1
|
Kusy R, Grela K. Renaissance in Alkyne Semihydrogenation: Mechanism, Selectivity, Functional Group Tolerance, and Applications in Organic Synthesis. Chem Rev 2025; 125:4397-4527. [PMID: 40279298 DOI: 10.1021/acs.chemrev.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Alkenes constitute a significant class of chemical compounds with applications in the bulk, pharmaceutical, or perfume industry. Among the known methods of olefin production, semihydrogenation of the C-C triple bond seems to be the most straightforward one. Nonetheless, the success of this reaction requires full control over diastereoselectivity, eradication of a parasitic process of over-reduction or migration of the C-C double bond formed, and achieving satisfactory functional-group compatibility. The review demonstrates developments in the field of alkyne semihydrogenation over the period 2010-2022, with selected papers published in 2023 and 2024, emphasizing solutions to the above-mentioned limitations. We discuss mechanistic aspects of this transformation, including those related to unconventional systems. The review includes examples of applications of alkyne semihydrogenation in organic synthesis, confirming the considerable utility of this process. Finally, strategies to enhance catalyst selectivity are summarized. For the reader's convenience, we provided a graphical guidebook to catalytic systems, illustrating the efficiency of the particular method.
Collapse
Affiliation(s)
- Rafał Kusy
- Leibniz-Institute for Catalysis, Albert-Einstein-Street 29a, 18059 Rostock, Germany
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karol Grela
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Biological and Chemical Research Centre, Faculty of Chemistry University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
2
|
Zhang W, Uwakwe K, Hu J, Wei Y, Zhu J, Zhou W, Ma C, Yu L, Huang R, Deng D. Ambient-condition acetylene hydrogenation to ethylene over WS 2-confined atomic Pd sites. Nat Commun 2024; 15:9457. [PMID: 39487133 PMCID: PMC11530560 DOI: 10.1038/s41467-024-53481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Ambient-condition acetylene hydrogenation to ethylene (AC-AHE) is a promising process for ethylene production with minimal additional energy input, yet remains a great challenge due to the difficulty in the coactivation of acetylene and H2 at room temperature. Herein, we report a highly efficient AC-AHE process over robust sulfur-confined atomic Pd species on tungsten sulfide surface. The catalyst exhibits over 99% acetylene conversion with a high ethylene selectivity of 70% at 25 oC, and a record space-time yield of ethylene of 1123 molC2H4 molPd-1 h-1 under ambient conditions, which is nearly four times that of the typical Pd1Ag3/Al2O3 catalyst, and exhibiting superior stability of over 500 h. We demonstrate that the confinement of Pd-S coordination induces positively-charged atomic Pdδ+, which not only facilitates C2H2 hydrogenation but also promotes C2H4 desorption, thereby enabling a high conversion of C2H2 to C2H4 at room temperature while suppressing over-hydrogenation to C2H6.
Collapse
Affiliation(s)
- Wangwang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Kelechi Uwakwe
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingting Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wei
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Juntong Zhu
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wu Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Liang Yu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Rui Huang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China.
| | - Dehui Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Usoltsev O, Tereshchenko A, Skorynina A, Kozyr E, Soldatov A, Safonova O, Clark AH, Ferri D, Nachtegaal M, Bugaev A. Machine Learning for Quantitative Structural Information from Infrared Spectra: The Case of Palladium Hydride. SMALL METHODS 2024; 8:e2301397. [PMID: 38295064 DOI: 10.1002/smtd.202301397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Infrared spectroscopy (IR) is a widely used technique enabling to identify specific functional groups in the molecule of interest based on their characteristic vibrational modes or the presence of a specific adsorption site based on the characteristic vibrational mode of an adsorbed probe molecule. The interpretation of an IR spectrum is generally carried out within a fingerprint paradigm by comparing the observed spectral features with the features of known references or theoretical calculations. This work demonstrates a method for extracting quantitative structural information beyond this approach by application of machine learning (ML) algorithms. Taking palladium hydride formation as an example, Pd-H pressure-composition isotherms are reconstructed using IR data collected in situ in diffuse reflectance using CO molecule as a probe. To the best of the knowledge, this is the first example of the determination of continuous structural descriptors (such as interatomic distance and stoichiometric coefficient) from the fine structure of vibrational spectra, which opens new possibilities of using IR spectra for structural analysis.
Collapse
Affiliation(s)
- Oleg Usoltsev
- ALBA Synchrotron, Cerdanyola del Valles, Barcelona, 08290, Spain
| | | | - Alina Skorynina
- ALBA Synchrotron, Cerdanyola del Valles, Barcelona, 08290, Spain
| | | | - Alexander Soldatov
- Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia
| | - Olga Safonova
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Adam H Clark
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Davide Ferri
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Maarten Nachtegaal
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Aram Bugaev
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| |
Collapse
|
4
|
Jia H, Cheng M, Zhao R, Zheng P, Ren F, Nan Y, Huang M, Li Y. Excellent Pd-Loaded Magnetic Nanocatalyst on Multicarboxyl and Boronic Acid Biligands. ACS OMEGA 2024; 9:17817-17831. [PMID: 38680317 PMCID: PMC11044249 DOI: 10.1021/acsomega.3c07133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/28/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024]
Abstract
An effective palladium nanocatalyst (Fe3O4@SiO2-FPBA-DTPA-Pd) was proposed and prepared, which was immobilized on magnetic silica with ethylenediamine pentaacetic acid and formylphenylboronic acid as biligands. A series of characterizations showed that Fe3O4@SiO2-FPBA-DTPA-Pd was 5-15 nm and contained 1.44 mmol/g Pd2+/Pd0. It was stable below 232.7 °C, and its saturation magnetization value was 21.17 emu/g which was easily recycled by a magnet. Its catalytic ability was evaluated through 7 Suzuki reactions and 15 Heck reactions. Results showed that the yields of 14 reactions catalyzed by Fe3O4@SiO2-FPBA-DTPA-Pd were more than 90%, while were better than those of the other two immobilized Pd catalysts on a single diethyltriamine pentaacetic acid (DTPA) group or boronic acid group. Moreover, Fe3O4@SiO2-FPBA-DTPA-Pd showed good reusability in both Suzuki and Heck reactions. In two model Suzuki and Heck reactions, after seven cycles, its yields were still above 95% without significant loss, which exceeded those of many reported catalysts; therefore, it has great potential in future large-scale industrial production.
Collapse
Affiliation(s)
- Haijiao Jia
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Mengqi Cheng
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ran Zhao
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Pingyi Zheng
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fangfang Ren
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yaqin Nan
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Mengting Huang
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Youxin Li
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Bezerra LS, Belhout SA, Wang S, Quiroz J, de Oliveira PFM, Shetty S, Rocha G, Santos HLS, Frindy S, Oropeza FE, de la Peña O'Shea VA, Kallio AJ, Huotari S, Huo W, Camargo PHC. Triple Play of Band Gap, Interband, and Plasmonic Excitations for Enhanced Catalytic Activity in Pd/H xMoO 3 Nanoparticles in the Visible Region. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11467-11478. [PMID: 38382920 PMCID: PMC11393804 DOI: 10.1021/acsami.3c17101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Plasmonic photocatalysis has been limited by the high cost and scalability of plasmonic materials, such as Ag and Au. By focusing on earth-abundant photocatalyst/plasmonic materials (HxMoO3) and Pd as a catalyst, we addressed these challenges by developing a solventless mechanochemical synthesis of Pd/HxMoO3 and optimizing photocatalytic activities in the visible range. We investigated the effect of HxMoO3 band gap excitation (at 427 nm), Pd interband transitions (at 427 nm), and HxMoO3 localized surface plasmon resonance (LSPR) excitation (at 640 nm) over photocatalytic activities toward the hydrogen evolution and phenylacetylene hydrogenation as model reactions. Although both excitation wavelengths led to comparable photoenhancements, a 110% increase was achieved under dual excitation conditions (427 + 640 nm). This was assigned to a synergistic effect of optical excitations that optimized the generation of energetic electrons at the catalytic sites. These results are important for the development of visible-light photocatalysts based on earth-abundant components.
Collapse
Affiliation(s)
- Leticia S Bezerra
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Samir A Belhout
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Shiqi Wang
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Jhon Quiroz
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Paulo F M de Oliveira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo. Av. Lineu Prestes 748, São Paulo 05508000, Brazil
| | - Shwetha Shetty
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Guilherme Rocha
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Hugo L S Santos
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Sana Frindy
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Freddy E Oropeza
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Mostoles, Madrid 28935, Spain
| | - Víctor A de la Peña O'Shea
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Mostoles, Madrid 28935, Spain
| | - Antti-Jussi Kallio
- Department of Physics, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Simo Huotari
- Department of Physics, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Wenyi Huo
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- NOMATEN Centre of Excellence, National Centre for Nuclear Research. Otwock 05-400, Poland
| | - Pedro H C Camargo
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| |
Collapse
|
6
|
Li J, Suo W, Huang Y, Chen M, Ma H, Liu C, Zhang H, Liang K, Dong Z. Mesoporous α-Al 2O 3-supported PdCu bimetallic nanoparticle catalyst for the selective semi-hydrogenation of alkynes. J Colloid Interface Sci 2023; 652:1053-1062. [PMID: 37639927 DOI: 10.1016/j.jcis.2023.08.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
The selective hydrogenation of alkynes to alkenes is widely applied in the chemical industry; nevertheless, achieving highly selective hydrogenation with high catalytic activity is considerably challenging. Herein, ultrafine PdCu bimetallic nanoparticles encapsulated by high-surface-area mesoporous α-Al2O3 were prepared by high-temperature calcination-reduction using a porous organic framework (POF) as the template. As-obtained PdCu@α-Al2O3 exhibited a high selectivity of 95% for the semi-hydrogenation of phenylacetylene as a probe reaction under mild reaction conditions. The separation of continuous Pd atoms and modification of the Pd electronic state by Cu atoms suppressed β-hydride formation and alkene adsorption, contributing to high selectivity for the catalytic hydrogenation of alkynes. The catalytic activity was maintained after 7 cycles due to the strong interaction between the PdCu bimetallic nanoparticles and α-Al2O3 as well as the encapsulation effect of mesoporous α-Al2O3. Thus, the current work provides a facile strategy for fabricating high-surface-area mesoporous α-Al2O3-supported catalysts for industrial catalysis applications.
Collapse
Affiliation(s)
- Jianfeng Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Wenli Suo
- Lanzhou Petrochemical Company, PetroChina Company Limited, Lanzhou 730060, PR China
| | - Yuena Huang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Minglin Chen
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Lanzhou 730060, PR China
| | - Haowen Ma
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Lanzhou 730060, PR China
| | - Chuang Liu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Huan Zhang
- Lanzhou Petrochemical Company, PetroChina Company Limited, Lanzhou 730060, PR China
| | - Kun Liang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
7
|
Cely-Pinto M, Wang B, Scaiano JC. Photocatalytic Semi-Hydrogenation of Alkynes: A Game of Kinetics, Selectivity and Critical Timing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2390. [PMID: 37686898 PMCID: PMC10490202 DOI: 10.3390/nano13172390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
The semi-hydrogenation reaction of alkynes is important in the fine chemicals and pharmaceutical industries, and it is thus important to find catalytic processes that will drive the reaction efficiently and at a low cost. The real challenge is to drive the alkyne-to-alkene reaction while avoiding over-hydrogenation to the saturated alkane moiety. The problem is more difficult when dealing with aromatic substitution at the alkyne center. Simple photocatalysts based on Palladium tend to proceed to the alkane, and stopping at the alkene with good selectivity requires very precise timing with basically no timing tolerance. We report here that the goal of high conversion with high selectivity could be achieved with TiO2-supported copper (Cu@TiO2), although with slower kinetics than for Pd@TiO2. A novel bimetallic catalyst, namely, CuPd@TiO2 (0.8% Cu and 0.05% Pd), with methanol as the hydrogen source could improve the kinetics by 50% with respect to Cu@TiO2, while achieving selectivities over 95% and with exceptional timing tolerance. Further, the low Palladium content minimizes its use, as Palladium is regarded as an element at risk of depletion.
Collapse
Affiliation(s)
| | | | - Juan C. Scaiano
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (M.C.-P.); (B.W.)
| |
Collapse
|
8
|
Zhao H, Bian L, Du J, Zhao Y. Moderating the interaction among Pd, CeO 2, and Al 2O 3 for improved three-way catalysts. Dalton Trans 2022; 51:18562-18571. [PMID: 36444876 DOI: 10.1039/d2dt02693g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Pd distribution and the CeO2-Al2O3 combination are among the decisive factors for the performance of commercial three-way catalysts. Generally, the sufficient doping of Pd into ceria-based oxides and the intimate interaction between CeO2 and Al2O3 could both benefit the three-way catalytic reactions. However, in the present work, the moderate doping of Pd into CeO2 and less intimate CeO2-Al2O3 interaction were found to be responsible for the much higher catalytic activity (the decrease in T50 was 52, 119, or 55 °C for C3H6, CO, or NO) in PdCe/Al2O3-CP than PdCe/Al2O3-Imp, for which the Pd and Ce species were co-loaded onto Al2O3 through the co-precipitation or impregnation method, respectively. It was intriguing to find that the co-precipitated PdCeOx in PdCe/Al2O3-CP showed less sufficient doping of Pd into CeO2 than the co-impregnated PdCeOx in PdCe/Al2O3-Imp; as a result, both a higher fraction of highly active metallic Pd and a higher Pd dispersion were realized in PdCe/Al2O3-CP. Moreover, due to the less intimate CeO2-Al2O3 interaction, specifically the less severe penetration of the Pd and Ce species into Al2O3, PdCe/Al2O3-CP showed higher Pd dispersion, specific surface area, pore volume and size than PdCe/Al2O3-Imp. The presence of more abundant reactive Pd0, and the higher accessibility of the active Pd and CeO2 sites, together with improved redox properties and enriched oxygen vacancies contributed much to the enhanced three-way catalytic activity of PdCe/Al2O3-CP. Additionally, simultaneously optimizing the Pd distribution and the CeO2-Al2O3 combination in a single step, as reported in this work, is also highly desirable in industry.
Collapse
Affiliation(s)
- Han Zhao
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China. .,Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Longchun Bian
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Junchen Du
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China.
| | - Yunkun Zhao
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China.
| |
Collapse
|
9
|
Liu X, Zhang X, Chen W. Pd Nanoparticles Supported on N-Doped TiO 2 Nanosheets: Crystal Facets, Defective Sites, and Metal-Support Interactions Boost Reforming of Formaldehyde Solution for Hydrogen Production. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13532-13542. [PMID: 36300888 DOI: 10.1021/acs.langmuir.2c02111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To produce H2 from formaldehyde (HCHO), dehydrogenation offers an alternative approach to future hydrogen-based energy sources, but the unsatisfactory efficiency hinders its practical application. Here, ultrafine Pd nanoparticle (NP) decorated N-doped TiO2 nanosheets exposed with (001) facet catalysts (denoted as Pd/TiO2-x) have been prepared and exhibit superior H2 production performance from alkaline HCHO aqueous solution. Under our current conditions, the Pd/TiO2-x catalyst with a Pd loading of 1 wt % exhibits a H2 production rate of 183.77 mL/min/g, which is 1.75 and 3.66 times that of Pd/TiO2 and Pd NPs, respectively. Based on the results of Fourier transform infrared spectroscopy (FTIR), Raman, and liquid-phase electron paramagnetic resonance (EPR) spin-trapping experiments, the excellent H2 generation of Pd/TiO2-x can be attributed to the synergistic contribution among the reactive crystal facets, defective sites, and metal-support interactions in boosting the breakage of C-H bonds in HCHO, dissociation of H2O, and ultimately the formation of H2. This work is expected to provide a paradigm of an efficient catalyst to produce H2 from HCHO/H2O solution.
Collapse
Affiliation(s)
- Xiaogang Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan464000, China
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, Henan464000, China
- Xinyang Key Laboratory of Low-Carbon Energy Materials, Xinyang Normal University, Xinyang464000, China
| | - Xin Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan464000, China
| | - Wenjie Chen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan464000, China
| |
Collapse
|
10
|
Preparation of a novel heterogeneous palladium nanocatalyst based on carboxyl modified magnetic nanoparticles and its applications in Suzuki-Miyaura coupling reactions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Transition metal co-doped TiO2 nanotubes decorated with Pt nanoparticles on optical fibers as an efficient photocatalyst for the decomposition of hazardous gaseous pollutants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Grafting nanometer metal/oxide interface towards enhanced low-temperature acetylene semi-hydrogenation. Nat Commun 2021; 12:5770. [PMID: 34599160 PMCID: PMC8486880 DOI: 10.1038/s41467-021-25984-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/03/2021] [Indexed: 11/25/2022] Open
Abstract
Metal/oxide interface is of fundamental significance to heterogeneous catalysis because the seemingly “inert” oxide support can modulate the morphology, atomic and electronic structures of the metal catalyst through the interface. The interfacial effects are well studied over a bulk oxide support but remain elusive for nanometer-sized systems like clusters, arising from the challenges associated with chemical synthesis and structural elucidation of such hybrid clusters. We hereby demonstrate the essential catalytic roles of a nanometer metal/oxide interface constructed by a hybrid Pd/Bi2O3 cluster ensemble, which is fabricated by a facile stepwise photochemical method. The Pd/Bi2O3 cluster, of which the hybrid structure is elucidated by combined electron microscopy and microanalysis, features a small Pd-Pd coordination number and more importantly a Pd-Bi spatial correlation ascribed to the heterografting between Pd and Bi terminated Bi2O3 clusters. The intra-cluster electron transfer towards Pd across the as-formed nanometer metal/oxide interface significantly weakens the ethylene adsorption without compromising the hydrogen activation. As a result, a 91% selectivity of ethylene and 90% conversion of acetylene can be achieved in a front-end hydrogenation process with a temperature as low as 44 °C. Metal/oxide interface is of fundamental significance to heterogeneous catalysis. Here, the authors construct a nanometer Pd/Bi2O3 interface by grafting Pd clusters onto Bi2O3 clusters and demonstrate its essential roles in the low-temperature semi-hydrogenation of acetylene.
Collapse
|
13
|
Sub-nanometer thin TiO2-coating on carbon support for boosting oxygen reduction activity and durability of Pt nanoparticles. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Chen C, Ou W, Yam KM, Xi S, Zhao X, Chen S, Li J, Lyu P, Ma L, Du Y, Yu W, Fang H, Yao C, Hai X, Xu H, Koh MJ, Pennycook SJ, Lu J, Lin M, Su C, Zhang C, Lu J. Zero-Valent Palladium Single-Atoms Catalysts Confined in Black Phosphorus for Efficient Semi-Hydrogenation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008471. [PMID: 34296473 DOI: 10.1002/adma.202008471] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/21/2021] [Indexed: 06/13/2023]
Abstract
Single-atom catalysts (SACs) represent a new frontier in heterogeneous catalysis due to their remarkable catalytic properties and maximized atomic utilization. However, single atoms often bond to the support with polarized electron density and thus exhibit a high valence state, limiting their catalytic scopes in many chemical transformations. Here, it is demonstrated that 2D black phosphorus (BP) acts as giant phosphorus (P) ligand to confine a high density of single atoms (e.g., Pd1 , Pt1 ) via atomic layer deposition. Unlike other 2D materials, BP with relatively low electronegativity and buckled structure favors the strong confinement of robust zero-valent palladium SACs in the vacancy site. Metallic Pd1 /BP SAC shows a highly selective semi-hydrogenation of phenylacetylene toward styrene, distinct from metallic Pd nanoparticles that facilitate the formation of fully hydrogenated products. Density functional theory calculations reveal that Pd atom forms covalent-like bonding with adjacent P atoms, wherein H atoms tend to adsorb, aiding the dissociative adsorption of H2 . Zero-valent Pd in the confined space favors a larger energy gain for the synthesis of partially hydrogenated product over the fully hydrogenated one. This work provides a new route toward the synthesis of zero-valent SACs on BP for organic transformations.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- NUS (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215028, China
| | - Wei Ou
- SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen, 518060, China
| | - Kah-Meng Yam
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Si Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yonghua Du
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Wei Yu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hanyan Fang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Chuanhao Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xiao Hai
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen, 518060, China
| | - Haomin Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Stephen J Pennycook
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Junling Lu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Ming Lin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Chenliang Su
- SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen, 518060, China
| | - Chun Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
| |
Collapse
|
15
|
Sun D, Bi Q, Deng M, Jia B, Huang F. Atomically dispersed Pd-Ru dual sites in an amorphous matrix towards efficient phenylacetylene semi-hydrogenation. Chem Commun (Camb) 2021; 57:5670-5673. [PMID: 33977994 DOI: 10.1039/d1cc00923k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Optimizing the active sites to balance the conversion and selectivity of the target reaction has long been a challenging quest in developing noble metal-based catalysts. By dispersing Pd and Ru in an amorphous zirconium hydrogen phosphate matrix cross-linked by ionic inorganic oligomers, highly diluted noble metal (<0.2 mol%) can be utilized as dual single-atom sites in oxides for the semi-hydrogenation of phenylacetylene with optimized conversion and selectivity (both >90%) to styrene. In situ DRIFT-IR results suggested the fast generation of surface hydroxyl groups during the catalytic reaction, indicating the high efficiency of the single-atom sites to dissociate bound H2. This work provides an easily scaled-up method for the production of cost-effective single-atom catalysts extendable to various oxide matrices.
Collapse
Affiliation(s)
- Du Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Qingyuan Bi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Mingxia Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Bingquan Jia
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China. and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
16
|
Recent developments of supported and magnetic nanocatalysts for organic transformations: an up-to-date review. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01888-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Lou B, Kang H, Yuan W, Ma L, Huang W, Wang Y, Jiang Z, Du Y, Zou S, Fan J. Highly Selective Acetylene Semihydrogenation Catalyst with an Operation Window Exceeding 150 °C. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00804] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Baohui Lou
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hongquan Kang
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Weixin Huang
- Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China
| | - Yong Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yonghua Du
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Shihui Zou
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jie Fan
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Augustyniak AW, Trzeciak AM. Pd‐Nanocomposites Formed by Calcination of [Pd(2‐pymo)
2
]
n
Framework as Catalysts of Phenylacetylene Semihydrogenation in Water. ChemCatChem 2021. [DOI: 10.1002/cctc.202100198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Adam W. Augustyniak
- Faculty of Chemistry University of Wrocław 14 F. Joliot-Curie 50-383 Wroclaw Poland
| | - Anna M. Trzeciak
- Faculty of Chemistry University of Wrocław 14 F. Joliot-Curie 50-383 Wroclaw Poland
| |
Collapse
|
19
|
Zhao J, Zhang H, Yan F, Jia H, Li Z, Wang J. Cu 2O hydrides promote the selective semihydrogenation of alkynes on Pd–Cu 2O/TiO 2 under mild conditions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00236h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High activity, chemoselectivity and stereoselectivity were unveiled by the synergy of the p–n heterojunctions with Pd0 in a novel Pd–Cu2O/TiO2 catalyst for spillover semihydrogenations.
Collapse
Affiliation(s)
- Jing Zhao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Hucheng Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Fangfang Yan
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Huanli Jia
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Ze Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Jianji Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| |
Collapse
|
20
|
Photodegradation of Phenolic Compounds from Water in the Presence of a Pd-Containing Exhausted Adsorbent. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A closed-cycle technology regarding the use of an exhausted Pd-based adsorbent as a photocatalyst in the degradation process of phenol is presented. Pd (II) represents a precious metal of great economic importance. Its obtained from natural sources become more difficult to achieve. Therefore, also considering the regulations of the “circular economy,” its recovery from secondary sources turn out to be a stringent issue in the last years. Pd(II) ions are removed from aqueous solution through adsorption onto Florisil (an inorganic solid support—magnesium silicate) impregnated with Cyphos IL 101 (trihexyl tetradecyl phosphonium chloride). It was observed that the presence of the ionic liquid (IL) in the adsorbent structure doubles the adsorption efficiency of the studied materials. The newly obtained Pd-based photocatalyst was exhaustively characterized and was used in the degradation process of phenol from aqueous solutions. The phenol degradation process was studied in terms of the nature of the photocatalyst used, time of photodegradation and solid: liquid ratio. It was observed that both the presence of IL and Pd lead to an increase in the efficiency of the phenol degradation process. The new Pd-based photocatalyst could be efficiently used in more cycles of phenol photodegradation processes. When is used as a photocatalyst the Florisil impregnated with IL and loaded with 2 mg/g of Pd, a degree of mineralization of 93.75% is obtained after 180 min of irradiation of a phenol solution having a concentration of 20 mg/L and using a solid:liquid ratio = 1:1.
Collapse
|
21
|
Tereshchenko A, Guda A, Polyakov V, Rusalev Y, Butova V, Soldatov A. Pd nanoparticle growth monitored by DRIFT spectroscopy of adsorbed CO. Analyst 2020; 145:7534-7540. [PMID: 32966356 DOI: 10.1039/d0an01303j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synchrotron-based X-ray absorption spectroscopy and scattering are known in situ probes of metal nanoparticles (NPs). A limited number of laboratory techniques allow post-synthesis diagnostics of the active metal surface area. This work demonstrates the high potential of infrared spectroscopy as an in situ laboratory probe for the growth of metal NPs on a substrate. We introduce a small fraction of CO molecules into the reaction mixture as a probe to monitor the reduction kinetics of the Pd2+ precursor on ceria in hydrogen.
Collapse
Affiliation(s)
- Andrei Tereshchenko
- The Smart Materials Research Institute, Southern Federal University, 344090, Rostov-on-Don, Russia.
| | | | | | | | | | | |
Collapse
|
22
|
Poschmann M, Groß H, Amin R, Fritsch C, Dankwort T, Radinger H, Indris S, Kienle L, Bensch W. CuCo
2
S
4
Deposited on TiO
2
: Controlling the pH Value Boosts Photocatalytic Hydrogen Evolution. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael Poschmann
- Institute of Inorganic Chemistry Kiel University Max‐Eyth Straße 2 24118 Kiel Germany
| | - Hendrik Groß
- Institute of Materials Science Kiel University Kaiserstraße 2 24143 Kiel Germany
| | - Reza Amin
- Department of Chemistry Faculty of Sciences University of Guilan Rasht Guilan Iran
| | - Charlotte Fritsch
- Institute for Applied Materials Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Torben Dankwort
- Institute of Materials Science Kiel University Kaiserstraße 2 24143 Kiel Germany
| | - Hannes Radinger
- Institute for Applied Materials Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Sylvio Indris
- Institute for Applied Materials Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Lorenz Kienle
- Institute of Materials Science Kiel University Kaiserstraße 2 24143 Kiel Germany
| | - Wolfgang Bensch
- Institute of Inorganic Chemistry Kiel University Max‐Eyth Straße 2 24118 Kiel Germany
| |
Collapse
|
23
|
Wang ZS, Yang CL, Xu SL, Nan H, Shen SC, Liang HW. Electronic Modulation of Pd-Based Bimetallic Catalysts with Sulfur-Doped Carbon Support for Phenylacetylene Semihydrogenation. Inorg Chem 2020; 59:5694-5701. [DOI: 10.1021/acs.inorgchem.0c00458] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zheng-Shu Wang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Cheng-Long Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Long Xu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hang Nan
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shan-Cheng Shen
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Wei Liang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Bao Z, Yang L, Cheng Z, Zhou Z. Selective Hydrogenation of the C 8 Aromatic Fraction of Pyrolysis Gasoline over NiZn 3/α-Al 2O 3: Experimental and Modeling Studies. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhichang Bao
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Yang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenmin Cheng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiming Zhou
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
25
|
Bakuru VR, Samanta D, Maji TK, Kalidindi SB. Transfer hydrogenation of alkynes into alkenes by ammonia borane over Pd-MOF catalysts. Dalton Trans 2020; 49:5024-5028. [DOI: 10.1039/d0dt00472c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ammonia borane with both hydridic and protic hydrogens in its structure acted as an efficient transfer hydrogenation agent for selective transformation of alkynes into alkenes in non-protic solvents.
Collapse
Affiliation(s)
- Vasudeva Rao Bakuru
- Materials Science Division
- Poornaprajna Institute of Scientific Research
- Bangalore Rural-562164
- India
- Manipal Academy of Higher Education
| | - Debabrata Samanta
- Chemistry and Physics of Materials Unit
- School of Advanced Materials (SAMat)
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bangalore-560064
- India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit
- School of Advanced Materials (SAMat)
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bangalore-560064
- India
| | - Suresh Babu Kalidindi
- Materials Science Division
- Poornaprajna Institute of Scientific Research
- Bangalore Rural-562164
- India
| |
Collapse
|
26
|
Oh J, Bathula HB, Park JH, Suh YW. A sustainable mesoporous palladium-alumina catalyst for efficient hydrogen release from N-heterocyclic liquid organic hydrogen carriers. Commun Chem 2019. [DOI: 10.1038/s42004-019-0167-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
27
|
Abstract
In this study, we demonstrate the preparation and characterization of small palladium nanoparticles (Pd NPs) on modified ceria support (Pd/CeO2) using wet impregnation and further reduction in an H2/Ar flow. The obtained particles had a good dispersion, but their small size made it difficult to analyze them by conventional techniques such as transmission electron microscopy (TEM) and X-ray powder diffraction (XRPD). The material demonstrated a high catalytic activity in the CO oxidation reaction: the 100% of CO conversion was achieved at ~50 °C, whereas for most of the cited literature, such a high conversion usually was observed near 100 °C or higher for Pd NPs. Diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy in combination with CO probe molecules was used to investigate the size and morphology of NPs and the ceria support. On the basis of the area ratio under the peaks attributed to bridged (B) and linear (L) carbonyls, high-dispersion Pd NPs was corroborated. Obtained results were in good agreement with data of X-ray absorption near edge structure analysis (XANES) and CO chemisorption measurements.
Collapse
|
28
|
Zhang R, Wang H, Tang S, Liu C, Dong F, Yue H, Liang B. Photocatalytic Oxidative Dehydrogenation of Ethane Using CO2 as a Soft Oxidant over Pd/TiO2 Catalysts to C2H4 and Syngas. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02441] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ronghao Zhang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hong Wang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Siyang Tang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Changjun Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| | - Fan Dong
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Hairong Yue
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| | - Bin Liang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| |
Collapse
|
29
|
Sharma AS, Kaur H. Microwave assisted hydrogenation of olefins by Pd NPs@polystyrene resin using a gas addition kit: a robust and sustainable protocol. NEW J CHEM 2018. [DOI: 10.1039/c8nj03298j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Polystyrene (PS) resin bead supported palladium nanoparticles (Pd NPs@PS resin) were prepared and their catalytic activity for the hydrogenation of olefins was investigated under microwave heating.
Collapse
Affiliation(s)
- Anuj S. Sharma
- Department of Chemistry
- School of Sciences
- Gujarat University
- Ahmedabad
- India
| | - Harjinder Kaur
- Department of Chemistry
- School of Sciences
- Gujarat University
- Ahmedabad
- India
| |
Collapse
|