1
|
Giesen S, Rimmele F, Jürgens TP, Scheidt J, Drescher J, Leonhardt AK, Schulze S, Harbeck B, Meyer W, Müller B, Kropp P, Keller A. Relationship between Contingent Negative Variation and afterimage duration in migraine patients. Front Neurol 2024; 15:1401212. [PMID: 38827574 PMCID: PMC11141693 DOI: 10.3389/fneur.2024.1401212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024] Open
Abstract
Background Abnormalities in electrocortical parameters and persistence of afterimage after visual stimulation are known to occur in migraine patients. The results of studies on Contingent Negative Variation (CNV) and afterimage persistence in migraine patients suggest a link between these two phenomena and a connection to the pathomechanism of migraine. Objectives To date, no studies have investigated both afterimage duration and CNV parameters in the same subjects. The aim of this study was to investigate the relationship between the early component of CNV (iCNV) and the duration of the afterimage in migraine patients. Methods Sixty seven migraine patients from the headache center of the University of Rostock Medical Center were examined for iCNV amplitude, iCNV habituation and afterimage duration. The subjects also completed questionnaires developed for this study and the MIDAS (Migraine Disability Assessment) questionnaire. Results Associations were found between iCNV amplitude and afterimage duration and between habituation capacity and afterimage duration. A deficit in habituation capacity correlated with a significantly prolonged afterimage duration. Increased iCNV amplitude and prolonged afterimage duration were also significantly correlated. Conclusion Conclusions about the pathophysiology of migraine can be drawn from the results of this study. The results support the hypothesis of cortical hyperexcitability as a consequence of a low pre-activation level, which may be a possible contributory cause of migraine. Furthermore, they allow assessment of whether the afterimage examination, which is easier and quicker to perform than the CNV examination, can be used as a diagnostic tool or as a parameter to monitor the course of therapy in people with migraine.
Collapse
Affiliation(s)
- Simeon Giesen
- Institute of Medical Psychology and Medical Sociology, University of Rostock Medical Center, Rostock, Germany
| | - Florian Rimmele
- Department of Neurology, University of Rostock Medical Center, Rostock, Germany
| | - Tim P. Jürgens
- Department of Neurology, University of Rostock Medical Center, Rostock, Germany
- Department of Neurology, KMG Hospital Güstrow, Güstrow, Germany
| | - Jörg Scheidt
- Institute for Informations Systems, University of Applied Sciences, Hof, Germany
| | - Johannes Drescher
- Institute for Informations Systems, University of Applied Sciences, Hof, Germany
| | - Ann-Kristin Leonhardt
- Institute of Medical Psychology and Medical Sociology, University of Rostock Medical Center, Rostock, Germany
| | - Sophia Schulze
- Institute of Medical Psychology and Medical Sociology, University of Rostock Medical Center, Rostock, Germany
| | - Birgit Harbeck
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Amedes Experts, Endocrinology, Hamburg, Germany
| | - Wolfgang Meyer
- Institute of Medical Psychology and Medical Sociology, University of Rostock Medical Center, Rostock, Germany
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Britta Müller
- Institute of Medical Psychology and Medical Sociology, University of Rostock Medical Center, Rostock, Germany
| | - Peter Kropp
- Institute of Medical Psychology and Medical Sociology, University of Rostock Medical Center, Rostock, Germany
| | - Armin Keller
- Institute of Medical Psychology and Medical Sociology, University of Rostock Medical Center, Rostock, Germany
| |
Collapse
|
2
|
Kronemer SI, Holness M, Morgan AT, Teves JB, Gonzalez-Castillo J, Handwerker DA, Bandettini PA. Visual imagery vividness correlates with afterimage conscious perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.07.570716. [PMID: 38168380 PMCID: PMC10760211 DOI: 10.1101/2023.12.07.570716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Afterimages are illusory, visual conscious perceptions. A widely accepted theory is that afterimages are caused by retinal signaling that continues after the physical disappearance of a light stimulus. However, afterimages have been reported without preceding visual, sensory stimulation (e.g., conditioned afterimages and afterimages induced by illusory vision). These observations suggest the role of top-down, brain mechanisms in afterimage conscious perception. Therefore, some afterimages may share perceptual features with sensory-independent conscious perceptions (e.g., imagery, hallucinations, and dreams) that occur without bottom-up, sensory input. In the current investigation, we tested for a link between the vividness of visual imagery and afterimage conscious perception. Participants reported their vividness of visual imagery and perceived sharpness, contrast, and duration of negative afterimages. The afterimage perceptual features were acquired using perception matching paradigms that were validated on image stimuli. Relating these perceptual reports revealed that the vividness of visual imagery positively correlated with afterimage contrast and sharpness. These behavioral results support shared neural mechanisms between visual imagery and afterimages. This study encourages future research combining neurophysiology recording methods and afterimage paradigms to directly examine the neural mechanisms of afterimage conscious perception.
Collapse
Affiliation(s)
- Sharif I. Kronemer
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - Micah Holness
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - A. Tyler Morgan
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
- Functional Magnetic Resonance Imaging Core Facility, NIMH, NIH, Bethesda, MD
| | - Joshua B. Teves
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - Daniel A. Handwerker
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - Peter A. Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
- Functional Magnetic Resonance Imaging Core Facility, NIMH, NIH, Bethesda, MD
| |
Collapse
|
3
|
Egocentric Distance Perception Disorder in Amblyopia. Psychol Belg 2021; 61:173-185. [PMID: 34221439 PMCID: PMC8231473 DOI: 10.5334/pb.1038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Egocentric distance perception is a psychological process in which observers use various depth cues to estimate the distance between a target and themselves. The impairment of basic visual function and treatment of amblyopia have been well documented. However, the disorder of egocentric distance perception of amblyopes is poorly understood. In this review, we describe the cognitive mechanism of egocentric distance perception, and then, we focus on empirical evidence for disorders in egocentric distance perception for amblyopes in the whole visual space. In the personal space (within 2 m), it is difficult for amblyopes to show normal hand-eye coordination; in the action space (within 2 m~30 m), amblyopes cannot accurately judge the distance of a target suspended in the air. Few studies have focused on the performance of amblyopes in the vista space (more than 30 m). Finally, five critical topics for future research are discussed: 1) it is necessary to systematically explore the mechanism of egocentric distance perception in all three spaces; 2) the laws of egocentric distance perception in moving objects for amblyopes should be explored; and 3) the comparison of three subtypes of amblyopia is still insufficient; 4) study the perception of distance under another theoretical framework; 5) explore the mechanisms of amblyopia by Virtual Reality.
Collapse
|
4
|
Skerswetat J, Formankiewicz MA, Waugh SJ. Contrast-modulated stimuli produce more superimposition and predominate perception when competing with comparable luminance-modulated stimuli during interocular grouping. Sci Rep 2020; 10:13409. [PMID: 32770074 PMCID: PMC7414227 DOI: 10.1038/s41598-020-69527-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/13/2020] [Indexed: 11/08/2022] Open
Abstract
Interocular grouping (IOG) is a binocular visual function that can arise during multi-stable perception. IOG perception was initiated using split-grating stimuli constructed from luminance (L), luminance-modulated noise (LM) and contrast-modulated noise (CM). In Experiment 1, three different visibility levels were used for L and LM (or first-order) stimuli, and compared to fixed-visibility CM (or second-order) stimuli. Eight binocularly normal participants indicated whether they perceived full horizontal or vertical gratings, superimposition, or other (piecemeal and eye-of-origin) percepts. CM stimuli rarely generated full IOG, but predominantly generated superimposition. In Experiment 2, Levelt's modified laws were tested for IOG in nine participants. Split-gratings presented to each eye contained different visibility LM gratings, or LM and CM gratings. The results for the LM-vs-LM conditions mostly followed the predictions of Levelt's modified laws, whereas the results for the LM-vs-CM conditions did not. Counterintuitively, when high-visibility LM and low-visibility CM split-gratings were used, high-visibility LM components did not predominate IOG perception. Our findings suggest that higher proportions of superimposition during CM-vs-CM viewing are due to binocular combination, rather than mutual inhibition. It implies that IOG percepts are more likely to be mediated at an earlier monocular, rather than a binocular stage. Our previously proposed conceptual framework for conventional binocular rivalry, which includes asymmetric feedback, visual saliency, or a combination of both (Skerswetat et al. Sci Rep 8:14432, 2018), might also account for IOG. We speculate that opponency neurons might mediate coherent percepts when dissimilar information separately enters the eyes.
Collapse
Affiliation(s)
- Jan Skerswetat
- Department of Vision and Hearing Sciences, Anglia Vision Research, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK.
- Department of Psychology, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA.
| | - Monika A Formankiewicz
- Department of Vision and Hearing Sciences, Anglia Vision Research, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK
| | - Sarah J Waugh
- Department of Vision and Hearing Sciences, Anglia Vision Research, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK
| |
Collapse
|
5
|
Kingdom FAA, Touma S, Jennings BJ. Negative afterimages facilitate the detection of real images. Vision Res 2020; 170:25-34. [PMID: 32220671 DOI: 10.1016/j.visres.2020.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 11/18/2022]
Abstract
Negative, or complementary afterimages are experienced following brief adaptation to chromatic or achromatic stimuli, and are believed to be formed in the post-receptoral layers of the retinae. Afterimages can be cancelled by the addition of real images, suggesting that afterimages and real images are processed by similar mechanisms. However given their retinal origin, afterimage signals represented at the cortical level might have different spatio-temporal properties from their real images counterparts. To test this we determined whether afterimages reduce the contrast threshold of added real images, i.e. produce the classic "dipper" function characteristic of contrast discrimination, a behavior believed to be cortically mediated. Stimuli were chromatic and achromatic disks on a grey background. Observers adapted for 1.0 s to two side-by-side disks of a particular color. Following stimulus offset, a test disk added to one side was ramped downwards for 1.5 s to approximately match the temporal characteristic of the afterimage, and the observer was required to indicate the side containing the test disk. The test hue/brightness was either the same as that of the afterimage or a different hue/brightness. The independent variable was the contrast of the adaptor. A dipper followed by masking was observed in most conditions in which the afterimage and test colors had the same hue or brightness. We conclude that afterimages are represented similarly to their real image counterparts at the cortical level.
Collapse
Affiliation(s)
- Frederick A A Kingdom
- McGill Vision Research, Department of Ophthalmology and Vision Sciences, Montreal General Hospital, 1650 Cedar Ave., Rm L11.112, Montreal, Quebec H3G 1A4, Canada
| | - Samir Touma
- McGill Vision Research, Department of Ophthalmology and Vision Sciences, Montreal General Hospital, 1650 Cedar Ave., Rm L11.112, Montreal, Quebec H3G 1A4, Canada
| | - Ben J Jennings
- Centre for Cognitive Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, UK
| |
Collapse
|