. This study thus determined the relationship between the two important aspects of bacterial pathogenesis in APMs and represents significant progress in understanding bacterial pathogenesis in APMs.
Collapse
|
14
|
Fernanda PA, Liu S, Yuan T, Ramalingam B, Lu J, Sekar R. Diversity and abundance of antibiotic resistance genes and their relationship with nutrients and land use of the inflow rivers of Taihu Lake. Front Microbiol 2022; 13:1009297. [PMID: 36267172 PMCID: PMC9577174 DOI: 10.3389/fmicb.2022.1009297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Taihu Lake is the third largest freshwater lake in China and an important source for drinking water, flood protection, aquaculture, agriculture, and other activities. This lake is connected to many principal and small rivers with inflow from west and outflow on the eastern side of the lake and these inflow rivers are believed to significantly contribute to the water pollution of the lake. This study was aimed at assessing the diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), and their relationship with water quality parameters and land use patterns. Water samples were collected from 10 major inflow rivers and the source water protection area of the Taihu Lake in spring and summer 2019. High-throughput profiling was used to detect and quantify 384 ARGs and MGEs and in addition, 11 water quality parameters were analyzed. The results showed that the number of ARGs/MGEs detected in each inflow river ranged from 105 to 185 in spring and 107 to 180 in summer. The aminoglycoside resistance genes were the most dominant types ARGs detected followed by beta-lactam resistance, multidrug resistance, macrolide-lincosamide-streptogramin B (MLSB) resistance genes, which contributed to 65% of the ARGs. The water quality parameters showed significant correlation with absolute abundance of ARGs. Furthermore, significant correlation between ARGs and MGEs were also observed which demonstrates potential gene transfer among organisms through horizontal gene transfer via MGEs. ARGs showed strong positive correlation with cultivated and industrial lands whereas, negative correlation was observed with river, lake, forest, land for green buffer, and land for port and harbor. The overall results indicate that the inflow rivers of Taihu Lake are polluted by various sources including multiple nutrients and high abundance of ARGs, which needs attention for better management of the inflow rivers of this lake.
Collapse
Affiliation(s)
| | - Shuang Liu
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Tianma Yuan
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | | | - Jing Lu
- Marie Skłodowska-Curie Actions, SDGine for Healthy People and Cities, Department of Forestry and Environmental Management, Technical University of Madrid (UPM), Madrid, Spain
| | - Raju Sekar
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
- *Correspondence: Raju Sekar,
| |
Collapse
|
15
|
Shen W, Chen Y, Wang N, Wan P, Peng Z, Zhao H, Wang W, Xiong L, Zhang S, Liu R. Seasonal variability of the correlation network of antibiotics, antibiotic resistance determinants, and bacteria in a wastewater treatment plant and receiving water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115362. [PMID: 35642820 DOI: 10.1016/j.jenvman.2022.115362] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Sewage treatment plants are an essential source of antibiotics, antibiotic resistance determinants, and bacteria in environmental waters. However, it is still unclear whether they can maintain a relatively stable relationship in wastewater and environmental waters. This study analyzed the removal capacity of the above three pollutants in the sewage treatment plant in summer and their impact on environmental waters, and then examines the relationship between the three contaminants in the wastewater and environmental waters in summer and winter based on our previous study. The results found that the removal capacity of bacteria in summer was poor, the concentration of fluoroquinolone in the effluent was higher than that in influent, and the abundance of intI1, tetW, qnrB, and ermB increased after wastewater treatment. Proteobacteria and Bacteroides were the main bacteria that constitute the correlation network between bacteria, and they existed stably in summer and winter. However, fluoroquinolones occupied a significant position in the determinant network of antibiotics and antibiotic resistance in summer and winter. There are fewer correlation between antibiotics and antibiotics resistance determinants in winter. Interestingly, the relationship between bacteria, antibiotics, and antibiotic resistance determinants was a mainly positive correlation in summer and negative correlation in winter. This study analyzed the relationship between bacteria, antibiotics, and antibiotic resistance determinants that were stable in the wastewater and environmental waters and pointed out the direction for subsequent targeted seasonal control of novel pollutants in wastewater and environmental waters.
Collapse
Affiliation(s)
- Weitao Shen
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yu Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ning Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Ping Wan
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhenyan Peng
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Huajin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Wei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lilin Xiong
- Department of Environmental Hygiene, Nanjing Center for Disease Control and Prevention, Nanjing, 210042, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Ran Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
16
|
Wu Z, Wu Y, Gao H, He X, Yao Q, Yang Z, Zhou J, Ji L, Gao J, Jia X, Dou Y, Wang X, Shao P. Identification and whole-genome sequencing analysis of Vibrio vulnificus strains causing pearl gentian grouper disease in China. BMC Microbiol 2022; 22:200. [PMID: 35974308 PMCID: PMC9380395 DOI: 10.1186/s12866-022-02610-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
Vibrio vulnificus is a pathogenic bacterium that causes disease in marine fish, affecting fish farming and human health worldwide. In May 2021, in the Bohai Bay region, a disease broke out in commercially farmed pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatus), causing huge economic losses. The diseased fish had skin lesions, water accumulation in their abdomens, and showed tissue and organ damage. V. vulnificus biotype 2 has been reported in eels and other marine fish, but it is less reported in pearl gentian grouper. In this study, the pathogenic strain isolated from diseased fish was identified as V. vulnificus EPL 0201 biotype 2 on the basis of physiological and biochemical characteristics and the results of 16S rRNA gene and gyrB sequencing, virulence gene detection, and recursive infection experiments. To gain a comprehensive understanding of the pathogenicity and drug resistance of this strain, whole-genome sequencing was performed. Whole-genome analysis showed that the gene map of this strain was complete. The Virulence Factor Database annotation results showed that this strain had the key virulence factor genes vvhA and rtxA, which cause host disease. In addition, this strain had genes conferring resistance against cephalosporins, aminoglycosides, tetracyclines, and sulfonamides. Antimicrobial susceptibility testing confirmed the presence of these resistance genes identified in the genome. The results of this study show that V. vulnificus EPL 0201 biotype 2 is a multi-drug resistant strain with high pathogenicity.
Collapse
Affiliation(s)
- Zun Wu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Yating Wu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Haofeng Gao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Xuexin He
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Qiang Yao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Zhanglei Yang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Jinyi Zhou
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Linting Ji
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Jinwei Gao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Xuying Jia
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Yong Dou
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Xiaoyu Wang
- Tianjin Fisheries Research Institute, 422 Jiefang Nan Road, He Xi District, Tianjin, 300221, People's Republic of China.
| | - Peng Shao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
17
|
Osińska M, Nowakiewicz A, Zięba P, Gnat S, Łagowski D, Trościańczyk A. A rich mosaic of resistance in extended-spectrum β-lactamase-producing Escherichia coli isolated from red foxes (Vulpes vulpes) in Poland as a potential effect of increasing synanthropization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151834. [PMID: 34808162 DOI: 10.1016/j.scitotenv.2021.151834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
In our research, we analyzed the resistance of cephalosporin-resistant E. coli strains to antimicrobial agents. The strains were collected during five years from wild animal species commonly inhabiting Poland. We have identified the type of β-lactamases produced and the multidrug-resistance profile. Most strains (73.8%) had genes encoding ESBL enzymes, mainly CTX-M-1 and TEM. Almost all AmpC-β-lactamase-producing isolates had the blaCMY-2 gene. Almost 70% of the strains tested showed a multi-drug resistance profile. The dominant phenotype was resistance to tetracycline (69.05%), and/or sulfamethoxazole (57.1%). We also found high resistance to quinolones: ciprofloxacin 35.7% and nalidixic acid 52.4%. The phenotypic resistance of the strains was in most cases confirmed by the presence of corresponding genes. Among strains, 26.2% were carriers of plasmid-mediated quinolone resistance genes (PMQR). MLST analysis revealed a large clonal variation of the strains, which was reflected in 28 different sequence types. More than half of the strains (54.7%) were classified into the following sequence complexes: 10, 23, 69, 101, 155, 156, 168, 354, 398, 446, and 648. Only one strain in the studied group was assigned to the ExPEC pathotype and represented sequence type 117. The results of our research have confirmed that isolates obtained from wild animals possess many resistance determinants and sequence types, which are also found in food-producing animals and humans. This reflects the doctrine of "One health", which clearly indicates that human health is inextricably linked with animal health as well as degree of environmental contamination. We conclude that the resistance and virulence profiles of strains isolated from wildlife animals may be a resultant of various sources encountered by animals, creating a rich and varied mosaic of genes, which is very often unpredictable and not reflected in the correlation between the sequence type and the gene profile of resistance or virulence observed in epidemic clones.
Collapse
Affiliation(s)
- Marcelina Osińska
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Aneta Nowakiewicz
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Przemysław Zięba
- State Veterinary Laboratory, Droga Męczenników Majdanka 50, 20-325 Lublin, Poland
| | - Sebastian Gnat
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Dominik Łagowski
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Aleksandra Trościańczyk
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| |
Collapse
|
18
|
High Genetic Diversity and Antimicrobial Resistance in Escherichia coli Highlight Arapaima gigas (Pisces: Arapaimidae) as a Reservoir of Quinolone-Resistant Strains in Brazilian Amazon Rivers. Microorganisms 2022; 10:microorganisms10040808. [PMID: 35456858 PMCID: PMC9030826 DOI: 10.3390/microorganisms10040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 12/10/2022] Open
Abstract
The increasing prevalence of multi-drug resistant (MDR) Escherichia coli in distinct ecological niches, comprising water sources and food-producing animals, such as fish species, has been widely reported. In the present study, quinolone-resistant E. coli isolates from Arapirama gigas, a major fish species in the Brazilian Amazon rivers and fish farms, were characterized regarding their antimicrobial susceptibility, virulence, and genetic diversity. A total of forty (40) specimens of A. gigas, including 20 farmed and 20 wild fish, were included. Thirty-four quinolone-resistant E. coli isolates were phenotypically tested by broth microdilution, while resistance and virulence genes were detected by PCR. Molecular epidemiology and genetic relatedness were analyzed by MLST and PFGE typing. The majority of isolates were classified as MDR and detected harboring blaCTX-M, qnrA and qnrB genes. Enterotoxigenic E. coli pathotype (ETEC) isolates were presented in low prevalence among farmed animals. MLST and PFGE genotyping revealed a wide genetic background, including the detection of internationally spread clones. The obtained data point out A. gigas as a reservoir in Brazilian Amazon aquatic ecosystems and warns of the interference of AMR strains in wildlife and environmental matrices.
Collapse
|
19
|
High prevalence of plasmid-mediated quinolone resistance (PMQR) among E. coli from aquatic environments in Bangladesh. PLoS One 2021; 16:e0261970. [PMID: 34965260 PMCID: PMC8716050 DOI: 10.1371/journal.pone.0261970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/14/2021] [Indexed: 11/19/2022] Open
Abstract
Fluro(quinolones) is an important class of antibiotic used widely in both human and veterinary medicine. Resistance to fluro(quinolones) can be acquired by either chromosomal point mutations or plasmid-mediated quinolone resistance (PMQR). There is a lack of studies on the prevalence of PMQR in organisms from environmental sources in Bangladesh. In this study, we investigated the occurrence of PMQR genes in E. coli from various water sources and analysed associations between multi-drug resistance (MDR) and resistance to extended spectrum β-lactam antibiotics. We analysed 300 E. coli isolates from wastewaters of urban live-bird markets (n = 74) and rural households (n = 80), rural ponds (n = 71) and river water samples (n = 75) during 2017–2018. We isolated E. coli by filtering 100 ml of water samples through a 0.2μm cellulose membrane and incubating on mTEC agar media followed by identification of isolated colonies using biochemical tests. We selected one isolate per sample for detection of PMQR genes by multiplex PCR and tested for antibiotic susceptibility by disc diffusion. Clonal relatedness of PMQR-positive isolates was evaluated by enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). About 66% (n = 199) of E. coli isolates harbored PMQR-genes, predominantly qnrS (82%, n = 164) followed by aac(6’)-lb-cr (9%, n = 17), oqxAB (7%, n = 13), qnrB (6%, n = 11) and qepA (4%, n = 8). Around 68% (n = 135) of PMQR-positive isolates were MDR and 92% (n = 183) were extended spectrum β-lactamase (ESBL)-producing of which the proportion of positive samples was 87% (n = 159) for blaCTX-M-1’ 34% (n = 62) for blaTEM, 9% (n = 16) for blaOXA-1,blaOXA-47 and blaCMY-2, and 2% (n = 4) for blaSHV. Further, 16% (n = 32) of PMQR-positive isolates were resistant to carbapenems of which 20 isolates carried blaNDM-1. Class 1 integron (int1) was found in 36% (n = 72) of PMQR-positive E. coli isolates. PMQR genes were significantly associated with ESBL phenotypes (p≤0.001). The presence of several PMQR genes were positively associated with ESBL and carbapenemase encoding genes such as qnrS with blaCTXM-1 (p<0.001), qnrB with blaTEM (p<0.001) and blaOXA-1 (p = 0.005), oqxAB and aac(6’)-lb-cr with blaSHV and blaOXA-1 (p<0.001), qnrB with blaNDM-1 (p<0.001), aac(6’)-lb-cr with blaOXA-47 (p<0.001) and blaNDM-1 (p = 0.002). Further, int1 was found to correlate with qnrB (p<0.001) and qepA (p = 0.011). ERIC-PCR profiles allowed identification of 84 of 199 isolates with 85% matching profiles which were further grouped into 33 clusters. Only 5 clusters had isolates (n = 11) with identical ERIC-PCR profiles suggesting that PMQR-positive E. coli isolates are genetically heterogeneous. Overall, PMQR-positive MDR E. coli were widely distributed in aquatic environments of Bangladesh indicating poor wastewater treatment and highlighting the risk of transmission to humans and animals.
Collapse
|
20
|
Wang W, Yu L, Hao W, Zhang F, Jiang M, Zhao S, Wang F. Multi-Locus Sequence Typing and Drug Resistance Analysis of Swine Origin Escherichia coli in Shandong of China and Its Potential Risk on Public Health. Front Public Health 2021; 9:780700. [PMID: 34926393 PMCID: PMC8674453 DOI: 10.3389/fpubh.2021.780700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
The extensive use of antibiotics has caused antimicrobial resistance and multidrug resistance in Escherichia coli and gradual expands it into a worldwide problem. The resistant E. coli could be transmitted to humans through animal products, thereby creating a problem for bacterial treatment in humans and resulting in a public health issue. This study aims to investigate the molecular typing and drug resistance of swine and human origin E. coli within the same prefecture-level cities of Shandong Province and the potential risk of E. coli on public health. The drug sensitivity results indicated that tetracycline (TE) (97.17%) is a major antibiotic with high drug resistance in 106 swine origin E. coli. There was a significant difference in the drug-resistant genotypes between the two sources, of which the blaTEM positive rate was the highest in the genera of β-lactams (99% in swines and 100% in humans). Among the 146 E. coli isolates, 98 (91.51% swine origin) and 31 (77.5% human origin) isolates were simultaneously resistant to three or more classes of antibiotics, respectively. The multi-locus sequence typing (MLST) results indicate that the 106 swine origin E. coli isolates are divided into 25 STs with ST1258, ST361, and ST10 being the dominant sequence analysis typing strains. There were 19 MLST genotypes in 40 strains of human E. coli from Tai'an, Shandong Province, with ST1193, ST73, ST648, ST131, ST10, and ST1668 being the dominant strains. Moreover, the cluster analysis showed that CCl0 and CC23 were the common clonal complexes (CCs) from the two sources. Our results provide a theoretical basis for guiding the rational use of antibiotics and preventing the spread of drug-resistant bacteria, and also provide epidemiological data for the risk analysis of foodborne bacteria and antimicrobial resistance in swine farms in Shandong Province.
Collapse
Affiliation(s)
- Wei Wang
- Tai'an City Central Hospital, Taian City, China
| | - Lanping Yu
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, China
| | - Wenwen Hao
- Department of Laboratory, Tai'an Central Hospital Branch, Taian City, China
| | - Fusen Zhang
- Tai'an City Central Hospital, Taian City, China
| | | | | | - Fangkun Wang
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, China
| |
Collapse
|
21
|
Millanao AR, Mora AY, Villagra NA, Bucarey SA, Hidalgo AA. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules 2021; 26:7153. [PMID: 34885734 PMCID: PMC8658791 DOI: 10.3390/molecules26237153] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022] Open
Abstract
Broad antibacterial spectrum, high oral bioavailability and excellent tissue penetration combined with safety and few, yet rare, unwanted effects, have made the quinolones class of antimicrobials one of the most used in inpatients and outpatients. Initially discovered during the search for improved chloroquine-derivative molecules with increased anti-malarial activity, today the quinolones, intended as antimicrobials, comprehend four generations that progressively have been extending antimicrobial spectrum and clinical use. The quinolone class of antimicrobials exerts its antimicrobial actions through inhibiting DNA gyrase and Topoisomerase IV that in turn inhibits synthesis of DNA and RNA. Good distribution through different tissues and organs to treat Gram-positive and Gram-negative bacteria have made quinolones a good choice to treat disease in both humans and animals. The extensive use of quinolones, in both human health and in the veterinary field, has induced a rise of resistance and menace with leaving the quinolones family ineffective to treat infections. This review revises the evolution of quinolones structures, biological activity, and the clinical importance of this evolving family. Next, updated information regarding the mechanism of antimicrobial activity is revised. The veterinary use of quinolones in animal productions is also considered for its environmental role in spreading resistance. Finally, considerations for the use of quinolones in human and veterinary medicine are discussed.
Collapse
Affiliation(s)
- Ana R. Millanao
- Facultad de Ciencias, Instituto de Farmacia, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Aracely Y. Mora
- Programa de Doctorado en Bioquímica, Universidad de Chile, Santiago 8380544, Chile;
| | - Nicolás A. Villagra
- Escuela de Tecnología Médica, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Sergio A. Bucarey
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Alejandro A. Hidalgo
- Escuela de Química y Farmacia, Universidad Andres Bello, Santiago 8370071, Chile
| |
Collapse
|
22
|
Song R, Li H, Kang Z, Zhong R, Wang Y, Zhang Y, Qu G, Wang T. Surface plasma induced elimination of antibiotic-resistant Escherichia coli and resistance genes: Antibiotic resistance, horizontal gene transfer, and mechanisms. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Zhang X, Li Z, Hu J, Yan L, He Y, Li X, Wang M, Sun X, Xu H. The biological and chemical contents of atmospheric particulate matter and implication of its role in the transmission of bacterial pathogenesis. Environ Microbiol 2021; 23:5481-5486. [PMID: 34309156 DOI: 10.1111/1462-2920.15679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022]
Abstract
Atmospheric particulate matter (APM) is an environmental hazard that endangers human health and causes a variety of diseases. In this work, the microbial community composition, chemical element composition and antimicrobial resistance gene (ARG) prevalence, along with their relationships with environmental parameters were analysed using APM samples collected in Jinan, China. Pathogenic Klebsiella and Aeromonas were found to be significantly correlated with PM2.5 and temperature, suggesting their proliferation on APM. PM2.5 and PM10 have similar microbial community compositions but different chemical element compositions, suggesting they have different origins, which have little impact on microbial community structures. This finding, together with analysis of the timing of microbial community structure changes, suggests that microbial community composition is impacted by anthropic activities. Further investigations showed that rare metals including lanthanides are significantly negatively correlated with pathogens in APM, suggesting their inhibitory role. ARGs were observed for every class of antibiotic except for carbapenems in APM, suggesting high ARG prevalence in APM, and APM functions in transmission of antimicrobial resistance. Results obtained in this study suggest that APM can act as a transmission vehicle for pathogenic bacteria and ARGs and lead to the implication of a new transmission route for bacterial pathogenesis by APM.
Collapse
Affiliation(s)
- Xianghe Zhang
- Environment Research Institute, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Ziyun Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Jiamin Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Lei Yan
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Yanyan He
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Xiang Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| |
Collapse
|
24
|
Shen W, Tang D, Deng Y, Li H, Wang T, Wan P, Liu R. Association of gut microbiomes with lung and esophageal cancer: a pilot study. World J Microbiol Biotechnol 2021; 37:128. [PMID: 34212246 DOI: 10.1007/s11274-021-03086-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/02/2021] [Indexed: 12/16/2022]
Abstract
Gut microbiota, especially human pathogens, has been shown to be involved in the occurrence and development of cancer. Esophageal squamous cell carcinoma and lung cancer are two malignant cancers, and their relationship with gut microbiota is still unclear. Virulence factor database (VFDB) is an integrated and comprehensive online resource for curating information about human pathogens. Here, based on VFDB database, we analyzed the differences of bacteria at genus level in the gut of patients with esophageal squamous cell carcinoma, lung cancer, and healthy controls. We proposed the possible cancer-associated bacteria in gut and put forward their possible effects. Apart from this, principal coordinate analysis (PCoA) and analysis of similarities (ANSOIM) suggested that some bacteria in the gut can be used as potential biomarkers to screen esophageal squamous cell carcinoma and lung cancer, and their effectiveness was preliminary verified. The relative abundance of Klebsiella and Streptococcus can be used to distinguish patients with esophageal squamous cell carcinoma and lung cancer from healthy controls. The absolute abundance of Klebsiella can further distinguish patients with esophageal squamous cell carcinoma from patients with lung cancer. In particular, the relative abundance of Fusobacterium can directly distinguish between patients with esophageal squamous cell carcinoma and healthy controls. Additionally, the absolute abundance of Haemophilus can distinguish lung cancer from healthy controls. Our study provided a new way based on VFDB database to explore the relationship between gut microbiota and cancer, and initially proposed a feasible cancer screening method.
Collapse
Affiliation(s)
- Weitao Shen
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Derong Tang
- Department of Thoracic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Yali Deng
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Huilin Li
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tian Wang
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ping Wan
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ran Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
25
|
Characterization of Environmental and Cultivable Antibiotic-Resistant Microbial Communities Associated with Wastewater Treatment. Antibiotics (Basel) 2021; 10:antibiotics10040352. [PMID: 33810449 PMCID: PMC8066808 DOI: 10.3390/antibiotics10040352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify phenotypically resistant cultivable portions of these bacterial communities and characterized the composition of the culturable subset of these populations. Resistant taxa were more abundant in raw sewage and wastewater before the biological aeration treatment stage. While some antibiotic-resistant bacteria (ARB) were detectable downstream of treated wastewater release, these organisms are not enriched relative to effluent-free upstream water, indicating efficient removal during treatment. Combined culture-dependent and -independent analyses revealed a stark difference in community composition between culturable fractions and the environmental source material, irrespective of culturing conditions. Higher proportions of the environmental populations were recovered than predicted by the widely accepted 1% culturability paradigm. These results represent baseline abundance and compositional data for ARB communities for reference in future studies addressing the dissemination of antibiotic resistance associated with urban wastewater treatment ecosystems.
Collapse
|
26
|
In Vitro Assessment of Antimicrobial Resistance Dissemination Dynamics during Multidrug-Resistant-Bacterium Invasion Events by Using a Continuous-Culture Device. Appl Environ Microbiol 2021; 87:AEM.02659-20. [PMID: 33361364 DOI: 10.1128/aem.02659-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial-resistant pathogens display significant public health threats by causing difficulties in clinical treatment of bacterial infection. Antimicrobial resistance (AMR) is transmissible between bacteria, significantly increasing the appearance of antimicrobial-resistant pathogens and aggravating the AMR problem. In this work, the dissemination dynamics of AMR from invading multidrug-resistant (MDR) Escherichia coli to a community of pathogenic Salmonella enterica was investigated using a continuous-culture device, and the behaviors of dissemination dynamics under different levels of antibiotic stress were investigated. Three MDR E. coli invasion events were analyzed in this work: MDR E. coli-S. enterica cocolonization, MDR E. coli invasion after antibiotic treatment of S. enterica, and MDR E. coli invasion before antibiotic treatment of S. enterica It was found that both horizontal gene transfer (HGT) and vertical gene transfer (VGT) play significant roles in AMR dissemination, although different processes contribute differently under different circumstances, that environmental levels of antibiotics promote AMR dissemination by enhancing HGT rather than leading to selective advantage for resistant bacteria, and that early invasion of MDR E. coli completely and quickly sabotages the effectiveness of antibiotic treatment. These findings contribute to understanding the drivers of AMR dissemination under different antibiotic stresses, the detrimental impact of environmental tetracycline contamination, and the danger of nosocomial presence and dissemination of MDR nonpathogens.IMPORTANCE Antimicrobial resistance poses a grave threat to public health and reduces the effectiveness of antimicrobial drugs in treating bacterial infections. Antimicrobial resistance is transmissible, either by horizontal gene transfer between bacteria or by vertical gene transfer following inheritance of genetic traits. The dissemination dynamics and behaviors of this threat, however, have not been rigorously investigated. In this work, with a continuous-culture device, we studied antimicrobial resistance dissemination processes by simulating antimicrobial-resistant Escherichia coli invasion to a pathogenic Salmonella enterica community. Using this novel tool, we provide evidence on the drivers of antimicrobial resistance dissemination, on the detrimental impact of environmental antibiotic contamination, and on the danger of antimicrobial resistance in hospitals, even if what harbors the antimicrobial resistance is not a pathogen. This work furthers our understanding of antimicrobial resistance and its dissemination between bacteria and of antibiotic therapy, our most powerful tool against bacterial infection.
Collapse
|
27
|
Chen Y, Shen W, Wang B, Zhao X, Su L, Kong M, Li H, Zhang S, Li J. Occurrence and fate of antibiotics, antimicrobial resistance determinants and potential human pathogens in a wastewater treatment plant and their effects on receiving waters in Nanjing, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111371. [PMID: 32979719 DOI: 10.1016/j.ecoenv.2020.111371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 05/23/2023]
Abstract
Antibiotics, antimicrobial resistance determinants and human pathogens are new types of environmental pollutants that pose a great threat to human health. Wastewater treatment plants (WWTPs) are important sources of novel pollutants; however, few studies have investigated their impact on surrounding natural water. Therefore, this study used a WWTP as the entry point to explore WWTP removal efficiency of antibiotics, antimicrobial resistance determinants and human pathogens and further analyze the impact of WWTP effluent on receiving waters. The investigated WWTP had a good removal effect on fluoroquinolones, macrolides, lincomycin, sulfanilamide, tetracycline and chloramphenicol antibiotics in wastewater, and the concentration of antibiotics in the WWTP's effluent was reduced by >80% relative to the influent. In addition to cmlA, the effect of the WWTP on antimicrobial resistance determinants removal was poor, although the effluent from the WWTP had no effect on the abundance of antimicrobial resistance determinants in the receiving water. However, with the dilution of receiving water, the abundance of antimicrobial resistance determinants gradually decreased. The WWTP could reduce the abundance of bacteria by 1000 times from influent water to effluent water. The major bacteria in the influent and effluent were Bacteroidetes and Proteobacteria. After effluent is discharged into receiving water, Cyanobacteria proliferate in large quantities, which can affect the microbial structure in the environment.The abundance of Acinetobacter, which was the predominant potential human pathogen in local wastewater, decreased dramatically after wastewater treatment. We also conducted an ecological risk assessment of the antibiotics identified and found that the ecological risk AZM and CLR posed to aquatic organisms was high. Overall, we identified the efficiency of WWTP control of antibiotics, antimicrobial resistance determinants and potential human pathogens and the impact of WWTP effluent on receiving water and provided data to support the control of the investigated pollutants.
Collapse
Affiliation(s)
- Yu Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 5500254, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Weitao Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Bo Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Hui Li
- Inner Mongolia Baogang Group Environmental Engineering Research Institute Limited Company, Baotou, 014010, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Jiang Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 5500254, China.
| |
Collapse
|
28
|
Occurrence of Fluoroquinolones and Sulfonamides Resistance Genes in Wastewater and Sludge at Different Stages of Wastewater Treatment: A Preliminary Case Study. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study identified differences in the prevalence of antibiotic resistance genes (ARGs) between wastewater treatment plants (WWTPs) processing different proportions of hospital and municipal wastewater as well as various types of industrial wastewater. The influence of treated effluents discharged from WWTPs on the receiving water bodies (rivers) was examined. Genomic DNA was isolated from environmental samples (river water, wastewater and sewage sludge). The presence of genes encoding resistance to sulfonamides (sul1, sul2) and fluoroquinolones (qepA, aac(6′)-Ib-cr) was determined by standard polymerase chain reaction (PCR). The effect of the sampling season (summer – June, fall – November) was analyzed. Treated wastewater and sewage sludge were significant reservoirs of antibiotic resistance and contained all of the examined ARGs. All wastewater samples contained sul1 and aac(6′)-lb-cr genes, while the qepA and sul2 genes occurred less frequently. These observations suggest that the prevalence of ARGs is determined by the type of processed wastewater. The Warmia and Mazury WWTP was characterized by higher levels of the sul2 gene, which could be attributed to the fact that this WWTP processes agricultural sewage containing animal waste. However, hospital wastewater appears to be the main source of the sul1 gene. The results of this study indicate that WWTPs are significant sources of ARGs, contributing to the spread of antibiotic resistance in rivers receiving processed wastewater.
Collapse
|
29
|
Jin M, Liu L, Wang DN, Yang D, Liu WL, Yin J, Yang ZW, Wang HR, Qiu ZG, Shen ZQ, Shi DY, Li HB, Guo JH, Li JW. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. THE ISME JOURNAL 2020; 14:1847-1856. [PMID: 32327733 PMCID: PMC7305130 DOI: 10.1038/s41396-020-0656-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 11/09/2022]
Abstract
Chlorine disinfection to drinking water plays an important role in preventing and controlling waterborne disease outbreaks globally. Nevertheless, little is known about why it enriches the antibiotic resistance genes (ARGs) in bacteria after chlorination. Here, ARGs released from killed antibiotic-resistant bacteria (ARB), and culturable chlorine-injured bacteria produced in the chlorination process as the recipient, were investigated to determine their contribution to the horizontal transfer of ARGs during disinfection treatment. We discovered Escherichia coli, Salmonella aberdeen, Pseudomonas aeruginosa and Enterococcus faecalis showed diverse resistance to sodium hypochlorite, and transferable RP4 could be released from killed sensitive donor consistently. Meanwhile, the survival of chlorine-tolerant injured bacteria with enhanced cell membrane permeabilisation and a strong oxidative stress-response demonstrated that a physiologically competent cell could be transferred by RP4 with an improved transformation frequency of up to 550 times compared with the corresponding untreated bacteria. Furthermore, the water quality factors involving chemical oxygen demand (CODMn), ammonium nitrogen and metal ions (Ca2+ and K+) could significantly promote above transformation frequency of released RP4 into injured E. faecalis. Our findings demonstrated that the chlorination process promoted the horizontal transfer of plasmids by natural transformation, which resulted in the exchange of ARGs across bacterial genera and the emergence of new ARB, as well as the transfer of chlorine-injured opportunistic pathogen from non-ARB to ARB. Considering that the transfer elements were quite resistant to degradation through disinfection, this situation poses a potential risk to public health.
Collapse
Affiliation(s)
- Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China.
| | - Lu Liu
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Da-Ning Wang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Wei-Li Liu
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Zhong-Wei Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Hua-Ran Wang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Zhi-Gang Qiu
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Zhi-Qiang Shen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Dan-Yang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Hai-Bei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Jian-Hua Guo
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jun-Wen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China.
| |
Collapse
|
30
|
Motiei A, Brindefalk B, Ogonowski M, El-Shehawy R, Pastuszek P, Ek K, Liewenborg B, Udekwu K, Gorokhova E. Disparate effects of antibiotic-induced microbiome change and enhanced fitness in Daphnia magna. PLoS One 2020; 15:e0214833. [PMID: 31899775 PMCID: PMC6941804 DOI: 10.1371/journal.pone.0214833] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
It is a common view that an organism’s microbiota has a profound influence on host fitness; however, supporting evidence is lacking in many organisms. We manipulated the gut microbiome of Daphnia magna by chronic exposure to different concentrations of the antibiotic Ciprofloxacin (0.01–1 mg L-1), and evaluated whether this affected the animals fitness and antioxidant capacity. In line with our expectations, antibiotic exposure altered the microbiome in a concentration-dependent manner. However, contrary to these expectations, the reduced diversity of gut bacteria was not associated with any fitness detriment. Moreover, the growth-related parameters correlated negatively with microbial diversity; and, in the daphnids exposed to the lowest Ciprofloxacin concentrations, the antioxidant capacity, growth, and fecundity were even higher than in control animals. These findings suggest that Ciprofloxacin exerts direct stimulatory effects on growth and reproduction in the host, while microbiome- mediated effects are of lesser importance. Thus, although microbiome profiling of Daphnia may be a sensitive tool to identify early effects of antibiotic exposure, disentangling direct and microbiome-mediated effects on the host fitness is not straightforward.
Collapse
Affiliation(s)
- Asa Motiei
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Björn Brindefalk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Ogonowski
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
- Aquabiota Water Research AB, Stockholm, Sweden
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Freshwater Research, Drottningholm, Sweden
| | - Rehab El-Shehawy
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Paulina Pastuszek
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Karin Ek
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Birgitta Liewenborg
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Klas Udekwu
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Elena Gorokhova
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
31
|
Shetty SS, Deekshit VK, Jazeela K, Vittal R, Rohit A, Chakraborty A, Karunasagar I. Plasmid-mediated fluoroquinolone resistance associated with extra-intestinal Escherichia coli isolates from hospital samples. Indian J Med Res 2019; 149:192-198. [PMID: 31219083 PMCID: PMC6563729 DOI: 10.4103/ijmr.ijmr_2092_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background & objectives Infection from fluoroquinolone-resistant extra-intestinal Escherichia coli is a global concern. In this study, isolation and characterization of fluoroquinolone-resistant extra-intestinal E. coli isolates obtained from hospital samples were undertaken to detect plasmid-mediated quinolone resistance (PMQR) genes. Methods Forty three isolates of E. coli obtained from patients with extra-intestinal infections were subjected to antibiogram to detect fluoroquinolone resistance. The mechanism of fluoroquinolone resistance was determined by the detection of PMQR genes and mutations in quinolone resistance determining region (QRDR). Results Of the 43 isolates, 36 were resistant to nalidixic acid (83.72%) and 28 to ciprofloxacin (65.11%). Eight E. coli isolates showed total resistance to both the antimicrobials without any minimum inhibitory concentration. The detection of PMQR genes with qnr primers showed the presence of qnrA in two, qnrB in six and qnrS in 21 isolates. The gene coding for quinolone efflux pump (qepA) was not detected in any of the isolates tested. The presence of some unexpressed PMQR genes in fluoroquinolone sensitive isolates was also observed. Interpretation & conclusions The detection of silent PMQR genes as observed in the present study presents a risk of the transfer of the silent resistance genes to other microorganisms if present in conjugative plasmids, thus posing a therapeutic challenge to the physicians. Hence, frequent monitoring is to be done for all resistance determinants.
Collapse
Affiliation(s)
- Shruthi S Shetty
- Division of Infectious Diseases, Nitte University Centre for Science Education & Research, Mangaluru, India
| | - Vijaya Kumar Deekshit
- Division of Infectious Diseases, Nitte University Centre for Science Education & Research, Mangaluru, India
| | - Kadeeja Jazeela
- Division of Infectious Diseases, Nitte University Centre for Science Education & Research, Mangaluru, India
| | - Rajeshwari Vittal
- Division of Infectious Diseases, Nitte University Centre for Science Education & Research, Mangaluru, India
| | - Anusha Rohit
- Department of Microbiology, Madras Medical Mission, Chennai, India
| | - Anirban Chakraborty
- Division of Infectious Diseases, Nitte University Centre for Science Education & Research, Mangaluru, India
| | | |
Collapse
|
32
|
Tepekule B, Abel Zur Wiesch P, Kouyos RD, Bonhoeffer S. Quantifying the impact of treatment history on plasmid-mediated resistance evolution in human gut microbiota. Proc Natl Acad Sci U S A 2019; 116:23106-23116. [PMID: 31666328 PMCID: PMC6859334 DOI: 10.1073/pnas.1912188116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To understand how antibiotic use affects the risk of a resistant infection, we present a computational model of the population dynamics of gut microbiota including antibiotic resistance-conferring plasmids. We then describe how this model is parameterized based on published microbiota data. Finally, we investigate how treatment history affects the prevalence of resistance among opportunistic enterobacterial pathogens. We simulate treatment histories and identify which properties of prior antibiotic exposure are most influential in determining the prevalence of resistance. We find that resistance prevalence can be predicted by 3 properties, namely the total days of drug exposure, the duration of the drug-free period after last treatment, and the center of mass of the treatment pattern. Overall this work provides a framework for capturing the role of the microbiome in the selection of antibiotic resistance and highlights the role of treatment history for the prevalence of resistance.
Collapse
Affiliation(s)
- Burcu Tepekule
- Department of Environmental Systems Science, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland;
| | - Pia Abel Zur Wiesch
- Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
- Centre for Molecular Medicine Norway, 0318 Oslo, Norway
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Sebastian Bonhoeffer
- Department of Environmental Systems Science, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
33
|
Zhou H, Liang Y, Gao L, Ren J, Xue F, Guo D, Jiang Y, Yang Z, Lian L, Dai J. Identification and expression analyses of new genes associated with ciprofloxacin resistance in Vibrio parahaemolyticus. Food Res Int 2019; 125:108629. [PMID: 31554132 DOI: 10.1016/j.foodres.2019.108629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/03/2019] [Accepted: 08/18/2019] [Indexed: 01/22/2023]
Abstract
Quinolone-resistant foodborne pathogens have become an important public health concern, however, little is known about the molecular mechanism of ciprofloxacin (CIP) resistance among Vibrio parahaemolyticus isolates. This study aimed to explore new genes implicated in resistance to CIP in genome-wide. CIP susceptibility of six V. parahaemolyticus isolates was analyzed by disk diffusion and micro-broth dilution methods. To establish a model for CIP-resistant V. parahaemolyticus, in vitro continuous subcultures in drug gradient medium were adopted, and minimum inhibitory concentrations (MICs) was eventually increased by 64-128 times. Quinolone resistance determining region (QRDR) genes were screened by polymerase chain reaction (PCR), and it was demonstrated that there were mutations of gyrA at position 83 and parC at position 85. In addition, whole genome sequencing (WGS) analysis showed that an emergence of joint variations was found in ten genes, and the expression of those was detected by reverse transcription quantitative PCR (RT-qPCR). Collectively, these results suggest that the mutation of these novel gene sequences and the increase of expression of those genes may be related to CIP resistance in V. parahaemolyticus, which provide insights into the molecular basis for the phenotypic variations in bacterial antibiotic resistance, and thus may help clinicians develop more efficient strategies for antibiotic therapies.
Collapse
Affiliation(s)
- Haibo Zhou
- MOE Joint International Research Laboratory of Animal Health and Food safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Liang
- MOE Joint International Research Laboratory of Animal Health and Food safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food safety, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dehua Guo
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai 200135, China
| | - Yuan Jiang
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai 200135, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Lele Lian
- MOE Joint International Research Laboratory of Animal Health and Food safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food safety, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
34
|
Wimalasena SHMP, Pathirana HNKS, Shin GW, De Silva BCJ, Hossain S, Heo GJ. Characterization of Quinolone-Resistant Determinants in Tribe Proteeae Isolated from Pet Turtles with High Prevalence of qnrD and Novel gyrB Mutations. Microb Drug Resist 2018; 25:611-618. [PMID: 30427748 DOI: 10.1089/mdr.2018.0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Development of antibiotic resistance in bacteria has challenged significantly in both veterinary and human medicine. In this study, we analyzed the potential risk of pet turtles harboring tribe Proteeae as a source of quinolone-resistant determinants, including plasmid-mediated quinolone resistance (PMQR) genes and target gene alterations in the quinolone resistance-determining region (QRDR). Antimicrobial susceptibility of 54 Proteeae isolates against ciprofloxacin, ofloxacin, levofloxacin, and nalidixic acid was examined. The PMQR genes and QRDR alterations were identified using conventional PCR assays and sequencing. Four isolates were resistant to all quinolones tested in this study. Nine isolates showed resistance to nalidixic acid and showed either intermediate resistance or susceptibility to other tested quinolones. All isolates resistant to one or more tested quinolones harbored mutations in gyrB and some also had gyrA and parC mutations. Of 54, 12 Proteeae isolates displayed the novel E466D, N440T, Q411S, and F417L mutations in gyrB. Among the PMQR genes, 41 (76%) isolates harbored the qnrD gene with the highest prevalence, whereas aac(6')Ib-cr, qnrS, qnrA, and qnrB genes were detected in 28 (52%), 9 (17.0%), 7 (13.0%), and 1 (1.9%) study isolates, respectively. The QRDR analysis of selected mutants revealed that increasing quinolone selective pressure led to a predominance of gyrA mutants. All results indicate that a healthy pet turtle can play as a potential reservoir for quinolone-resistant Proteeae, which it might cause public health risk on pet owners.
Collapse
Affiliation(s)
| | | | - Gee-Wook Shin
- 2 Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | | | - Sabrina Hossain
- 1 Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Gang-Joon Heo
- 1 Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
35
|
Mafiz AI, Perera LN, He Y, Zhang W, Xiao S, Hao W, Sun S, Zhou K, Zhang Y. Case study on the soil antibiotic resistome in an urban community garden. Int J Antimicrob Agents 2018; 52:241-250. [DOI: 10.1016/j.ijantimicag.2018.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/28/2018] [Accepted: 05/23/2018] [Indexed: 09/30/2022]
|
36
|
Sanchez DG, de Melo FM, Savazzi EA, Stehling EG. Detection of different β-lactamases encoding genes, including bla NDM, and plasmid-mediated quinolone resistance genes in different water sources from Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:407. [PMID: 29909525 DOI: 10.1007/s10661-018-6801-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Bacterial resistance occurs by spontaneous mutations or horizontal gene transfer mediated by mobile genetic elements, which represents a great concern. Resistance to β-lactam antibiotics is mainly due to the production of β-lactamases, and an important mechanism of fluoroquinolone resistance is the acquisition plasmid determinants. The aim of this study was to verify the presence of β-lactamase-encoding genes and plasmid-mediated quinolone resistance genes in different water samples obtained from São Paulo state, Brazil. A high level of these resistance genes was detected, being the blaSHV, blaGES, and qnr the most prevalent. Besides that, the blaNDM gene, which codify an important and hazardous metallo-β-lactamase, was detected.
Collapse
Affiliation(s)
- Danilo Garcia Sanchez
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Fernanda Maciel de Melo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
37
|
Szekeres E, Chiriac CM, Baricz A, Szőke-Nagy T, Lung I, Soran ML, Rudi K, Dragos N, Coman C. Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:734-744. [PMID: 29454283 DOI: 10.1016/j.envpol.2018.01.107] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 05/24/2023]
Abstract
Groundwater is an essential public and drinking water supply and its protection is a goal for global policies. Here, we investigated the presence and prevalence of antibiotic residues, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and microbial contamination in groundwater environments at various distances from urban areas. Antibiotic concentrations ranged from below detection limit to 917 ng/L, being trimethoprim, macrolide, and sulfonamide the most abundant antibiotic classes. A total of eleven ARGs (aminoglycoside, β-lactam, chloramphenicol, Macrolide-Lincosamide-Streptogramin B - MLSB, sulfonamide, and tetracycline), one antiseptic resistance gene, and two MGEs were detected by qPCR with relative abundances ranging from 6.61 × 10-7 to 2.30 × 10-1 copies/16S rRNA gene copies. ARGs and MGEs were widespread in the investigated groundwater environments, with increased abundances not only in urban, but also in remote areas. Distinct bacterial community profiles were observed, with a higher prevalence of Betaproteobacteria and Bacteroidetes in the less-impacted areas, and that of Firmicutes in the contaminated groundwater. The combined characteristics of increased species diversity, distinct phylogenetic composition, and the possible presence of fecal and/or pathogenic bacteria could indicate different types of contamination. Significant correlations between ARGs, MGEs and specific taxa within the groundwater bacterial community were identified, revealing the potential hosts of resistance types. Although no universal marker gene could be determined, a co-selection of int1, qacEΔ1 and sulI genes, a proxy group for anthropogenic pollution, with the tetC, tetO, tetW resistance genes was identified. As the tet group was observed to follow the pattern of environmental contamination for the groundwater samples investigated in this study, our results strongly support the proposal of this group of genes as an environmental tracer of human impact. Overall, the present study investigated several emerging contaminants in groundwater habitats that may be included in monitoring programs to enable further regulatory and protection measures.
Collapse
Affiliation(s)
- Edina Szekeres
- NIRDBS, Institute of Biological Research, Cluj-Napoca, Romania; Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Cecilia Maria Chiriac
- NIRDBS, Institute of Biological Research, Cluj-Napoca, Romania; Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Andreea Baricz
- NIRDBS, Institute of Biological Research, Cluj-Napoca, Romania
| | - Tiberiu Szőke-Nagy
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Knut Rudi
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Nicolae Dragos
- NIRDBS, Institute of Biological Research, Cluj-Napoca, Romania; Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Cristian Coman
- NIRDBS, Institute of Biological Research, Cluj-Napoca, Romania.
| |
Collapse
|
38
|
Yang F, Zhang S, Shang X, Wang L, Li H, Wang X. Characteristics of quinolone-resistant Escherichia coli isolated from bovine mastitis in China. J Dairy Sci 2018; 101:6244-6252. [PMID: 29605334 DOI: 10.3168/jds.2017-14156] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/25/2018] [Indexed: 01/21/2023]
Abstract
Escherichia coli is the leading causative agent of bovine mastitis worldwide. Quinolone-resistant E. coli is becoming a potential threat to veterinary and public health. The aim of this study was to investigate the characteristics of quinolone-resistant E. coli isolated from bovine mastitis cases in China. Antimicrobial susceptibility of the isolates against 15 antimicrobial agents was determined by disc diffusion method. Phylogenetic grouping was detected by PCR. Extended-spectrum β-lactamase-producing isolates were determined by double-disc synergy test. In addition, the plasmid-mediated quinolone resistance (PMQR) and β-lactamase-encoding genes, as well as mutations of quinolone resistance-determining regions in GyrA, GyrB, ParC, and ParE, were measured by PCR and DNA sequencing. Overall, 75 (22.9%) out of 328 E. coli isolates were confirmed as ciprofloxacin-resistant from 2,954 mastitic milk samples. Phylogenetic group analysis showed that the majority of these strains belonged to phylogenetic group A (57.3%) and group B1 (24.0%). All the resistant isolates were identified as multidrug resistant, showing high resistance to cephalosporins and non-β-lactams. Forty-nine (65.3%) of the quinolone-resistant isolates were positive for PMQR genes; aac-(6')-Ib-cr was the most common PMQR determinant detected in 33 (44.0%) isolates. Eighteen (24.0%), 4 (5.3%), 3 (4.0%), and 1 (1.3%) of the quinolone-resistant isolates were harboring oqxA/B, qepA4, qnrS, and qnrB2, respectively. Additionally, 55 (73.3%) of the quinolone-resistant E. coli isolates were found to be extended-spectrum β-lactamase producers. The preponderant β-lactamase-encoding gene, blaTEM, was detected in 44 (58.7%) isolates; blaCTX-M, blaCMY, and blaSHV were found in 35 (46.7%), 22 (29.3%), and 2 (2.7%) isolates, respectively. Moreover, the most frequently identified substitutions were S83L/D87N or S83L in GyrA, detected in all of the quinolone-resistant isolates. Meanwhile, 74 (98.7%), 33 (44.0%), and 6 (8.0%) of the isolates were carrying substitutions S80I in ParC, S458A in ParE, and S492N in GyrB, respectively. All 58 (77.3%) isolates with a high level of ciprofloxacin resistance (>32 µg/mL) carried single or double mutations in GyrA combined with single mutation in ParC. To the best of our knowledge, this is the first report on the high occurrence of PMQR determinants and quinolone-determining resistant regions mutations in quinolone-resistant E. coli isolated from bovine mastitis in China.
Collapse
Affiliation(s)
- Feng Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, People's Republic of China
| | - Shidong Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, People's Republic of China
| | - Xiaofei Shang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, People's Republic of China
| | - Ling Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, People's Republic of China
| | - Hongsheng Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, People's Republic of China.
| | - Xurong Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, People's Republic of China.
| |
Collapse
|
39
|
Kim YJ, Park JH, Seo KH. Presence of Stenotrophomonas maltophilia exhibiting high genetic similarity to clinical isolates in final effluents of pig farm wastewater treatment plants. Int J Hyg Environ Health 2018; 221:300-307. [DOI: 10.1016/j.ijheh.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/17/2017] [Accepted: 12/05/2017] [Indexed: 11/28/2022]
|
40
|
Wang M, Shen W, Yan L, Wang XH, Xu H. Stepwise impact of urban wastewater treatment on the bacterial community structure, antibiotic contents, and prevalence of antimicrobial resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1578-1585. [PMID: 28967569 DOI: 10.1016/j.envpol.2017.09.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Bacteria, antibiotics, and antibiotic resistance determinants are key biological pollutants in aquatic systems, which may lead to bacterial infections or prevent the cure of bacterial infections. In this study, we investigated how the wastewater treatment processes in wastewater treatment plants (WWTPs) affect these pollutants. We found that the addition of oxygen, polyaluminum chloride (PAC), and polyacrylamide (PAM), as well as ultraviolet (UV) disinfection could significantly alter the bacterial communities in the water samples. An overall shift from Gram-negative bacteria to Gram-positive bacteria was observed throughout the wastewater treatment steps, but the overall bacterial biomass was not reduced in the WWTP samples. The antibiotic contents were reduced by the WWTP, but the size of the reduction and the step when antibiotic degradation occurred differed among antibiotics. Ciprofloxacin, sulfamethoxazole and erythromycin could be removed completely by the WWTP, whereas cephalexin could not. The removal of ciprofloxacin, cephalexin, and erythromycin occurred in the anaerobic digester, whereas the removal of sulfamethoxazole occurred after the addition of PAC and PAM, and UV disinfection. Antimicrobial resistance determinants were highly prevalent in all of the samples analyzed, except for those targeting vancomycin and colistin. However, wastewater treatment was ineffective at removing antimicrobial resistance determinants from wastewater. There were strong correlations between intI1, floR, sul1, and ermB, thereby suggesting the importance of integrons for the spread of these antimicrobial resistance genes. In general, this study comprised a stepwise analysis of the impact of WWTPs on three biological pollutants: bacteria, antibiotics, and antimicrobial resistance determinants, where our results suggest that the design of WWTPs needs to be improved to address the threats due to these pollutants.
Collapse
Affiliation(s)
- Mingyu Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Weitao Shen
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Lei Yan
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xin-Hua Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China.
| |
Collapse
|
41
|
Manageiro V, Félix D, Jones-Dias D, Sampaio DA, Vieira L, Sancho L, Ferreira E, Caniça M. Genetic Background and Expression of the New qepA4 Gene Variant Recovered in Clinical TEM-1- and CMY-2-Producing Escherichia coli. Front Microbiol 2017; 8:1899. [PMID: 29062302 PMCID: PMC5640717 DOI: 10.3389/fmicb.2017.01899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/15/2017] [Indexed: 11/13/2022] Open
Abstract
A new QepA4 variant was detected in an O86:H28 ST156-fimH38 Escherichia coli, showing a multidrug-resistance phenotype. PAβN inhibition of qepA4-harboring transconjugant resulted in increase of nalidixic acid accumulation. The qepA4 and catA1 genes were clustered in a 26.0-kp contig matching an IncF-type plasmid, and containing a Tn21-type transposon with multiple mobile genetic elements. This QepA variant is worrisome because these determinants might facilitate the selection of higher-level resistance mutants, playing a role in the development of resistance, and/or confer higher-level resistance to fluoroquinolones in association with chromosomal mutations.
Collapse
Affiliation(s)
- Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Oporto, Portugal
| | - David Félix
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Daniela Jones-Dias
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Oporto, Portugal
| | - Daniel A Sampaio
- Innovation and Technology Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Luísa Sancho
- Laboratory of Microbiology, Hospital Professor Doutor Fernando Fonseca, Amadora, Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
42
|
Antimicrobial 2-aminothiazolyl quinolones: what is their potential in the clinic? Future Med Chem 2017; 9:1461-1464. [PMID: 28795599 DOI: 10.4155/fmc-2017-0108] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|