1
|
Cui Z, Liu C, Wang X, Xiang Y. A pan-cancer analysis of EphA family gene expression and its association with prognosis, tumor microenvironment, and therapeutic targets. Front Oncol 2024; 14:1378087. [PMID: 38952552 PMCID: PMC11215048 DOI: 10.3389/fonc.2024.1378087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Background Erythropoietin-producing human hepatocellular (Eph) receptors stand out as the most expansive group of receptor tyrosine kinases (RTKs). Accumulating evidence suggests that within this expansive family, the EphA subset is implicated in driving cancer cell progression, proliferation, invasion, and metastasis, making it a promising target for anticancer treatment. Nonetheless, the extent of EphA family involvement across diverse cancers, along with its intricate interplay with immunity and the tumor microenvironment (TME), remains to be fully illuminated. Methods The relationships between EphA gene expression and patient survival, immunological subtypes, and TME characteristics were investigated based on The Cancer Genome Atlas (TCGA) database. The analyses employed various R packages. Results A significant difference in expression was identified for most EphA genes when comparing cancer tissues and non-cancer tissues. These genes independently functioned as prognostic factors spanning multiple cancer types. Moreover, a significant correlation surfaced between EphA gene expression and immune subtypes, except for EphA5, EphA6, and EphA8. EphA3 independently influenced the prognosis of papillary renal cell carcinoma (KIRP). This particular gene exhibited links with immune infiltration subtypes and clinicopathologic parameters, holding promise as a valuable biomarker for predicting prognosis and responsiveness to immunotherapy in patients with KIRP. Conclusion By meticulously scrutinizing the panorama of EphA genes in a spectrum of cancers, this study supplemented a complete map of the effect of EphA family in Pan-cancer and suggested that EphA family may be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Zhe Cui
- Division of Hematology and Transfusion Medicine, Tianjin Baodi Hospital, Tianjin Baodi Affiliated Hospital of Tianjin Medical University, Tianjin, China
| | - Chengwang Liu
- Department of Laboratory Medicine, Tianjin Baodi Affiliated Hospital of Tianjin Medical University, Tianjin, China
| | - Xuechao Wang
- Department of Laboratory Medicine, Tianjin Baodi Affiliated Hospital of Tianjin Medical University, Tianjin, China
| | - Yiping Xiang
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
2
|
Scarini JF, Gonçalves MWA, de Lima-Souza RA, Lavareze L, de Carvalho Kimura T, Yang CC, Altemani A, Mariano FV, Soares HP, Fillmore GC, Egal ESA. Potential role of the Eph/ephrin system in colorectal cancer: emerging druggable molecular targets. Front Oncol 2024; 14:1275330. [PMID: 38651144 PMCID: PMC11033724 DOI: 10.3389/fonc.2024.1275330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
The Eph/ephrin system regulates many developmental processes and adult tissue homeostasis. In colorectal cancer (CRC), it is involved in different processes including tumorigenesis, tumor angiogenesis, metastasis development, and cancer stem cell regeneration. However, conflicting data regarding Eph receptors in CRC, especially in its putative role as an oncogene or a suppressor gene, make the precise role of Eph-ephrin interaction confusing in CRC development. In this review, we provide an overview of the literature and highlight evidence that collaborates with these ambiguous roles of the Eph/ephrin system in CRC, as well as the molecular findings that represent promising therapeutic targets.
Collapse
Affiliation(s)
- João Figueira Scarini
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Talita de Carvalho Kimura
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Ching-Chu Yang
- Department of Pathology, School of Medicine, University of Utah (UU), Salt Lake City, UT, United States
| | - Albina Altemani
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Heloisa Prado Soares
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Gary Chris Fillmore
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Erika Said Abu Egal
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| |
Collapse
|
3
|
Al-Mathkour MM, Dwead AM, Alp E, Boston AM, Cinar B. The Hippo effector YAP1/TEAD1 regulates EPHA3 expression to control cell contact and motility. Sci Rep 2022; 12:3840. [PMID: 35264657 PMCID: PMC8907295 DOI: 10.1038/s41598-022-07790-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
The EPHA3 protein tyrosine kinase, a member of the ephrin receptor family, regulates cell fate, cell motility, and cell-cell interaction. These cellular events are critical for tissue development, immunological responses, and the processes of tumorigenesis. Earlier studies revealed that signaling via the STK4-encoded MST1 serine-threonine protein kinase, a core component of the Hippo pathway, attenuated EPHA3 expression. Here, we investigated the mechanism by which MST1 regulates EPHA3. Our findings have revealed that the transcriptional regulators YAP1 and TEAD1 are crucial activators of EPHA3 transcription. Silencing YAP1 and TEAD1 suppressed the EPHA3 protein and mRNA levels. In addition, we identified putative TEAD enhancers in the distal EPHA3 promoter, where YAP1 and TEAD1 bind and promote EPHA3 expression. Furthermore, EPHA3 knockout by CRISPR/Cas9 technology reduced cell-cell interaction and cell motility. These findings demonstrate that EPHA3 is transcriptionally regulated by YAP1/TEAD1 of the Hippo pathway, suggesting that it is sensitive to cell contact-dependent interactions.
Collapse
Affiliation(s)
- Marwah M Al-Mathkour
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Abdulrahman M Dwead
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Esma Alp
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Ava M Boston
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Bekir Cinar
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA. .,Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Papadakos SP, Petrogiannopoulos L, Pergaris A, Theocharis S. The EPH/Ephrin System in Colorectal Cancer. Int J Mol Sci 2022; 23:2761. [PMID: 35269901 PMCID: PMC8910949 DOI: 10.3390/ijms23052761] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023] Open
Abstract
The EPH/ephrin system constitutes a bidirectional signaling pathway comprised of a family of tyrosine kinase receptors in tandem with their plasma membrane-bound ligand (ephrins). Its significance in a wide variety of physiologic and pathologic processes has been recognized during the past decades. In carcinogenesis, EPH/ephrins coordinate a wide spectrum of pathologic processes, such as angiogenesis, vessel infiltration, and metastasis. Despite the recent advances in colorectal cancer (CRC) diagnosis and treatment, it remains a leading cause of death globally, accounting for 9.2% of all cancer deaths. A growing body of literature has been published lately revitalizing our scientific interest towards the role of EPH/ephrins in pathogenesis and the treatment of CRC. The aim of the present review is to present the recent CRC data which might lead to clinical practice changes in the future.
Collapse
Affiliation(s)
| | | | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (S.P.P.); (L.P.); (A.P.)
| |
Collapse
|
5
|
Chen X, Zhang L, Yuan M, Kuang Z, Zou Y, Tang T, Zhang W, Hu X, Xia T, Cao T, Jia H. Sam68 Promotes the Progression of Human Breast Cancer through inducing Activation of EphA3. Curr Cancer Drug Targets 2021; 20:76-83. [PMID: 31433759 DOI: 10.2174/1568009619666190718124541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/08/2019] [Accepted: 06/28/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Src associated with mitosis of 68 kDa (Sam68), is often highly expressed in human cancers. Overexpression of Sam68 has been shown to be correlated with poor survival prognosis in some cancer patients. However, little is known whether Sam68 plays a role in promoting metastasis in breast cancer. MATERIALS AND METHODS The expression of Sam68 protein in breast cancer tissue was detected by immunohistochemistry. Trans-well assay, wound-healing, real-time PCR and Western blotting analysis were used to detect the effect of Sam68 on promoting EMT or metastasis of breast cancer. Next-generation RNA sequencing was used to analyze genes that may be regulated by Sam68. RESULTS Sam68 plays a positive role in promoting breast cancer metastasis. Sam68 was found to be overexpressed in breast cancer along with lymph node metastasis. MMP-9 was also found to be overexpressed in breast cancer tissue and was correlated to the expression of Sam68 (P<0.01). Xenograft in NOD/SCID mice and in vitro experiments confirmed that the invasion and metastatic ability of breast cancer cells were regulated by Sam68. And EPHA3 could be up-regulated by Sam68 in breast cancer. CONCLUSION High expression of Sam68 participates in breast cancer metastasis by up-regulating the EPHA3 gene.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lehong Zhang
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Yuan
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziqiao Kuang
- Department of Breast Surgery, Huadu District People's Hospital of Guangzhou, Guangdong, China
| | - Ying Zou
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, United States
| | - Tian Tang
- Department of Pathology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wangjian Zhang
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, United States
| | - Xiaowu Hu
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ting Xia
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tengfei Cao
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haixia Jia
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Kim SH, Kang BC, Seong D, Lee WH, An JH, Je HU, Cha HJ, Chang HW, Kim SY, Kim SW, Han MW. EPHA3 Contributes to Epigenetic Suppression of PTEN in Radioresistant Head and Neck Cancer. Biomolecules 2021; 11:biom11040599. [PMID: 33919657 PMCID: PMC8073943 DOI: 10.3390/biom11040599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
EPHA3, a member of the EPH family, is overexpressed in various cancers. We demonstrated previously that EPHA3 is associated with radiation resistance in head and neck cancer via the PTEN/Akt/EMT pathway; the inhibition of EPHA3 significantly enhances the efficacy of radiotherapy in vitro and in vivo. In this study, we investigated the mechanisms of PTEN regulation through EPHA3-related signaling. Increased DNA methyltransferase 1 (DNMT1) and enhancer of zeste homolog 2 (EZH2) levels, along with increased histone H3 lysine 27 trimethylation (H3K27me3) levels, correlated with decreased levels of PTEN in radioresistant head and neck cancer cells. Furthermore, PTEN is regulated in two ways: DNMT1-mediated DNA methylation, and EZH2-mediated histone methylation through EPHA3/C-myc signaling. Our results suggest that EPHA3 could display a novel regulatory mechanism for the epigenetic regulation of PTEN in radioresistant head and neck cancer cells.
Collapse
Affiliation(s)
- Song-Hee Kim
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea; (S.-H.K.); (B.-C.K.); (D.S.); (W.-H.L.); (J.-H.A.)
| | - Byung-Chul Kang
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea; (S.-H.K.); (B.-C.K.); (D.S.); (W.-H.L.); (J.-H.A.)
| | - Daseul Seong
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea; (S.-H.K.); (B.-C.K.); (D.S.); (W.-H.L.); (J.-H.A.)
| | - Won-Hyeok Lee
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea; (S.-H.K.); (B.-C.K.); (D.S.); (W.-H.L.); (J.-H.A.)
| | - Jae-Hee An
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea; (S.-H.K.); (B.-C.K.); (D.S.); (W.-H.L.); (J.-H.A.)
| | - Hyoung-Uk Je
- Department of Radiation Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea;
| | - Hee-Jeong Cha
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea;
| | - Hyo-Won Chang
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.-W.C.); (S.-Y.K.)
| | - Sang-Yoon Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.-W.C.); (S.-Y.K.)
| | - Seong-Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Correspondence: (S.-W.K.); (M.-W.H.)
| | - Myung-Woul Han
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea; (S.-H.K.); (B.-C.K.); (D.S.); (W.-H.L.); (J.-H.A.)
- Correspondence: (S.-W.K.); (M.-W.H.)
| |
Collapse
|
7
|
Zhang X. The Expression Profile and Prognostic Values of EPHA Family Members in Breast Cancer. Front Oncol 2021; 11:619949. [PMID: 34221956 PMCID: PMC8250424 DOI: 10.3389/fonc.2021.619949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND EphAs are a class of ephrin receptors that belong to the membrane-bound receptor tyrosine kinases group. Accumulating experimental evidence has shown that the EphA family is involved in tumor progression, namely in cell proliferation, invasiveness, and metastasis. EphAs are a promising target for anticancer therapy. However, their role in breast cancer (BC) is still not well understood. MATERIALS AND METHODS We used a series of bioinformatic approaches to analyze the expression of the EphA family members and investigate their prognostic value in BC. RESULTS Lower expression levels of EphA2, EphA3, EphA4, EphA5, and EphA7 and higher expression levels of EphA10 were found in BC tissues compared to those in normal tissues. The expression levels of the EphA family genes were correlated with molecular subtyping but not with tumor stage. High expression levels of most EphAs indicated a better prognosis in BC. CONCLUSIONS This study suggested that EphA2, EphA3, EphA4, and EphA5 can act as tumor-inhibiting factors as well as biomarkers for the prognosis of BC.
Collapse
|
8
|
London M, Gallo E. Critical role of EphA3 in cancer and current state of EphA3 drug therapeutics. Mol Biol Rep 2020; 47:5523-5533. [PMID: 32621117 DOI: 10.1007/s11033-020-05571-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
The erythropoietin-producing human hepatocellular (Eph) receptors are transmembrane glycoprotein members of the tyrosine kinase receptors family. The Ephs may bind to various ephrin ligands resulting in the phosphorylation of their tyrosine kinase domain and the activation of the Eph receptor. In this review we focus on EphA3, one receptor of the 14 different Ephs, as it carries out both redundant and restricted functions in the germline development of mammals and in the maintenance of various adult tissues. The loss of EphA3 regulation is correlated with various human malignancies, the most notable being cancer. This receptor is overexpressed and/or mutated in multiple tumors, and is also associated with poor prognosis and decreased survival in patients. Here we highlight the role of EphA3 in normal and malignant tissues that are specific to cancer; these include hematologic disorders, gastric cancer, glioblastoma multiforme, colorectal cancer, lung cancer, renal cell carcinoma, and prostate cancer. Moreover, various anticancer agents against EphA3 have been developed to either inhibit its kinase domain activity or to function as agonists. Thus, we examine the most potent small molecule drugs and mAb-based therapeutics against EphA3 that are currently in pre-clinical or clinical stages.
Collapse
Affiliation(s)
- Max London
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Eugenio Gallo
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
9
|
EphA3 Downregulation by Hypermethylation Associated with Lymph Node Metastasis and TNM Stage in Colorectal Cancer. Dig Dis Sci 2019; 64:1514-1522. [PMID: 30560328 DOI: 10.1007/s10620-018-5421-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND EphA3 is a member of Eph receptors, which is involved in tumorigenesis. The expression and clinical significance of EphA3 in colorectal cancer (CRC) have not been fully investigated. METHODS Four colon cancer cell lines and a set of CRC tissues were examined for EphA3 expression. The methylation status of a CpG island within the EphA3 promoter, the presence of four somatic EPHA3 mutations, and EPHA3 gene copy number variations were also analyzed in colon cancer cell lines. RESULTS EphA3 expression was lost in all colon cancer cell lines examined. EphA3 expression was lower in tumor tissues when compared with normal intestinal tissues (P < 0.001). A comparison of EphA3 immunohistochemical scores for tumor and matched normal intestinal tissues revealed that the protein was downregulated in 82/164 (50.0%), unchanged in 52/164 (31.7%), and upregulated in 30/164 (18.3%) cases of CRC. EphA3 expression was negatively associated with lymph node metastasis (P =0.014, rs=- 0.192) and TNM stage (P =0.001, rs=- 0.260). Downregulation of expression was more common in older patients (P =0.013, rs=0.193). Methylated promoter DNA was detected in all four colon cancer cell lines. Somatic mutations or EphA3 gene deletion was not detected. CONCLUSIONS EphA3 was downregulated in the majority of CRC. Hypermethylation of a CpG island within the EPHA3 promoter provides a possible mechanism. Loss of EphA3 expression was associated with lymph node metastasis and TNM stage and may therefore prove useful as a predictor for tumor spread in CRC.
Collapse
|
10
|
Duan X, Xu X, Yin B, Hong B, Liu W, Liu Q, Tao Z. The prognosis value of EphA3 and the androgen receptor in prostate cancer treated with radical prostatectomy. J Clin Lab Anal 2019; 33:e22871. [PMID: 30958616 PMCID: PMC6595293 DOI: 10.1002/jcla.22871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/15/2019] [Accepted: 02/06/2019] [Indexed: 11/13/2022] Open
Abstract
Background This study aimed to preliminarily assess the relationship between erythropoietin‐producing hepatocellular carcinoma receptor A3 (EphA3) and androgen receptor (AR) protein expression levels and prognosis in prostate cancer (PCa) to better understand the role of EphA3 in the prognosis and progression of PCa. Materials We investigated the expression of EphA3 and AR in human PCa by immunohistochemistry. Results EphA3 and AR were both significantly upregulated in PCa, with expression mainly localized to the nucleus. A high level of AR expression was found in 48.4% of 64 tumor samples, which was significantly more than in the adjacent tissue samples (15.6%) (P < 0.01). The percentage of samples expressing a high level of EphA3 was significantly greater in the PCa samples (54.7%) than in the adjacent tissue samples (20.3%) for the 64 tumors (P < 0.01). The high levels of EphA3 and AR expression in the PCa tissue samples were both correlated with the pathological stage, bladder and rectal invasion, distant metastasis, and preoperative PSA level (both P < 0.05). The survival time was significantly shorter in high levels of AR expression of patients. (P < 0.01). A high level of EphA3 in PCa patients suggests a poor prognosis (P < 0.05). Biochemical recurrence, distant metastasis, and the final scores of EphA3 and AR expression were significantly correlated with the prognosis of PCa (P < 0.05). Conclusions Increased EphA3 expression is an independent prognostic factor for a poor outcome and decreased survival in PCa.
Collapse
Affiliation(s)
- Xiuzhi Duan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoming Xu
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Binbin Yin
- Department of Clinical Laboratory, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Bong Hong
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Liu
- International Medical Center Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Zhihua Tao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|