1
|
Sassù F, Vomáčková Kykalová B, Vieira CS, Volf P, Loza Telleria E. Stability and suitability of housekeeping genes in phlebotomine sand flies. Sci Rep 2024; 14:23353. [PMID: 39375431 PMCID: PMC11458623 DOI: 10.1038/s41598-024-74776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
We investigated gene expression patterns in Lutzomyia and Phlebotomus sand fly vectors of leishmaniases. Using quantitative PCR, we assessed the expression stability of potential endogenous control genes commonly used in dipterans. We analyzed Lutzomyia longipalpis and Phlebotomus papatasi samples from L3 and L4 larval stages, adult sand flies of different sexes, diets, dsRNA injection, and Leishmania infection. Six genes were evaluated: actin, α-tubulin, GAPDH, 60 S ribosomal proteins L8 and L32 (RiboL8 and RiboL32), and elongation factor 1-α (EF1-α). EF1-α was among the most stably expressed along with RiboL8 in L. longipalpis larvae and RiboL32 in adults. In P. papatasi, EF1-α and RiboL32 were the top in larvae, while EF1-α and actin were the most stable in adults. RiboL8 and actin were the most stable genes in dissected tissues and infected guts. Additionally, five primer pairs designed for L. longipalpis or P. papatasi were effective in PCR with Lutzomyia migonei, Phlebotomus duboscqi, Phlebotomus perniciosus, and Sergentomyia schwetzi cDNA. Furthermore, L. longipalpis RiboL32 and P. papatasi α-tubulin primers were suitable for qPCR with cDNA from the other four species. Our research provides tools to enhance relative gene expression studies in sand flies, facilitating the selection of endogenous control for qPCR.
Collapse
Affiliation(s)
- Fabiana Sassù
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, 128 00, Czech Republic
| | - Barbora Vomáčková Kykalová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, 128 00, Czech Republic
| | - Cecilia Stahl Vieira
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, 128 00, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, 128 00, Czech Republic
| | - Erich Loza Telleria
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, 128 00, Czech Republic.
| |
Collapse
|
2
|
Pan YN, Zhao RN, Fu D, Yu C, Pan CN, Zhou W, Chen WL. Assessment of Suitable Reference Genes for qRT-PCR Normalization in Eocanthecona furcellata (Wolff). INSECTS 2022; 13:773. [PMID: 36135474 PMCID: PMC9505644 DOI: 10.3390/insects13090773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is a widely used tool for measuring gene expression; however, its accuracy relies on normalizing the data to one or more stable reference genes. Eocanthecona furcellata (Wolff) is a polyphagous predatory natural enemy insect that preferentially feeds on more than 40 types of agricultural and forestry pests, such as those belonging to the orders Lepidoptera, Coleoptera, and Hymenoptera. However, to our knowledge, the selection of stable reference genes has not been reported in detail thus far. In this study, nine E. furcellata candidate reference genes (β-1-TUB, RPL4, RPL32, RPS17, RPS25, SDHA, GAPDH2, EF2, and UBQ) were selected based on transcriptome sequencing results. The expression of these genes in various samples was examined at different developmental stages, in the tissues of male and female adults, and after temperature and starvation treatments. Five algorithms were used, including ΔCt, geNorm, NormFinder, BestKeeper, and RefFinder, to evaluate reference gene expression stability. The results revealed that the most stable reference genes were RPL32 and RPS25 at different developmental stages; RPS17, RPL4, and EF2 for female adult tissue samples; RPS17 and RPL32 for male adult tissue samples; RPS17 and RPL32 for various temperature treatments of nymphs; RPS17 and RPS25 for nymph samples under starvation stress; and RPS17 and RPL32 for all samples. Overall, we obtained a stable expression of reference genes under different conditions in E. furcellata, which provides a basis for future molecular studies on this organism.
Collapse
|
3
|
Rahman S, Zhao Z, Umair Sial M, Zhang Y, Jiang H. Case Study Using Recommended Reference Genes Actin and 18S for Reverse-Transcription Quantitative Real-Time PCR Analysis in Myzus persicae. PLoS One 2021; 16:e0258201. [PMID: 34669698 PMCID: PMC8528319 DOI: 10.1371/journal.pone.0258201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022] Open
Abstract
Myzus persicae is a globally important pest with the ability to adjust to a wide range of environmental situations, and many molecular technologies have been developed and applied to understand the biology and/or control this pest insect directly. Reverse-transcription quantitative real-time PCR (RT-qPCR) is a primary molecular technology that is used to quantify gene expression. Choosing a stable reference gene is significantly important for precisely clarifying the expression level of the target gene. Actin and 18S have been recommended as stable compounds for real-time RT-qPCR in M. persicae under the tested biotic and abiotic conditions. In this study, we checked the stability of Actin and 18S by analyzing the relative expression levels of the cytochrome 450 monooxygenase family member genes CYP6CY3 and CYP6-1, carboxylesterase gene E4 and vacuolar protein sorting gene VPS11 via RT-qPCR under various conditions. The expression levels of these four target genes were normalized using both Actin and 18S individually and the combination of these two genes. Our results confirmed that Actin and 18S can be used as reference genes to normalize the expression of target genes under insecticide treatment and starvation in M. persicae. However, at the developmental stages of M. persicae, the expression of the four tested target genes was normalized stably by Actin but not 18S, with the latter presenting a problematic change with the developmental stages. Thus, the stability of reference genes in response to diverse biotic and abiotic factors should be evaluated before each RT-qPCR experiment.
Collapse
Affiliation(s)
- Saqib Rahman
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhenzhen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Muhammad Umair Sial
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
- * E-mail:
| |
Collapse
|
4
|
Pinheiro DH, Moreira RO, Leite NA, Redoan AC, Xavier ADS, Barros BDA, Carneiro NP. Suitable reference genes for RT-qPCR analysis in Dichelops melacanthus (Hemiptera: Pentatomidae). Mol Biol Rep 2020; 47:4989-5000. [PMID: 32594344 DOI: 10.1007/s11033-020-05550-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
The relative quantification of gene expression is mainly realized through reverse transcription-quantitative PCR (RT-qPCR). However, the accuracy of this technique is deeply influenced by the expression stability of the reference genes used for data normalization. Therefore, the selection of suitable reference genes for a given experimental condition is a prerequisite in gene expression studies. Dichelops melacanthus (Hemiptera: Pentatomidae) is an important phloem sap-sucking insect pest of soybean, wheat, and maize in Brazil. Most of the genetic and molecular biology studies require gene expression analysis. Nevertheless, there are no reports about reference genes for RT-qPCR data normalization in D. melacanthus. In this study, we evaluated the expression stability of nine candidate reference genes (nadh, sdhb, gapdh, fau, ef1a, rpl9, ube4a, gus and rps23) in different developmental stages, body parts, sex, starvation-induced stress and dsRNA exposure by RefFinder software that integrates the statistical algorithms geNorm, NormFinder, BestKeeper, and ΔCt method. Our results showed that ef1a and nadh are the most stable reference genes for developmental stages, fau and rps23 for sex, ube4a and rps23 for body parts, rpl9 and fau for starvation stress, and nadh and sdhb for dsRNA exposure treatment. The reference genes selected in this work will be useful for further RT-qPCR analyses on D. melacanthus, facilitating future gene expression studies that can provide a better understanding of the developmental, physiological, and molecular processes of this important insect pest. Moreover, the knowledge gained from these studies can be helpful to design effective and sustainable pest management strategies.
Collapse
Affiliation(s)
- Daniele Heloísa Pinheiro
- Nucleus of Applied Biology, Embrapa Maize and Sorghum, Sete Lagoas, MG, 35701-970, Brazil.,Laboratory of Plant-Pest Molecular Interaction, Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70770-917, Brazil
| | - Raquel Oliveira Moreira
- Nucleus of Applied Biology, Embrapa Maize and Sorghum, Sete Lagoas, MG, 35701-970, Brazil.,School of Agrarian and Veterinary Sciences, São Paulo State University-UNESP, Jaboticabal, SP, 14884-900, Brazil
| | - Natália Alves Leite
- Nucleus of Applied Biology, Embrapa Maize and Sorghum, Sete Lagoas, MG, 35701-970, Brazil.,Department of Crop Protection, Federal University of Rio Grande Do Sul, Porto Alegre, RS, 91540-00, Brazil
| | - Ana Carolina Redoan
- Nucleus of Applied Biology, Embrapa Maize and Sorghum, Sete Lagoas, MG, 35701-970, Brazil
| | - André da Silva Xavier
- Nucleus of Applied Biology, Embrapa Maize and Sorghum, Sete Lagoas, MG, 35701-970, Brazil.,Department of Agronomy, Federal University of Espírito Santo, Alegre, ES, 29500-000, Brazil
| | | | | |
Collapse
|
5
|
Bin S, Pu X, Shu B, Kang C, Luo S, Tang Y, Wu Z, Lin J. Selection of Reference Genes for Optimal Normalization of Quantitative Real-Time Polymerase Chain Reaction Results for Diaphorina citri Adults. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:355-363. [PMID: 30289505 DOI: 10.1093/jee/toy297] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 06/08/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), can cause direct damage to citrus trees and is the main vector for the devastating disease, citrus greening disease or huanglongbing. Most molecular studies on this important insect pest use real-time reverse-transcription quantitative polymerase chain reaction (RT-qPCR) to quantify gene expression, including analyzing molecular basis for insecticide resistance in field populations. One critical factor to cause inaccuracy in RT-qPCR results is the lack of appropriate internal reference genes for optimal data normalization. In this study, the expression levels of 10 selected reference genes were evaluated in different tissue samples of psyllid adults and in the insects treated with different temperatures and insecticides. Data were analyzed using different computational algorithms, including Delta Ct, BestKeeper, NormFinder, geNorm, and RefFinder. According to our results, at least two reference genes should be used for the normalization of RT-qPCR data in this insect. The best choices of reference genes for different samples are as follows: ACT1 and Ferritin for different tissue samples, RPS20 and Ferritin for samples treated with different temperatures, TBP and EF1α for samples treated with imidacloprid, and Ferritin and TBP for samples treated with beta-cypermethrin. The reference genes identified in this study should be useful for future studies to analyze the expression patterns of target genes, especially for genes linked with temperature adaptability and insecticide resistance in this insect species in the future.
Collapse
Affiliation(s)
- Shuying Bin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Xinhua Pu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Cong Kang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Shaoming Luo
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Yu Tang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Zhongzhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| |
Collapse
|
6
|
Yu Y, Zhang J, Huang C, Hou X, Sun X, Xiao B. Reference genes selection for quantitative gene expression studies in tea green leafhoppers, Empoasca onukii Matsuda. PLoS One 2018; 13:e0205182. [PMID: 30296272 PMCID: PMC6175517 DOI: 10.1371/journal.pone.0205182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/20/2018] [Indexed: 12/27/2022] Open
Abstract
Empoasca onukii Matsuda is one of the most devastating pests of the tea plant (Camellia sinensis). Still, the presumed expression stability of its reference genes (RGs) has not been analyzed. RGs are essential for accurate and reliable gene expression analysis, so this absence has hampered the study of the insect’s molecular biology. To find candidate RGs for normalizing gene expression data, we cloned ten common housekeeping genes from E. onukii. Using the ΔCt method, geNorm, NormFinder and BestKeeper, we screened the RGs that were appropriate for quantifying the mRNA transcription of cellular responses under five experimental conditions. We identified the combinations of α-TUB and G6PDH, α-TUB and UBC, two RGs (α-TUB and β-TUB1) or three RGs (α-TUB, RPL13 and GAPDH), AK and UBC, or RPL13 and α-TUB as the best for analyzing gene expression in E. onukii adults of both sexes in different tissues, nymphs at different developmental stages, nymphs exposed to different temperatures or nymphs exposed to photoperiod stress. Finally, the E. onukii cysteine proteinase (Eocyp) was chosen as the target gene to validate the rationality of the proposed RGs. In conclusion, our study suggests a series of RGs with which to study the gene expression profiles of E. onukii that have been manipulated (biotically or abiotically) using reverse transcription quantitative polymerase chain reaction. The results offer a solid foundation for further studies of the molecular biology of E. onukii.
Collapse
Affiliation(s)
- Yongchen Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Chen Huang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Xiangjie Hou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
- * E-mail: (XS); (BX)
| | - Bin Xiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (XS); (BX)
| |
Collapse
|
7
|
Shu B, Zhang J, Cui G, Sun R, Sethuraman V, Yi X, Zhong G. Evaluation of Reference Genes for Real-Time Quantitative PCR Analysis in Larvae of Spodoptera litura Exposed to Azadirachtin Stress Conditions. Front Physiol 2018; 9:372. [PMID: 29695976 PMCID: PMC5904281 DOI: 10.3389/fphys.2018.00372] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/27/2018] [Indexed: 12/03/2022] Open
Abstract
Azadirachtin is an efficient and broad-spectrum botanical insecticide against more than 150 kinds of agricultural pests with the effects of mortality, antifeedant and growth regulation. Real-time quantitative polymerase chain reaction (RT-qPCR) could be one of the powerful tools to analyze the gene expression level and investigate the mechanism of azadirachtin at transcriptional level, however, the ideal reference genes are needed to normalize the expression profiling of target genes. In this present study, the fragments of eight candidate reference genes were cloned and identified from the pest Spodoptera litura. In addition, the expression stability of these genes in different samples from larvae of control and azadirachtin treatments were evaluated by the computational methods of NormFinder, BestKeeper, Delta CT, geNorm, and RefFinder. According to our results, two of the reference genes should be the optimal number for RT-qPCR analysis. Furthermore, the best reference genes for different samples were showed as followed: EF-1α and EF2 for cuticle, β-Tubulin and RPL7A for fat body, EF2 and Actin for midgut, EF2 and RPL13A for larva and RPL13A and RPL7A for all the samples. Our results established a reliable normalization for RT-qPCR experiments in S. litura and ensure the data more accurate for the mechanism analysis of azadirachtin.
Collapse
Affiliation(s)
- Benshui Shu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Ranran Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Veeran Sethuraman
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Lv Y, Zhao SG, Lu G, Leung CK, Xiong ZQ, Su XW, Ma JL, Chan WY, Liu HB. Identification of reference genes for qRT-PCR in granulosa cells of healthy women and polycystic ovarian syndrome patients. Sci Rep 2017; 7:6961. [PMID: 28761164 PMCID: PMC5537281 DOI: 10.1038/s41598-017-07346-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023] Open
Abstract
Comparative gene expression analysis by qRT-PCR is commonly used to detect differentially expressed genes in studies of PCOS pathology. Impaired GC function is strongly associated with PCOS pathogenesis, and a growing body of studies has been dedicated to identifying differentially expressed genes in GCs in PCOS patients and healthy women by qRT-PCR. It is necessary to validate the expression stability of the selected reference genes across the tested samples for target gene expression normalization. We examined the variability and stability of expression of the 15 commonly used reference genes in GCs from 44 PCOS patients and 45 healthy women using the GeNorm, BestKeeper, and NormFinder statistical algorithms. We combined the rankings of the three programs to produce a final ranking based on the geometric means of their stability scores. We found that HPRT1, RPLP0, and HMBS out of 15 examined commonly used reference genes are stably expressed in GCs in both controls and PCOS patients and can be used for normalization in gene expression profiling by qRT-PCR. Future gene-expression studies should consider using these reference genes in GCs in PCOS patients for more accurate quantitation of target gene expression and data interpretation.
Collapse
Affiliation(s)
- Yue Lv
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250001, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong, 250001, China
| | - Shi Gang Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong, 250001, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong, 250001, China.
| | - Chi Kwan Leung
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong, 250001, China.,SDIVF R&D Centre, Hong Kong Science and Technology Parks, Hong Kong, China
| | - Zhi Qiang Xiong
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong, 250001, China.,SDIVF R&D Centre, Hong Kong Science and Technology Parks, Hong Kong, China
| | - Xian Wei Su
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250001, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong, 250001, China.,SDIVF R&D Centre, Hong Kong Science and Technology Parks, Hong Kong, China
| | - Jin Long Ma
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250001, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong, 250001, China.,SDIVF R&D Centre, Hong Kong Science and Technology Parks, Hong Kong, China
| | - Wai Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong, 250001, China
| | - Hong Bin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250001, China. .,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong, 250001, China.
| |
Collapse
|