1
|
Zhang HR, Wang YH, Xiao ZP, Yang G, Xu YR, Huang ZT, Wang WZ, He F. E3 ubiquitin ligases: key regulators of osteogenesis and potential therapeutic targets for bone disorders. Front Cell Dev Biol 2024; 12:1447093. [PMID: 39211390 PMCID: PMC11358089 DOI: 10.3389/fcell.2024.1447093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitination is a crucial post-translational modification of proteins that mediates the degradation or functional regulation of specific proteins. This process participates in various biological processes such as cell growth, development, and signal transduction. E3 ubiquitin ligases play both positive and negative regulatory roles in osteogenesis and differentiation by ubiquitination-mediated degradation or stabilization of transcription factors, signaling molecules, and cytoskeletal proteins. These activities affect the proliferation, differentiation, survival, and bone formation of osteoblasts (OBs). In recent years, advances in genomics, transcriptomics, and proteomics have led to a deeper understanding of the classification, function, and mechanisms of action of E3 ubiquitin ligases. This understanding provides new insights and approaches for revealing the molecular regulatory mechanisms of bone formation and identifying therapeutic targets for bone metabolic diseases. This review discusses the research progress and significance of the positive and negative regulatory roles and mechanisms of E3 ubiquitin ligases in the process of osteogenic differentiation. Additionally, the review highlights the role of E3 ubiquitin ligases in bone-related diseases. A thorough understanding of the role and mechanisms of E3 ubiquitin ligases in osteogenic differentiation could provide promising therapeutic targets for bone tissue engineering based on stem cells.
Collapse
Affiliation(s)
- Heng-Rui Zhang
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Yang-Hao Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhen-Ping Xiao
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
- Department of Pain and Rehabilitation, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Guang Yang
- Department of Trauma Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yun-Rong Xu
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Zai-Tian Huang
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Wei-Zhou Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| |
Collapse
|
2
|
Fan X, Zhang R, Xu G, Fan P, Luo W, Cai C, Ge RL. Role of ubiquitination in the occurrence and development of osteoporosis (Review). Int J Mol Med 2024; 54:68. [PMID: 38940355 PMCID: PMC11232666 DOI: 10.3892/ijmm.2024.5392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
The ubiquitin (Ub)‑proteasome system (UPS) plays a pivotal role in maintaining protein homeostasis and function to modulate various cellular processes including skeletal cell differentiation and bone homeostasis. The Ub ligase E3 promotes the transfer of Ub to the target protein, especially transcription factors, to regulate the proliferation, differentiation and survival of bone cells, as well as bone formation. In turn, the deubiquitinating enzyme removes Ub from modified substrate proteins to orchestrate bone remodeling. As a result of abnormal regulation of ubiquitination, bone cell differentiation exhibits disorder and then bone homeostasis is affected, consequently leading to osteoporosis. The present review discussed the role and mechanism of UPS in bone remodeling. However, the specific mechanism of UPS in the process of bone remodeling is still not fully understood and further research is required. The study of the mechanism of action of UPS can provide new ideas and methods for the prevention and treatment of osteoporosis. In addition, the most commonly used osteoporosis drugs that target ubiquitination processes in the clinic are discussed in the current review.
Collapse
Affiliation(s)
- Xiaoxia Fan
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
- Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China
| | - Rong Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Guocai Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Peiyun Fan
- Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China
| | - Wei Luo
- Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China
| | - Chunmei Cai
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| |
Collapse
|
3
|
Helmy Mohamed A, Noureldin Hassan A, Hussein Abdel Hay N, Fouad Ahmed M, El Sawy MM, Sonbol MM, Hussein Mohamed R. The potential role of SNHG16/ miRNA-146a/ TRAF6 signaling pathway in the protective effect of zoledronate against colorectal cancer and associated osteoporosis in mouse model. Int Immunopharmacol 2024; 133:112125. [PMID: 38657499 DOI: 10.1016/j.intimp.2024.112125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Bone fracture as a consequence of colorectal cancer (CRC) and associated osteoporosis (OP) is considered a risk factor for increasing the mortality rate among CRC patients. SNHG16/ miRNA-146a/ TRAF6 signaling pathway is a substantial contributor to neoplastic evolution, progression, and metastasis. Here, we investigated the effect of zoledronate (ZOL) on the growth of CRC and associated OP in a mouse model. Thirty Balb/c mice were divided into Naïve, azoxymethane (AOM)/dextran sodium sulfate (DSS), and ZOL groups. Body weight and small nucleolar RNA host gene 16 (SNHG16) expression, microRNA-146a, and TRAF6 in bone, colon, and stool were investigated. Samples of colon and bone were collected and processed for light microscopic, immunohistochemical staining for cytokeratin 20 (CK20), nuclear protein Ki67 (pKi-67), and caudal type homeobox transcription factor 2 (CDx2) in colon and receptor activator of nuclear factor kB (RANK) and osteoprotegerin (OPG) in bone. A computerized tomography (CT) scan of the femur and tibia was studied. ZOL produced a significant decrease in the expression of SNHG16 and TRAF6 and an increase in miRNA-146a in the colon and bone. ZOL administration improved the histopathological changes in the colon, produced a significant decrease in CK20 and Ki-67, and increased CDx2 expressions. In bone, ZOL prevented osteoporotic changes and tumour cell invasion produced a significant decrease in RANK and an increase in OPG expressions, alongside improved bone mineral density in CT scans. ZOL could be a promising preventive therapy against colitis-induced cancer and associated OP via modulation expression of SNHG16, miRNA-146a, and TRAF6.
Collapse
Affiliation(s)
- Amany Helmy Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Noureldin Hassan
- Department of Pharmacology, Faculty of Medicine, Galala University, Al Galala, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesma Hussein Abdel Hay
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manar Fouad Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa M El Sawy
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed M Sonbol
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reham Hussein Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
Zhang J, Bai H, Bai M, Wang X, Li Z, Xue H, Wang J, Cui Y, Wang H, Wang Y, Zhou R, Zhu X, Xu M, Zhao X, Liu H. Bisphosphonate-incorporated coatings for orthopedic implants functionalization. Mater Today Bio 2023; 22:100737. [PMID: 37576870 PMCID: PMC10413202 DOI: 10.1016/j.mtbio.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Bisphosphonates (BPs), the stable analogs of pyrophosphate, are well-known inhibitors of osteoclastogenesis to prevent osteoporotic bone loss and improve implant osseointegration in patients suffering from osteoporosis. Compared to systemic administration, BPs-incorporated coatings enable the direct delivery of BPs to the local area, which will precisely enhance osseointegration and bone repair without the systemic side effects. However, an elaborate and comprehensive review of BP coatings of implants is lacking. Herein, the cellular level (e.g., osteoclasts, osteocytes, osteoblasts, osteoclast precursors, and bone mesenchymal stem cells) and molecular biological regulatory mechanism of BPs in regulating bone homeostasis are overviewed systematically. Moreover, the currently available methods (e.g., chemical reaction, porous carriers, and organic material films) of BP coatings construction are outlined and summarized in detail. As one of the key directions, the latest advances of BP-coated implants to enhance bone repair and osseointegration in basic experiments and clinical trials are presented and critically evaluated. Finally, the challenges and prospects of BP coatings are also purposed, and it will open a new chapter in clinical translation for BP-coated implants.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haotian Bai
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Miao Bai
- Department of Ocular Fundus Disease, Ophthalmology Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiaonan Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - ZuHao Li
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haowen Xue
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jincheng Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yutao Cui
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Hui Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yanbing Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Rongqi Zhou
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiujie Zhu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Mingwei Xu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xin Zhao
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - He Liu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
5
|
Ma C, Yu R, Li J, Chao J, Liu P. Targeting proteostasis network in osteoporosis: Pathological mechanisms and therapeutic implications. Ageing Res Rev 2023; 90:102024. [PMID: 37532006 DOI: 10.1016/j.arr.2023.102024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
As the most common bone disease, osteoporosis (OP) increases bone fragility and makes patients more vulnerable to the threat of osteoporotic fractures. With the ageing population in today's society, OP has become a huge and growing public health problem. Unfortunately, the clear pathogenesis of OP is still under exploration, and effective interventions are still scarce. Therefore, exploring new targets for pharmacological interventions to develop promising therapeutic drugs for OP is of great clinical value. Previous studies have shown that normal bone remodeling depends on proteostasis, whereas loss of proteostasis during ageing leads to the dysfunctional proteostasis network (PN) that fails to maintain bone homeostasis. Nevertheless, only a few studies have revealed the pathophysiological relationship between bone metabolism and a single component of PN, yet the role of PN as a whole in the pathogenesis of OP is still under investigation. This review comprehensively summarized the role of PN in the pathogenesis of OP and further discussed the potential of PN as innovative drug targets for the therapy of OP.
Collapse
Affiliation(s)
- Cong Ma
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China; Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ronghui Yu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Junhong Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiashuo Chao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ping Liu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| |
Collapse
|
6
|
Quarterman JC, Phruttiwanichakun P, Fredericks DC, Salem AK. Zoledronic Acid Implant Coating Results in Local Medullary Bone Growth. Mol Pharm 2022; 19:4654-4664. [PMID: 36378992 PMCID: PMC9727731 DOI: 10.1021/acs.molpharmaceut.2c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Osteoarthritis (OA) can necessitate surgical interventions to restore the function of the joint in severe cases. Joint replacement surgery is one of the procedures implemented to replace the damaged joint with prosthetic implants in severe cases of OA. However, after successful implantation, a fraction of OA patients still require revision surgery due to aseptic prosthetic loosening. Insufficient osseointegration is one of the factors that contribute to such loosening of the bone implant, which is commonly made from titanium-based materials. Zoledronic acid (ZA), a potent bisphosphonate agent, has been previously shown to enhance osseointegration of titanium implants. Herein, we fabricated ZA/Ca composites using a reverse microemulsion method and coated them with 1,2-dioleoyl-sn-glycero-3-phosphate monosodium salt (DOPA) to form ZA/Ca/DOPA composites. Titanium alloy screws were subsequently dip-coated with a suspension of the ZA/Ca/DOPA composites and poly(lactic-co-glycolic) acid (PLGA) in chloroform to yield Za/PLGA-coated screws. The coated screws exhibited a biphasic in vitro release profile with an initial burst release within 48 h, followed by a sustained release over 1 month. To assess their performance in vivo, the Za/PLGA screws were then implanted into the tibiae of Sprague-Dawley rats. After 8 weeks, microCT imaging showed new bone growth along the medullary cavity around the implant site, supporting the local release of ZA to enhance bone growth around the implant. Histological staining further confirmed the presence of new mineralized medullary bone growth resembling the cortical bone. Such local medullary growth represents an opportunity for future studies with alternative coating methods to fine-tune the local release of ZA from the coating and enhance complete osseointegration of the implant.
Collapse
Affiliation(s)
- Juliana C. Quarterman
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Pornpoj Phruttiwanichakun
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Douglas C. Fredericks
- The
Bone Healing Research Laboratory, Department of Orthopedics and Rehabilitation,
Carver College of Medicine, University of
Iowa, Iowa City, Iowa 52242, United
States
| | - Aliasger K. Salem
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States,
| |
Collapse
|
7
|
E3 Ubiquitin Ligases: Potential Therapeutic Targets for Skeletal Pathology and Degeneration. Stem Cells Int 2022; 2022:6948367. [PMID: 36203882 PMCID: PMC9532118 DOI: 10.1155/2022/6948367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
The ubiquitination-proteasome system (UPS) is crucial in regulating a variety of cellular processes including proliferation, differentiation, and survival. Ubiquitin protein ligase E3 is the most critical molecule in the UPS system. Dysregulation of the UPS system is associated with many conditions. Over the past few decades, there have been an increasing number of studies focusing on the UPS system and how it affects bone metabolism. Multiple E3 ubiquitin ligases have been found to mediate osteogenesis or osteolysis through a variety of pathways. In this review, we describe the mechanisms of UPS, especially E3 ubiquitin ligases on bone metabolism. To date, many E3 ubiquitin ligases have been found to regulate osteogenesis or osteoclast differentiation. We review the classification of these E3 enzymes and the mechanisms that influence upstream and downstream molecules and transduction pathways. Finally, this paper reviews the discovery of the relevant UPS inhibitors, drug molecules, and noncoding RNAs so far and prospects the future research and treatment.
Collapse
|
8
|
Xu K, Chu Y, Liu Q, Fan W, He H, Huang F. NEDD4 E3 Ligases: Functions and Mechanisms in Bone and Tooth. Int J Mol Sci 2022; 23:ijms23179937. [PMID: 36077334 PMCID: PMC9455957 DOI: 10.3390/ijms23179937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Protein ubiquitination is a precisely controlled enzymatic cascade reaction belonging to the post-translational modification of proteins. In this process, E3 ligases catalyze the binding of ubiquitin (Ub) to protein substrates and define specificity. The neuronally expressed developmentally down-regulated 4 (NEDD4) subfamily, belonging to the homology to E6APC terminus (HECT) class of E3 ligases, has recently emerged as an essential determinant of multiple cellular processes in different tissues, including bone and tooth. Here, we place special emphasis on the regulatory role of the NEDD4 subfamily in the molecular and cell biology of osteogenesis. We elucidate in detail the specific roles, downstream substrates, and upstream regulatory mechanisms of the NEDD4 subfamily. Further, we provide an overview of the involvement of E3 ligases and deubiquitinases in the development, repair, and regeneration of another mineralized tissue—tooth.
Collapse
Affiliation(s)
- Ke Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Yanhao Chu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Qin Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
- Correspondence: (H.H.); (F.H.)
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
- Correspondence: (H.H.); (F.H.)
| |
Collapse
|
9
|
Read OJ, Harrison DJ. Silencing Itch in human peripheral blood monocytes promotes their differentiation into osteoclasts. Mol Biol Rep 2022; 49:9113-9119. [PMID: 35793050 PMCID: PMC9463264 DOI: 10.1007/s11033-022-07726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022]
Abstract
Introduction Two clinical case reports of humans with mutations in Itch reported distinct morphological defects such as stunted growth, macrocephaly, and dysmorphic features indicating a role for Itch in bone remodelling. Studies in mice have found that the encoded E3 ubiquitin ligase acts as a negative regulator of osteoclastogenesis, however no studies have investigated whether this is translatable to a human model. Experimental procedures Human peripheral blood monocytes were separated from whole blood and grown in M-CSF containing media. Media was later supplemented with RANKL to promote osteoclast differentiation. Transient siRNA-mediated Itch knockdown (si-Itch) in monocytes was verified by qPCR and western blot to confirm reduction in both Itch mRNA and protein respectively. Monocytes were aliquoted onto 96-well plates where confluence and osteoclast formation were analysed using automated cytometry analysis before and after staining for tartrate resistant acid phosphatase activity (TRAP). Cells were also stained with Hoechst33342 to look for multinucleate cells. Results Cells treated with si-Itch showed an 80% knockdown in Itch mRNA and > 75% reduction in protein. Following the 7-day differentiation period, si-Itch caused a 47% increase in multinucleate cells and a 17% increase in numbers of large cellular bodies and, indicating an overall increase in mature osteoclast formation. Conclusions Our preliminary data shows silencing Itch expression increases the potential of primary human monocytes to differentiate into osteoclast-like cells in vitro. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07726-1.
Collapse
Affiliation(s)
- O J Read
- Pathology Department, School of Medicine, University of St Andrews, St Andrews, UK.
| | - D J Harrison
- Pathology Department, School of Medicine, University of St Andrews, St Andrews, UK
| |
Collapse
|
10
|
Tao J, Srinivasan V, Yi X, Zhao Y, Zhang H, Lin X, Zhou X, Boyce BF, Villalta PW, Ebetino FH, Ho KK, Boeckman RK, Xing L. Bone-Targeted Bortezomib Inhibits Bortezomib-Resistant Multiple Myeloma in Mice by Providing Higher Levels of Bortezomib in Bone. J Bone Miner Res 2022; 37:629-642. [PMID: 34970782 PMCID: PMC9018514 DOI: 10.1002/jbmr.4496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/10/2022]
Abstract
Limited treatment options exist for cancer within the bone, as demonstrated by the inevitable, pernicious course of metastatic and blood cancers. The difficulty of eliminating bone-residing cancer, especially drug-resistant cancer, necessitates novel, alternative treatments to manipulate tumor cells and their microenvironment, with minimal off-target effects. To this end, bone-targeted conjugate (BP-Btz) was generated by linking bortezomib (Btz, an anticancer, bone-stimulatory drug) to a bisphosphonate (BP, a targeting ligand) through a cleavable linker that enables spatiotemporally controlled delivery of Btz to bone under acidic conditions for treating multiple myeloma (MM). Three conjugates with different linkers were developed and screened for best efficacy in mouse model of MM. Results demonstrated that the lead candidate BP-Btz with optimal linker could overcome Btz resistance, reduced tumor burden, bone destruction, or tumor metastasis more effectively than BP or free Btz without thrombocytopenia and neurotoxicity in mice bearing myeloma. Furthermore, pharmacokinetic and pharmacodynamic studies showed that BP-Btz bound to bone matrix, released Btz in acidic conditions, and had a higher local concentration and longer half-life than Btz in bone. Our findings suggest the potential of bone-targeted Btz conjugate as an efficacious Btz-resistant MM treatment mechanism. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jianguo Tao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Venkat Srinivasan
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Xiangjiao Yi
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yingchun Zhao
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Xi Lin
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Xichao Zhou
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Frank H Ebetino
- Department of Chemistry, University of Rochester, Rochester, NY, USA.,BioVinc, Pasadena, CA, USA
| | - Koc Kan Ho
- Ionova Life Science Co., Ltd, Shenzhen, China
| | - Robert K Boeckman
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
11
|
Huang XL, Liu C, Shi XM, Cheng YT, Zhou Q, Li JP, Liao J. Zoledronic acid inhibits osteoclastogenesis and bone resorptive function by suppressing RANKL‑mediated NF‑κB and JNK and their downstream signalling pathways. Mol Med Rep 2021; 25:59. [PMID: 34935053 PMCID: PMC8711024 DOI: 10.3892/mmr.2021.12575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/23/2021] [Indexed: 11/06/2022] Open
Abstract
Targeting excessive osteoclast differentiation and activity is considered a valid therapeutic approach for osteoporosis. Zoledronic acid (ZOL) plays a pivotal role in regulating bone mineral density. However, the exact molecular mechanisms responsible for the inhibitory effects of ZOL on receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced osteoclast formation are not entirely clear. The present study aimed to investigate the role of ZOL in osteoclast differentiation and function, and to determine whether NF-κB and mitogen-activated protein kinase, and their downstream signalling pathways, are involved in this process. RAW264.7 cells were cultured with RANKL for differentiation into osteoclasts, in either the presence or absence of ZOL. Osteoclast formation was observed by tartrate-resistant acid phosphatase staining and bone resorption pit assays using dentine slices. The expression of osteoclast-specific molecules was analysed using reverse transcription-quantitative polymerase chain reaction and western blotting assays to deduce the molecular mechanisms underlying the role of ZOL in osteoclastogenesis. The results showed that ZOL significantly attenuated osteoclastogenesis and bone resorptive capacity in vitro. ZOL also suppressed the activation of NF-κB and the phosphorylation of c-Jun N-terminal kinase. Furthermore, it inhibited the expression of the downstream factors c-Jun, c-Fos and nuclear factor of activated T cells c1, thereby decreasing the expression of dendritic cell-specific transmembrane protein and other osteoclast-specific markers. In conclusion, ZOL may have therapeutic potential for osteoporosis.
Collapse
Affiliation(s)
- Xiao-Lin Huang
- Stomatology Medical Center of Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Chao Liu
- Department of Respiratory Disease, Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Xue-Mei Shi
- Stomatology Medical Center of Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Yu-Ting Cheng
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Qian Zhou
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jian-Ping Li
- Stomatology Medical Center of Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Jian Liao
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
12
|
Lin X, Wang W, McDavid A, Xu H, Boyce BF, Xing L. The E3 ubiquitin ligase Itch limits the progression of post-traumatic osteoarthritis in mice by inhibiting macrophage polarization. Osteoarthritis Cartilage 2021; 29:1225-1236. [PMID: 33940137 PMCID: PMC8319075 DOI: 10.1016/j.joca.2021.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is characterized by articular cartilage loss, associated with synovial inflammation. We recently reported increased pro-inflammatory macrophages in murine post-traumatic OA (PTOA) joints, and blockade of the ubiquitin-proteasome system alleviates PTOA progression. However, the mechanisms whereby protein ubiquitination influences PTOA pathology are not well studied. We hypothesized that loss of the negative regulator of inflammation, E3 ligase Itch, in macrophages contributes to joint OA tissue damage by promoting pro-inflammatory polarization of macrophages. METHODS Mice deficient Itch in macrophages (MΔItch) were generated by crossing Itchfl/fl mice with LysM-Cre mice. PTOA surgery was performed on global Itch knockout, Itch-/-, mice and MΔItch mice. Joint tissue damage and synovial macrophages were examined. Itch-/- cells were treated with IL-1 and pro-inflammatory polarization was determined. Expression of Itch protein and mRNA in PTOA synovium were assessed at different time points post PTOA. RESULTS Similar to Itch-/- mice, MΔItch mice developed more severe joint damage than control mice following PTOA surgery (mean difference of OARSI score: 1.17 (95% CI 0.31-2.03) between MΔItch and Itchfl/fl mice), accompanied by increased the inflammatory macrophage infiltration in the synovium (mean difference of % F4/80 + CD86 + CD36-inflammatory macrophages: 14.81 (95% CI 8.90-20.73) between MΔItch and Itchfl/fl mice). Itch-/- macrophages exerted pro-inflammatory phenotype in response to IL-1β treatment. Itch protein, but not mRNA levels decreased during PTOA progression. CONCLUSION The negative regulator of inflammation, Itch, limits PTOA progression by inhibiting macrophage pro-inflammatory polarization. Itch protein degradation may contribute to PTOA pathology.
Collapse
Affiliation(s)
- X Lin
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - W Wang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - A McDavid
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - H Xu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - B F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - L Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
13
|
Wang L, Fang D, Xu J, Luo R. Various pathways of zoledronic acid against osteoclasts and bone cancer metastasis: a brief review. BMC Cancer 2020; 20:1059. [PMID: 33143662 PMCID: PMC7607850 DOI: 10.1186/s12885-020-07568-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Zoledronic acid (ZA) is one of the most important and effective class of anti-resorptive drug available among bisphosphonate (BP), which could effectively reduce the risk of skeletal-related events, and lead to a treatment paradigm for patients with skeletal involvement from advanced cancers. However, the exact molecular mechanisms of its anticancer effects have only recently been identified. In this review, we elaborate the detail mechanisms of ZA through inhibiting osteoclasts and cancer cells, which include the inhibition of differentiation of osteoclasts via suppressing receptor activator of nuclear factor κB ligand (RANKL)/receptor activator of nuclear factor κB (RANK) pathway, non-canonical Wnt/Ca2+/calmodulin dependent protein kinase II (CaMKII) pathway, and preventing of macrophage differentiation into osteoclasts, in addition, induction of apoptosis of osteoclasts through inhibiting farnesyl pyrophosphate synthase (FPPS)-mediated mevalonate pathway, and activation of reactive oxygen species (ROS)-induced pathway. Furthermore, ZA also inhibits cancer cells proliferation, viability, motility, invasion and angiogenesis; induces cancer cell apoptosis; reverts chemoresistance and stimulates immune response; and acts in synergy with other anti-cancer drugs. In addition, some new ways for delivering ZA against cancer is introduced. We hope this review will provide more information in support of future studies of ZA in the treatment of cancers and bone cancer metastasis.
Collapse
Affiliation(s)
- Lianwei Wang
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Dengyang Fang
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Jinming Xu
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Runlan Luo
- Department of Ultrasound, Fuling Central Hospital of Chongqing City, Chongqing, 408300, China.
| |
Collapse
|
14
|
Hakam AE, Vila G, Duarte PM, Mbadu MP, Ai Angary DS, Shuwaikan H, Aukhil I, Neiva R, da Silva HDP, Chang J. Effects of different antidepressant classes on dental implant failure: A retrospective clinical study. J Periodontol 2020; 92:196-204. [PMID: 32725908 DOI: 10.1002/jper.19-0714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Previous studies have suggested an association between taking antidepressants and dental implant failure. This study aimed to investigate the association of different antidepressant classes with dental implant failure. METHODS This retrospective study included patients that received dental implants at the University of Florida from 2011 to 2016. The variables of implant failure, antidepressant use and classes (selective serotonin reuptake inhibitors [SSRI], serotonin-norepinephrine reuptake inhibitors [SNRI], tricyclic antidepressants [TCA], atypical antidepressants [AA], and monoamine oxidase inhibitors [MAOI]), age, sex, smoking, mild systemic diseases, and implant location were obtained from patients' records. Odds ratio (OR) and confidence interval (CI) of implant failure in patients taking different antidepressant classes, in relationship to non-antidepressant users, were estimated, and the influence of multiple variables on implant failure were investigated. RESULTS A total of 771 patients and 1,820 implants were evaluated. The statistically significant predictors for implant failure included smoking (OR = 5.221), use of antidepressants (OR = 4.285), posterior maxilla location (OR = 2.911), mild systemic disease (OR = 2.648), and age (OR = 1.037) (P <0.05). The frequency of implant failure was 33.3% in TCA users, 31.3% in SNRI users, 6.3% in SSRI users, 5.2% in Atypical antidepressant users, and 3.9% in non-users. Significant associations were observed between the use of SNRI (OR: 11.07; 95% CI: 3.265 to 33.82) and TCA (OR: 12.16; 95% CI: 1.503 to 71.58) and implant failure (P <0.05). CONCLUSIONS Users of antidepressants were at higher risk of implant failure than non-users. Patients taking SNRI and TCA were at the highest risk of implant loss, when compared with non-users. Conclusions about TCA, however, are based on a limited number of cases.
Collapse
Affiliation(s)
- Abeer Essam Hakam
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Gabriela Vila
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Poliana Mendes Duarte
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Marcia Phemba Mbadu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | | | - Hotoun Shuwaikan
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Ikramuddin Aukhil
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Rodrigo Neiva
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | | | - Jia Chang
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Selective serotonin reuptake inhibitors (SSRI) affect murine bone lineage cells. Life Sci 2020; 255:117827. [PMID: 32450170 DOI: 10.1016/j.lfs.2020.117827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 11/21/2022]
Abstract
AIMS Data suggest pharmacological treatment of depression with selective serotonin reuptake inhibitors (SSRI) may impair bone health. Our group has previously modeled compromised craniofacial healing after treatment with sertraline, a commonly prescribed SSRI, and hypothesized potential culprits: alterations in bone cells, collagen, and/or inflammation. Here we interrogate bone lineage cell alterations due to sertraline treatment as a potential cause of the noted compromised bone healing. MAIN METHODS Murine pre-osteoblast, pre-osteoclast, osteoblast, and osteoclast cells were treated with clinically relevant concentrations of the SSRI. Studies focused on serotonin pathway targets, cell viability, apoptosis, differentiation, and the osteoblast/osteoclast feedback loop. KEY FINDINGS All cells studied express neurotransmitters (e.g. serotonin transporter, SLC6A4, SSRI target) and G-protein-coupled receptors associated with the serotonin pathway. Osteoclasts presented the greatest native expression of Slc6a4 with all cell types exhibiting decreases in Slc6a4 expression after SSRI treatment. Pre-osteoclasts exhibited alteration to their differentiation pathway after treatment. Pre-osteoblasts and osteoclasts showed reduced apoptosis after treatment but showed no significant differences in functional assays. RANKL OPG mRNA and protein ratios were decreased in the osteoblast lineage. Osteoclast lineage cells treated with sertraline demonstrated diminished TRAP positive cells when pre-exposed to sertraline prior to RANKL-induced differentiation. SIGNIFICANCE These data suggest osteoclasts are a likely target of bone homeostasis disruption due to sertraline treatment, most potently through the osteoblast/clast feedback loop.
Collapse
|
16
|
Wang H, Zhang H, Srinivasan V, Tao J, Sun W, Lin X, Wu T, Boyce BF, Ebetino FH, Boeckman RK, Xing L. Targeting Bortezomib to Bone Increases Its Bone Anabolic Activity and Reduces Systemic Adverse Effects in Mice. J Bone Miner Res 2020; 35:343-356. [PMID: 31610066 PMCID: PMC10587833 DOI: 10.1002/jbmr.3889] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/15/2019] [Accepted: 09/07/2019] [Indexed: 12/20/2022]
Abstract
Bortezomib (Btz) is a proteasome inhibitor approved by the FDA to treat multiple myeloma. It also increases bone volume by promoting osteoblast differentiation and inhibiting osteoclastogenesis in mice. However, Btz has severe systemic adverse effects, which would limit its use as a bone anabolic agent. Here, we designed and synthesized a bone-targeted form of Btz by conjugating it to a bisphosphonate (BP) with no antiresorptive activity. We report that BP-Btz inhibited osteoclast formation and bone resorption and stimulated osteoblast differentiation in vitro similar to Btz. In vivo, BP-Btz increased bone volume more effectively than Btz in three mouse models: untreated wild-type mice, mice with ovariectomy, and aged mice with tibial factures. Importantly, BP-Btz had significantly less systemic side effects than Btz, including less thymic cell death, sympathetic nerve damage, and thrombocytopenia, and it improved survival rates in aged mice. Thus, BP-Btz represents a novel anabolic agent to treat conditions, such as postmenopausal and age-related bone loss. Bone targeting is an attractive approach to repurpose approved drugs to treat skeletal diseases. © 2019 American Society for Bone and Mineral Research. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hua Wang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Institute of Stomatology, Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Venkat Srinivasan
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Jianguo Tao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Wen Sun
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Xi Lin
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Tao Wu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Bone Disease, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Frank H Ebetino
- Department of Chemistry, University of Rochester, Rochester, NY, USA
- BioVinc, Pasadena, CA, USA
| | - Robert K Boeckman
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
17
|
MPMBP down-regulates Toll-like receptor (TLR) 2 ligand-induced proinflammatory cytokine production by inhibiting NF-κB but not AP-1 activation. Int Immunopharmacol 2020; 79:106085. [DOI: 10.1016/j.intimp.2019.106085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
|
18
|
Wang H, Xiao L, Tao J, Srinivasan V, Boyce BF, Ebetino FH, Oyajobi BO, Boeckman RK, Xing L. Synthesis of a Bone-Targeted Bortezomib with In Vivo Anti-Myeloma Effects in Mice. Pharmaceutics 2018; 10:E154. [PMID: 30201882 PMCID: PMC6161102 DOI: 10.3390/pharmaceutics10030154] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/29/2018] [Accepted: 09/02/2018] [Indexed: 01/04/2023] Open
Abstract
Multiple myeloma (MM) is the most common cancer affecting the bone and bone marrow and remains incurable for most patients; novel therapies are therefore needed. Bortezomib (Btz) is an FDA-approved drug for the treatment of patients with MM. However, its severe side effects require a dose reduction or the potential discontinuation of treatment. To overcome this limitation, we conjugated Btz to a bisphosphonate (BP) residue lacking anti-osteoclastic activity using a novel chemical linker and generated a new bone-targeted Btz-based (BP-Btz) proteasome inhibitor. We demonstrated that BP-Btz, but not Btz, bound to bone slices and inhibited the growth of MM cells in vitro. In a mouse model of MM, BP-Btz more effectively reduced tumor burden and bone loss with less systemic side effects than Btz. Thus, BP-Btz may represent a novel therapeutic approach to treat patients with MM.
Collapse
Affiliation(s)
- Hua Wang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Box 626, 601 Elmwood Ave, Rochester, NY 14642, USA.
- Institute of Stomatology, Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Nanjing 210029, China.
| | - Lifeng Xiao
- Department of Chemistry, University of Rochester, P.O. Box 270216, Rochester, NY 14627-0216, USA.
| | - Jianguo Tao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Box 626, 601 Elmwood Ave, Rochester, NY 14642, USA.
| | - Venkat Srinivasan
- Department of Chemistry, University of Rochester, P.O. Box 270216, Rochester, NY 14627-0216, USA.
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Box 626, 601 Elmwood Ave, Rochester, NY 14642, USA.
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14627-0216, USA.
| | - Frank H Ebetino
- Department of Chemistry, University of Rochester, P.O. Box 270216, Rochester, NY 14627-0216, USA.
- BioVinc, Pasadena, CA 91107, USA.
| | - Babatunde O Oyajobi
- Department of Cell Systems & Anatomy, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Robert K Boeckman
- Department of Chemistry, University of Rochester, P.O. Box 270216, Rochester, NY 14627-0216, USA.
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Box 626, 601 Elmwood Ave, Rochester, NY 14642, USA.
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14627-0216, USA.
| |
Collapse
|