1
|
Lu H, Fu B, Tan Q, Hu J, Yang J, Wei X, Liang J, Wang C, Ji Y, Huang M, Xue H, Du H, Zhang R, Du T, He C, Yang X, Zhang Y. Field-evolved resistance to nitenpyram is associated with fitness costs in whitefly. PEST MANAGEMENT SCIENCE 2024; 80:5684-5693. [PMID: 38984846 DOI: 10.1002/ps.8286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Elucidating fitness cost associated with field-evolved insect resistance to insecticide is of particular importance to current sustainable pest control. The global pest whitefly Bemisia tabaci has developed resistance to many members of neonicotinoids, but little is known about whitefly resistance to neonicotinoid nitenpyram and its associated fitness cost. Using insecticide bioassay and life-table approach, this study aims to investigate nitenpyram resistance status in field-collected whitefly populations, and to explore whether such resistance is accompanied by a fitness cost. RESULTS The bioassay results revealed that 14 of 29 whitefly populations displayed moderate to extremely high resistance to nitenpyram, demonstrating a widespread field-evolved resistance to nitenpyram. This field-evolved resistance in the whitefly has increased gradually over the past 3 years from 2021 to 2023. Further life-table study showed that two resistant whitefly populations exhibited longer developmental time, shorter lifespans of adult, and lower fecundity compared with the most susceptible population. The relative fitness cost of the two resistant populations was calculated as 0.69 and 0.56 by using net productive rate R0, which suggests that nitenpyram resistance comes with fitness cost in the whitefly, especially on reproduction. CONCLUSION Overall, these results represent field-evolved high resistance to nitenpyram in the whitefly. The existing fitness costs associated with nitenpyram resistance are helpful to propose a suitable strategy for sustainable control of whiteflies by rotation or mixture of insecticide with different modes of action. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hantang Lu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qimei Tan
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jinyu Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Zhang R, Yang J, Hu J, Yang F, Liang J, Xue H, Wei X, Fu B, Huang M, Du H, Wang C, Su Q, Yang X, Zhang Y. Glutathione S-transferase directly metabolizes imidacloprid in the whitefly, Bemisia tabaci. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105863. [PMID: 38685216 DOI: 10.1016/j.pestbp.2024.105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 05/02/2024]
Abstract
The whitefly Bemisia tabaci poses a significant threat to various crops and ornamental plants and causes severe damage to the agricultural industry. Over the past few decades, B. tabaci has developed resistance to several pesticides, including imidacloprid. Therefore, elucidating the mechanism that leads to insecticide detoxification is very important for controlling B. tabaci and managing whitefly resistance to neonicotinoid insecticides. Among insect detoxification enzymes, glutathione S-transferase (GST) is an important phase II detoxification enzyme that helps detoxify exogenous toxic substances. In this study, we cloned the BtGSTz1 gene and observed that its expression level was greater in imidacloprid-resistant populations than sensitive populations of B. tabaci. By silencing BtGSTz1 via RNA interference, we found a significant increase in the mortality of imidacloprid-resistant B. tabaci. Additionally, prokaryotic expression and in vitro metabolism studies revealed that the recombinant BtGSTz1 protein could metabolize 36.36% of the total imidacloprid, providing direct evidence that BtGSTz1 plays a crucial role in the detoxification of imidacloprid. Overall, our study elucidated the role of GSTs in physiological activities related to insecticide resistance, which helps clarify the resistance mechanisms conferred by GSTs and provides useful insights for sustainable integrated pest management.
Collapse
Affiliation(s)
- Rong Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinyu Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengbo Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Plant Protection, Hunan Agricultural University, Changsha 410125, China
| | - Xuegao Wei
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Plant Protection, Hunan Agricultural University, Changsha 410125, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Plant Protection, Hunan Agricultural University, Changsha 410125, China
| | - Chao Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Su
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Huang M, Fu B, Yin C, Gong P, Liu S, Yang J, Wei X, Liang J, Xue H, He C, Du T, Wang C, Ji Y, Hu J, Zhang R, Du H, Zhang Y, Yang X. Cytochrome P450 CYP6EM1 Underpins Dinotefuran Resistance in the Whitefly Bemisia tabaci. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5153-5164. [PMID: 38427964 DOI: 10.1021/acs.jafc.3c06953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Being a destructive pest worldwide, the whitefly Bemisia tabaci has evolved resistance to neonicotinoid insecticides. The third-generation neonicotinoid dinotefuran has commonly been applied to the control of the whitefly, but its underlying mechanism is currently unknown. On the base of our transcriptome data, here we aim to investigate whether the cytochrome P450 CYP6EM1 underlies dinotefuran resistance in the whitefly. Compared to the susceptible strain, the CYP6EM1 gene was found to be highly expressed in both laboratory and field dinotefuran-resistant populations. Upon exposure to dinotefuran, the mRNA levels of CYP6EM1 were increased. These results demonstrate the involvement of this gene in dinotefuran resistance. Loss and gain of functional studies in vivo were conducted through RNAi and transgenic Drosophila melanogaster assays, confirming the role of CYP6EM1 in conferring such resistance. In a metabolism assay in vitro, the CYP6EM1 protein could metabolize 28.11% of dinotefuran with a possible dinotefuran-dm-NNO metabolite via UPLC-QTOF/MS. Docking of dinotefuran to the CYP6EM1 protein showed a good binding affinity, with an energy of less than -6.0 kcal/mol. Overall, these results provide compelling evidence that CYP6EM1 plays a crucial role in the metabolic resistance of B. tabaci to dinotefuran. Our work provides new insights into the mechanism underlying neonicotinoid resistance and applied knowledge that can contribute to sustainable control of a global pest such as whitefly.
Collapse
Affiliation(s)
- Mingjiao Huang
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, P. R. China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Yao Ji
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - JinYu Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Du TH, Yin C, Gui LY, Liang JJ, Liu SN, Fu BL, He C, Yang J, Wei XG, Gong PP, Huang MJ, Xue H, Hu JY, Du H, Ji Y, Zhang R, Wang C, Zhang CJ, Yang X, Zhang YJ. Over-expression of UDP-glycosyltransferase UGT353G2 confers resistance to neonicotinoids in whitefly (Bemisia tabaci). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105635. [PMID: 37945266 DOI: 10.1016/j.pestbp.2023.105635] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 11/12/2023]
Abstract
The whitefly, Bemisia tabaci, comes up high metabolic resistance to most neonicotinoids in long-term evolution, which is the key problem of pest control. UGT glycosyltransferase, as a secondary detoxification enzyme, plays an indispensable role in detoxification metabolism. In this study, UGT inhibitors, 5-nitrouracil and sulfinpyrazone, dramatically augmented the toxic damage of neonicotinoids to B. tabaci. A UGT named UGT353G2 was identified in whitefly, which was notably up-regulated in resistant strain (3.92 folds), and could be induced by most neonicotinoids. Additionally, the using of RNA interference (RNAi) suppresses UGT353G2 substantially increased sensitivity to neonicotinoids in resistant strain. Our results support that UGT353G2 may be involved in the neonicotinoids resistance of whitefly. These findings will help further verify the functional role of UGTs in neonicotinoid resistance.
Collapse
Affiliation(s)
- Tian-Hua Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Lian-You Gui
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Jin-Jin Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shao-Nan Liu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bu-Li Fu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue-Gao Wei
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pei-Pan Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming-Jiao Huang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin-Yu Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng-Jia Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - You-Jun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Yang J, Fu B, Gong P, Zhang C, Wei X, Yin C, Huang M, He C, Du T, Liang J, Liu S, Ji Y, Xue H, Wang C, Hu J, Du H, Zhang R, Yang X, Zhang Y. CYP6CX2 and CYP6CX3 mediate thiamethoxam resistance in field whitefly, Bemisia tabaci (Hemiptera:Aleyrodidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1342-1351. [PMID: 37208311 DOI: 10.1093/jee/toad089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are well-known for their crucial roles in the detoxification of xenobiotics. However, whether CYP6CX2 and CYP6CX3, 2 genes from our Bemisia tabaci (B. tabaci) MED/Q genome data were associated with detoxification metabolism and confer resistance to thiamethoxam is unclear. In this study, we investigated the role of CYP6CX2 and CYP6CX3 in mediating whitefly thiamethoxam resistance. Our results showed that mRNA levels of CYP6CX2 and CYP6CX3 were up-regulated after exposure to thiamethoxam. Transcriptional levels of 2 genes were overexpressed in laboratory and field thiamethoxam resistant strains by RT-qPCR. These results indicate that the enhanced expression of CYP6CX2 and CYP6CX3 appears to confer thiamethoxam resistance in B. tabaci. Moreover, linear regression analysis showed that the expression levels of CYP6CX2 and CYP6CX3 were positively correlated with thiamethoxam resistance levels among populations. The susceptibility of whitefly adults was markedly increased after silencing 2 genes by RNA interference (RNAi) which further confirming their major role in thiamethoxam resistance. Our findings provide information to better understand the roles of P450s in resistance to neonicotinoids and suggest that these genes may be applied to develop target genes for sustainable management tactic of agricultural pests such as B. tabaci.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengjia Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinyu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Wei X, Hu J, Yang J, Yin C, Du T, Huang M, Fu B, Gong P, Liang J, Liu S, Xue H, He C, Ji Y, Du H, Zhang R, Wang C, Li J, Yang X, Zhang Y. Cytochrome P450 CYP6DB3 was involved in thiamethoxam and imidacloprid resistance in Bemisia tabaci Q (Hemiptera: Aleyrodidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105468. [PMID: 37532309 DOI: 10.1016/j.pestbp.2023.105468] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/23/2023] [Accepted: 05/14/2023] [Indexed: 08/04/2023]
Abstract
High level resistance for a variety of insecticides has emerged in Bemisia tabaci, a globally notorious insect. Neonicotinoid insecticides have been applied widely to control B. tabaci. Whether a differentially expressed gene CYP6DB3 discovered from transcriptome data of B. tabaci is involved in the resistance to neonicotinoid insecticides remains unclear. In the study, CYP6DB3 expression was significantly up-regulated in both thiamethoxam- and imidacloprid-resistant strains relative to the susceptive strains. We also found that CYP6DB3 expression was up-regulated after B. tabaci adults were exposed to thiamethoxam and imidacloprid. Moreover, knocking down CYP6DB3 expression via feeding corresponding dsRNA significantly reduced CYP6DB3 mRNA levels by 34.1%. Silencing CYP6DB3 expression increased the sensitivity of B. tabaci Q adults against both thiamethoxam and imidacloprid. Overexpression of CYP6DB3 gene reduced the toxicity of imidacloprid and thiamethoxam to transgenic D. melanogaster. In addition, metabolic studies showed that CYP6DB3 can metabolize 24.41% imidacloprid in vitro. Collectively, these results strongly support that CYP6DB3 plays an important role in the resistance of B. tabaci Q to imidacloprid and thiamethoxam. This work will facilitate a deeper insight into the part of cytochrome P450s in the evolution of insecticide resistance and provide a theoretical basis for the development of new integrated pest resistance management.
Collapse
Affiliation(s)
- Xuegao Wei
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinyu Hu
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Wang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junkai Li
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
7
|
Zheng X, Wan Y, Tao M, Yuan J, Zhang K, Wang J, Zhang Y, Liang P, Wu Q. Obstructor, a Frankliniella occidentalis protein, promotes transmission of tomato spotted wilt orthotospovirus. INSECT SCIENCE 2023; 30:741-757. [PMID: 36342042 DOI: 10.1111/1744-7917.13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/15/2023]
Abstract
Tomato spotted wilt orthotospovirus (TSWV) causes substantial economic losses to vegetables and other crops. TSWV is mainly transmitted by thrips in a persistent and proliferative manner, and its most efficient vector is the western flower thrips, Frankliniella occidentalis (Pergande). In moving from the thrips midgut to the salivary glands in preparation for transmission, the virions must overcome multiple barriers. Although several proteins that interact with TSWV in thrips have been characterized, we hypothesized that additional thrips proteins interact with TSWV and facilitate its transmission. In the current study, 67 F. occidentalis proteins that interact with GN (a structural glycoprotein) were identified using a split-ubiquitin membrane-based yeast 2-hybrid (MbY2H) system. Three proteins, apolipoprotein-D (ApoD), orai-2-like (Orai), and obstructor-E-like isoform X2 (Obst), were selected for further study based on their high abundance and interaction strength; their interactions with GN were confirmed by MbY2H, yeast β-galactosidase and luciferase complementation assays. The relative expressions of ApoD and Orai were significantly down-regulated but that of Obst was significantly up-regulated in viruliferous thrips. When interfering with Obst in larval stage, the TSWV acquisition rate in 3 independent experiments was significantly decreased by 26%, 40%, and 35%, respectively. In addition, when Obst was silenced in adults, the virus titer was significantly decreased, and the TSWV transmission rate decreased from 66.7% to 31.9% using the leaf disk method and from 86.67% to 43.33% using the living plant method. However, the TSWV acquisition and transmission rates were not affected by interference with the ApoD or Orai gene. The results indicate that Obst may play an important role in TSWV acquisition and transmission in Frankliniella occidentalis.
Collapse
Affiliation(s)
- Xiaobin Zheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yanran Wan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Tao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiangjiang Yuan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Kun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jing Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Yin C, Gui LY, Du TH, Zhang CJ, Wei XG, Yang J, Huang MJ, Fu BL, Gong PP, Liang JJ, Liu SN, Xue H, Hu JY, Ji Y, He C, Du H, Wang C, Zhang R, Wu QJ, Yang X, Zhang YJ. Knockdown of the Nicotinic Acetylcholine Receptor β1 Subunit Decreases the Susceptibility to Five Neonicotinoid Insecticides in Whitefly ( Bemisia tabaci). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7221-7229. [PMID: 37157975 DOI: 10.1021/acs.jafc.3c00782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The sweet potato whitefly, Bemisia tabaci, (Gennadius) (Hemiptera:Aleyrodidae) is a global pest of crops. Neonicotinoids are efficient insecticides used for control of this pest. Insecticidal targets of neonicotinoids are insect nicotinic acetylcholine receptors (nAChRs). Here, we characterized and cloned the full length of the nAChR β1 subunit (BTβ1) in B. tabaci and confirmed the consistency of BTβ1 in B. tabaci MEAM1 and MED. Expression levels of BTβ1 in different developmental stages and body parts of adults were investigated and compared in B. tabaci MED. dsRNA was prepared to knock down BTβ1 in adult B. tabaci and significantly decreases the susceptibility to five neonicotinoid insecticides, including imidacloprid, clothianidin, thiacloprid, nitenpyram, and dinotefuran. This study indicated BTβ1 as a notable site influencing the susceptibility of B. tabaci to neonicotinoids.
Collapse
Affiliation(s)
- Cheng Yin
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, People's Republic of China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Lian-You Gui
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, People's Republic of China
| | - Tian-Hua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Cheng-Jia Zhang
- Hunan Provincial Key laboratory of Pesticide Biology and Precise Use Techology, Hunan Agricultural Biotechnology Research Institute, Changsha, Hunan 410125, People's Republic of China
| | - Xue-Gao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Ming-Jiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Bu-Li Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Pei-Pan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Jin-Jin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Shao-Nan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Jin-Yu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Qing-Jun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - You-Jun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| |
Collapse
|
9
|
Xue H, Fu B, Huang M, He C, Liang J, Yang J, Wei X, Liu S, Du T, Ji Y, Yin C, Gong P, Hu J, Du H, Zhang R, Wang C, Khajehali J, Su Q, Yang X, Zhang Y. CYP6DW3 Metabolizes Imidacloprid to Imidacloprid-urea in Whitefly ( Bemisia tabaci). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2333-2343. [PMID: 36705580 DOI: 10.1021/acs.jafc.2c08353] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bemisia tabaci has developed high resistance to many insecticides and causes substantial agricultural and economic losses annually. The insecticide resistance of whitefly has been widely reported in previous studies; however, the underlying mechanism remains little known. In this study, we cloned two P450 genes: CYP6DW3 and CYP6DW5v1; these genes were markedly overexpressed in imidacloprid-resistant whitefly populations compared with susceptible populations, and knockdown of these genes decreased the imidacloprid resistance of whitefly. Moreover, heterologous expression of whitefly P450 genes in SF9 cells and metabolic studies showed that the CYP6DW3 protein could metabolize 14.11% imidacloprid and produced imidacloprid-urea in vitro. Collectively, the expression levels of CYP6DW3 and CYP6DW5v1 are positively correlated with imidacloprid resistance in B. tabaci. Our study further reveals that cytochrome P450 enzymes affect the physiological activities related to resistance in insects, which helps scholars more deeply understand the resistance mechanism, and contributes to the development of integrated pest management framework.
Collapse
Affiliation(s)
- Hu Xue
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, P. R. China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, P. R. China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuegao Wei
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - JinYu Hu
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Wang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jahangir Khajehali
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Qi Su
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
10
|
Wang R, Gao B, Zhang Q, Qu C, Luo C. Knockdown of TRPV gene Nanchung decreases resistance to the novel pyropene insecticide, afidopyropen, in Bemisia tabaci. Int J Biol Macromol 2022; 224:1566-1575. [DOI: 10.1016/j.ijbiomac.2022.10.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
|
11
|
Hou N, Zhou Z, Chen Y, Tian J, Zhang Y, Liu Z. RNA interference in Pardosa pseudoannulata, an important predatory enemy against several insect pests, through ingestion of dsRNA-expressing Escherichia coli. INSECT MOLECULAR BIOLOGY 2021; 30:624-631. [PMID: 34410024 DOI: 10.1111/imb.12731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/11/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
RNA interference is an important technology for gene functional research in many organisms. The pond wolf spider (Pardosa pseudoannulata) is an important natural enemy of rice field pests. To facilitate large-scale gene functional research in this spider species and others, we developed an RNA interference (RNAi) method via ingestion of bacteria expressing dsRNA. The dsRNA targeting a cytochrome P450 monooxygenase (cyp41g2) was expressed in Escherichia coli HT115 (DE3). And then the bacterial suspension was fed to 14-20 days old spiderlings. The mRNA abundance of the target gene was significantly reduced after 3-day's ingestion of bacteria expressing dsRNA, and between day 5 and 7, RNAi efficiency remained stable. Thus, we selected 5 days as the optimum interference time. Furthermore, the bacteria resuspension containing 20 ng/μl dsRNA was selected as the optimum concentration. To evaluate the applicability of this method, three other genes with different tissue expression pattern were also selected as targets. And the mRNA abundance of all the four target genes was significantly reduced with RNAi efficiency between 66.0% and up to 86.9%. The results demonstrated that the oral delivery of bacteria expressing dsRNA would be an effective RNAi method for the gene functional study in P. pseudoannulata.
Collapse
Affiliation(s)
- N Hou
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Z Zhou
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y Chen
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | |
Collapse
|
12
|
Ren J, Peng ZK, Yang ZZ, Tian LX, Liu SN, Wang SL, Wu QJ, Xie W, Zhang YJ. Genome-wide identification and analysis of sulfatase and sulfatase modifying factor genes in Bemisia tabaci (Hemiptera: Aleyrodidae). INSECT SCIENCE 2021; 28:1541-1552. [PMID: 33399267 DOI: 10.1111/1744-7917.12898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The invasive pest whitefly (Bemisia tabaci) is a complex species, of which Middle East-Minor Asia 1 (MEAM1) and Mediterranean (MED) are the two most damaging members. Previous research showed that cabbage is frequently infested with MEAM1 but seldomly with MED, and this difference in performance is associated with glucosinolate (GS) content. Some insects can modify GS using glucosinolate sulfatase (SULF), the activity of which is regulated by sulfatase modifying factor 1 (SUMF1); therefore, to increase our understanding of different performances of MEAM1 and MED on cabbage plants, we identified and compared nine putative SULFs and one SUMF in MEAM1 and MED. We found that the lengths of two genes, BtSulf2 and BtSulf4, differed between MEAM1 and MED. The messenger RNA levels of BtSulf4 increased more than 20-fold after MEAM1 and MED adults were exposed to GS, but BtSulf2 expression was only induced by GS in MEAM1. Knockdown of BtSulf2 and BtSulf4 in MEAM1 resulted in a substantial increase in the mortality of GS-treated adults but not in MED. These results indicate that differences in BtSulf2 and BtSulf4 sequences and/or expression may explain why MEAM1 performs better than MED on cabbage. Our results provide a basis for future functional research on SULF and SUMF in B. tabaci.
Collapse
Affiliation(s)
- Jun Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zheng-Ke Peng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ze-Zhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li-Xia Tian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shao-Nan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shao-Li Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qing-Jun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - You-Jun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
13
|
Lu D, Yue H, Huang L, Zhang D, Zhang Z, Zhang Z, Zhang Y, Li F, Yan F, Zhou X, Shi X, Liu Y. Suppression of Bta11975, an α-glucosidase, by RNA interference reduces transmission of tomato chlorosis virus by Bemisia tabaci. PEST MANAGEMENT SCIENCE 2021; 77:5294-5303. [PMID: 34310017 DOI: 10.1002/ps.6572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Tomato chlorosis virus (ToCV) is mainly vectored by Bemisia tabaci in China, which has a worldwide distribution, and greatly reduces the yields of tomato and other vegetables. At present, control of ToCV has been focused mainly by the use of insecticides to control whitefly populations. Transcriptome sequencing showed high expression of the B. tabaci Bta11975 gene, an α-glucosidase (AGLU) during ToCV acquisition by whitefly Mediterranean (MED) species. To investigate the role of Bta11975 gene in ToCV acquisition and transmission by B. tabaci MED, we used RNA interference (RNAi) to reduce the expression of the Bta11975 gene. RESULTS The relative expression of the Bta11975 gene was correlated with the ToCV content in B. tabaci. The AGLU is highly expressed in primary salivary gland and gut. After the Bta11975 gene was silenced, the gene expression of B. tabaci was reduced and B. tabaci mortality was increased. Besides, ToCV acquisition by B. tabaci at 48 and 72 h AAP was reduced, and ToCV transmission was significantly reduced by 25 or 50 of B. tabaci. CONCLUSIONS These results indicate that suppression of expression of the Bta11975 gene in B. tabaci MED by RNAi can reduce acquisition and transmission of ToCV by B. tabaci MED.
Collapse
Affiliation(s)
- DingYiHui Lu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Hao Yue
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - LiPing Huang
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - DeYong Zhang
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - ZhanHong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Fei Yan
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - XuGuo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - XiaoBin Shi
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Liu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
14
|
Nitnavare RB, Bhattacharya J, Singh S, Kour A, Hawkesford MJ, Arora N. Next Generation dsRNA-Based Insect Control: Success So Far and Challenges. FRONTIERS IN PLANT SCIENCE 2021; 12:673576. [PMID: 34733295 PMCID: PMC8558349 DOI: 10.3389/fpls.2021.673576] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/22/2021] [Indexed: 06/02/2023]
Abstract
RNA interference (RNAi) is a method of gene silencing where dsRNA is digested into small interfering RNA (siRNA) in the presence of enzymes. These siRNAs then target homologous mRNA sequences aided by the RNA-induced silencing complex (RISC). The mechanism of dsRNA uptake has been well studied and established across many living organisms including insects. In insects, RNAi is a novel and potential tool to develop future pest management means targeting various classes of insects including dipterans, coleopterans, hemipterans, lepidopterans, hymenopterans and isopterans. However, the extent of RNAi in individual class varies due to underlying mechanisms. The present review focuses on three major insect classes viz hemipterans, lepidopterans and coleopterans and the rationale behind this lies in the fact that studies pertaining to RNAi has been extensively performed in these groups. Additionally, these classes harbour major agriculturally important pest species which require due attention. Interestingly, all the three classes exhibit varying levels of RNAi efficiencies with the coleopterans exhibiting maximum response, while hemipterans are relatively inefficient. Lepidopterans on the other hand, show minimum response to RNAi. This has been attributed to many facts and few important being endosomal escape, high activity dsRNA-specific nucleases, and highly alkaline gut environment which renders the dsRNA unstable. Various methods have been established to ensure safe delivery of dsRNA into the biological system of the insect. The most common method for dsRNA administration is supplementing the diet of insects via spraying onto leaves and other commonly eaten parts of the plant. This method is environment-friendly and superior to the hazardous effects of pesticides. Another method involves submergence of root systems in dsRNA solutions and subsequent uptake by the phloem. Additionally, more recent techniques are nanoparticle- and Agrobacterium-mediated delivery systems. However, due to the novelty of these biotechnological methods and recalcitrant nature of certain crops, further optimization is required. This review emphasizes on RNAi developments in agriculturally important insect species and the major hurdles for efficient RNAi in these groups. The review also discusses in detail the development of new techniques to enhance RNAi efficiency using liposomes and nanoparticles, transplastomics, microbial-mediated delivery and chemical methods.
Collapse
Affiliation(s)
- Rahul B. Nitnavare
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Department of Plant Science, Rothamsted Research, Harpenden, United Kingdom
| | - Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Satnam Singh
- Punjab Agricultural University (PAU), Regional Research Station, Faridkot, India
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Amardeep Kour
- Punjab Agricultural University (PAU), Regional Research Station, Bathinda, India
| | | | - Naveen Arora
- Department of Genetics and Plant Breeding, Punjab Agricultural University (PAU), Ludhiana, India
| |
Collapse
|
15
|
Du T, Fu B, Wei X, Yin C, Yang J, Huang M, Liang J, Gong P, Liu S, Xue H, Hu J, Diao Y, Gui L, Yang X, Zhang Y. Knockdown of UGT352A5 decreases the thiamethoxam resistance in Bemisia tabaci (Hemiptera: Gennadius). Int J Biol Macromol 2021; 186:100-108. [PMID: 34245734 DOI: 10.1016/j.ijbiomac.2021.07.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Uridine diphosphate (UDP)-glycosyltransferases (UGTs), which are major phase II detoxification enzymes, have been implicated in the glycosylation of lipophilic endobiotics and xenobiotics and thus potentially lead to the evolution of insecticide resistance. In this study, we identified and cloned two putative UGT genes from transcriptome data which are named UGT352A4 and UGT352A5. As demonstrated by qRT-PCR, two UGT genes were over-expressed in the thiamethoxam-resistant (THQR) strain relative to the susceptible (THQS) strain. Moreover, the induction experiment revealed that the expression of the UGT352A5 gene was significantly increased following exposure to thiamethoxam in the THQR strain. Furthermore, the expression of both UGT352A4 and UGT352A5 was downregulated after RNA interference, whereas only the silencing of UGT352A5 resulted in a noticeable increase in the mortality of THQR adults. Our results represent the first line of evidence showing that UGT352A5 might be responsible for conferring thiamethoxam resistance in B. tabaci. The results will be shed new insights for obtaining a better understanding of the role of UGTs in the evolution of insecticide resistance and developing new insect resistance management tactics within the sustainable integrated pest management framework.
Collapse
Affiliation(s)
- Tianhua Du
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China; Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Buli Fu
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China; The Ministry of Agriculture and Rural Affairs, Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Xuegao Wei
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Cheng Yin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jing Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Mingjiao Huang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jinjin Liang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Peipan Gong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shaonan Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hu Xue
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jinyu Hu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yongchao Diao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lianyou Gui
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Youjun Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China; Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
16
|
Tomato Chlorosis Virus Infection Facilitates Bemisia tabaci MED Reproduction by Elevating Vitellogenin Expression. INSECTS 2021; 12:insects12020101. [PMID: 33503981 PMCID: PMC7911321 DOI: 10.3390/insects12020101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/05/2022]
Abstract
Simple Summary The sweet potato whitefly, Bemisia tabaci, is a polyphagous, global invasive insect pest. It can damage vegetables and crops directly by feeding and indirectly by transmitting plant viruses. Previously, we showed that virus infection of host plants can promote B. tabaci MED (Q biotype) reproduction. Here, using a whitefly-tomato chlorosis virus (ToCV)-tomato system, we investigated how ToCV modulates B. tabaci reproduction to facilitate its spread. ToCV infection significantly increased whitefly fecundity and the relative expression of vitellogenin gene (Vg). Both ovarian development and fecundity of whitefly were suppressed when Vg expression was silenced with or without ToCV infection. These combined results reveal that ToCV infection increases B. tabaci MED fecundity via elevated vitellogenin gene expression. Abstract Transmission of plant pathogenic viruses mostly relies on insect vectors. Plant virus could enhance its transmission by modulating the vector. Previously, we showed that feeding on virus infected plants can promote the reproduction of the sweet potato whitefly, Bemisia tabaci MED (Q biotype). In this study, using a whitefly-Tomato chlorosis virus (ToCV)-tomato system, we investigated how ToCV modulates B. tabaci MED reproduction to facilitate its spread. Here, we hypothesized that ToCV-infected tomato plants would increase B. tabaci MED fecundity via elevated vitellogenin (Vg) gene expression. As a result, fecundity and the relative expression of B. tabaci MED Vg was measured on ToCV-infected and uninfected tomato plants on days 4, 8, 12, 16, 20 and 24. The role of Vg on B. tabaci MED reproduction was examined in the presence and absence of ToCV using dietary RNAi. ToCV infection significantly increased B. tabaci MED fecundity on days 12, 16 and 20, and elevated Vg expression on days 8, 12 and 16. Both ovarian development and fecundity of B. tabaci MED were suppressed when Vg was silenced with or without ToCV infection. These combined results suggest that ToCV infection increases B. tabaci MED fecundity via elevated Vg expression.
Collapse
|
17
|
Liu Y, Yang J, Huo Z, Wang S, Wu Q, Zhou X, Xie W, Zhang Y. Characteristic and Functional Study of Intersex, a Gene Related to Female Fertility in Bemisia tabaci. Front Physiol 2020; 11:55. [PMID: 32158397 PMCID: PMC7052062 DOI: 10.3389/fphys.2020.00055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
The intersex (ix) gene acts in concert with doublesex (dsx) at the end of the sex determination hierarchy to control somatic sexual differentiation in Drosophila melanogaster. Here, we report the Drosophila ix homolog in Bemisia tabaci (Btix) with differential splicing events. Four isoforms were found in B. tabaci adults, including two sex-specific transcripts (BtixF and BtixM). Knockdown of Btix had no measurable effects on female morphological phenotypes but reduced the expression of the vitellogenin gene and resulted in the production of significantly fewer eggs, a lower eclosion rate, and a shorter body size of female progeny in comparison with control females. These results increase our understanding of the genes underlying sex determination in B. tabaci and reveal a potential target for RNA interference-based pest management.
Collapse
Affiliation(s)
- Yating Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinjian Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhijia Huo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Wang R, Hu Y, Wei P, Qu C, Luo C. Molecular and Functional Characterization of One Odorant-Binding Protein Gene OBP3 in Bemisia tabaci (Hemiptera: Aleyrodidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:299-305. [PMID: 31599328 DOI: 10.1093/jee/toz248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Odorant binding proteins (OBPs) of insects play a critical role in chemical perceptions and choice of insect host plant. Bemisia tabaci is a notorious insect pest which can damage more than 600 plant species. In order to explore functions of OBPs in B. tabaci, here we investigated binding characteristics and function of odorant-binding protein 3 in B. tabaci (BtabOBP3). The results indicated that BtabOBP3 shows highly similar sequence with OBPs of other insects, including the typical signature motif of six cysteines. The recombinant BtabOBP3 protein was obtained, and the evaluation of binding affinities to tested volatiles of host plant was conducted, then the results indicated that β-ionone had significantly higher binding to BtabOBP3 among other tested plant volatiles. Furthermore, silencing of BtabOBP3 significantly altered choice behavior of B. tabaci to β-ionone. In conclusion, it has been demonstrated that BtabOBP3 exerts function as one carrier of β-ionone and the results could be contributed to reveal the mechanisms of choosing host plant in B. tabaci.
Collapse
Affiliation(s)
- Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| | - Yuan Hu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| | - Peiling Wei
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| | - Cheng Qu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| | - Chen Luo
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| |
Collapse
|
19
|
Kunte N, McGraw E, Bell S, Held D, Avila LA. Prospects, challenges and current status of RNAi through insect feeding. PEST MANAGEMENT SCIENCE 2020; 76:26-41. [PMID: 31419022 DOI: 10.1002/ps.5588] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/21/2019] [Accepted: 08/13/2019] [Indexed: 05/06/2023]
Abstract
RNA interference is a phenomenon in which the introduction of double-stranded RNA (dsRNA) into cells triggers the degradation of the complementary messenger RNA in a sequence-specific manner. Suppressing expression of vital genes could lead to insect death, therefore this technology has been considered as a potential strategy for insect pest control. There are three main routes of dsRNA administration into insects: (i) injections to the hemolymph, (ii) topical, and (iii) feeding. In this review, we focus on dsRNA administration through feeding. We summarize novel strategies that have been developed to improve the efficacy of this method, such as the use of nano-based formulations, engineered microorganisms, and transgenic plants. We also expose the hurdles that have to be overcome in order to use this technique as a reliable pest management method. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nitish Kunte
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Erin McGraw
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Sydney Bell
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - David Held
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Luz-Adriana Avila
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
20
|
Tian L, Zeng Y, Xie W, Wu Q, Wang S, Zhou X, Zhang Y. Genome-wide identification and analysis of genes associated with RNA interference in Bemisia tabaci. PEST MANAGEMENT SCIENCE 2019; 75:3005-3014. [PMID: 30891929 DOI: 10.1002/ps.5415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/10/2019] [Accepted: 03/16/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND As a method of RNA-mediated gene silencing, RNA interference (RNAi) is a useful reverse genetic tool with which to study gene function, and holds great promise for pest management. Bemisia tabaci is a cosmopolitan pest that causes extensive damage to crops. The mechanism underlying RNAi efficiency in B. tabaci is not well known. We identified and analyzed candidate genes in the RNAi pathway to understand the RNAi mechanism and provide a basis for the application of RNAi in pest management. RESULTS We identified 33 genes putatively involved in the RNAi pathway from the B. tabaci Q genome. Phylogenetic and structural analyses confirmed the characteristics of these genes. Furthermore, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and transcriptomic analysis profiled gene expression patterns during different developmental stages. Gene expression levels estimated by qRT-PCR and RNA-seq analyses were significantly correlated. Moreover, gene functions were verified by RNAi. When accompanied by knockdown of AGO2, Dicer2 and Sid1, the efficiency of CYP6DB3 RNAi decreased correspondingly. CONCLUSION In this study, we annotated and validated genes involved in B. tabaci RNAi. A better understanding of the building blocks of the RNAi process in B. tabaci facilitates integration of this novel biotechnology into the management of this emerging pest, either directly or indirectly. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixia Tian
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Zeng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Silencing of Odorant-Binding Protein Gene OBP3 Using RNA Interference Reduced Virus Transmission of Tomato Chlorosis Virus. Int J Mol Sci 2019; 20:ijms20204969. [PMID: 31600869 PMCID: PMC6834158 DOI: 10.3390/ijms20204969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 11/17/2022] Open
Abstract
Tomato chlorosis virus (ToCV) is widespread, seriously impacting tomato production throughout the world. ToCV is semi-persistently transmitted by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Currently, insect olfaction is being studied to develop novel pest control technologies to effectively control B. tabaci and whitefly-borne virus diseases. Despite current research efforts, no report has been published on the role of odorant-binding proteins (OBPs) in insect preference under the influence of plant virus. Our previous research showed that viruliferous B. tabaci preferred healthy plants at 48 h after virus acquisition. In this study, we determined the effect of OBPs on the host preference interactions of ToCV and whiteflies. Our results show that with the increase in acquisition time, the OBP gene expressions changed differently, and the OBP3 gene expression showed a trend of first rising and then falling, and reached the maximum at 48 h. These results indicate that OBP3 may participate in the host preference of viruliferous whiteflies to healthy plants. When the expression of the OBP3 gene was knocked down by an RNA interference (RNAi) technique, viruliferous Mediterranean (MED) showed no preference and the ToCV transmission rate was reduced by 83.3%. We conclude that OBP3 is involved in the detection of plant volatiles by viruliferous MED. Our results provide a theoretical basis and technical support for clarifying the transmission mechanism of ToCV by B. tabaci and could provide new avenues for controlling this plant virus and its vectors.
Collapse
|
22
|
He C, Liang J, Liu S, Wang S, Wu Q, Xie W, Zhang Y. Changes in the expression of four ABC transporter genes in response to imidacloprid in Bemisia tabaci Q (Hemiptera: Aleyrodidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:136-143. [PMID: 30744887 DOI: 10.1016/j.pestbp.2018.11.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 05/20/2023]
Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), a globally invasive species complex that causes serious damage to field crops, has developed resistance to imidacloprid and many other pesticides. Insect detoxify to pesticides may partially depend on ABC transporters, which contribute to the detoxification of xenobiotics. To determine whether genes in the ABCG subfamily are involved in imidacloprid detoxification in B. tabaci Q, we cloned four ABCG subfamily genes based on the published MED/Q genome and on our previous study of the transcriptional response of ABC transporters in B. tabaci Q adults to imidacloprid. As indicated by the quantification of mRNA levels after a 6-h exposure, the expression level of ABCG3 was 3.3-fold higher in B. tabaci Q adults exposed to 100 μg/mL imidacloprid rather than to the buffer control. The expression level of ABCG3 was higher in females than in males but did not significantly differ among eggs or nymphal stages and did not significantly differ among head, thorax, and abdomen tissues of adults. Knockdown of ABCG3 via RNA interference significantly increased the mortality of imidacloprid-treated laboratory and field-collected adults of B. tabaci Q. These results indicate that the ABCG3 gene may be involved in imidacloprid detoxification by B. tabaci Q.
Collapse
Affiliation(s)
- Chao He
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jinjin Liang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, PR China
| | - Shaonan Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
23
|
He C, Xie W, Yang X, Wang SL, Wu QJ, Zhang YJ. Identification of glutathione S-transferases in Bemisia tabaci (Hemiptera: Aleyrodidae) and evidence that GSTd7 helps explain the difference in insecticide susceptibility between B. tabaci Middle East-Minor Asia 1 and Mediterranean. INSECT MOLECULAR BIOLOGY 2018; 27:22-35. [PMID: 28767183 DOI: 10.1111/imb.12337] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae) species complex includes invasive and destructive pests of field crops, and the sibling species MEAM1 and MED are its two most damaging members. Previous research indicated that the replacement of Middle East-Minor Asia 1 (MEAM1) by Mediterranean (MED) as the dominant B. tabaci species in China can be mainly attributed to MED's greater tolerance to insecticides. Glutathione S-transferases (GSTs) play important roles in the detoxification of hydrophobic toxic compounds. To increase our understanding of differences in insecticide resistance between B. tabaci MEAM1 and MED, we searched the genomic and transcriptomic databases and identified 23 putative GSTs in both B. tabaci MEAM1 and MED. Through measuring mRNA levels of 18 of the GSTs after B. tabaci MEAM1 and MED adults were exposed to the insecticide imidacloprid, we found that the expression levels were increased more in B. tabaci MED than in MEAM1 (in particular, the expression level of GST-d7 was increased by 4.39-fold relative to the control). Knockdown of GST-d7 in B. tabaci MED but not in B. tabaci MEAM1 resulted in a substantial increase in the mortality of imidacloprid-treated adults. These results indicate that differences in GST-d7 may help explain why insecticide tolerance is greater in B. tabaci MED than in B. tabaci MEAM1.
Collapse
Affiliation(s)
- C He
- College of Plant Protection of Hunan Agricultural University, Changsha, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - W Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - X Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - S-L Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Q-J Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y-J Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|