1
|
Tao ZS, Ma T, Yang M. Cyclosporine a inhibits bone regeneration and induces bone loss in a rat model. Int Immunopharmacol 2024; 132:111951. [PMID: 38552293 DOI: 10.1016/j.intimp.2024.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Cyclosporine A (CSA) is an immunosuppressant that has been extensively studied for its side effects on inhibiting osseointegration of titanium implants. However, the impact of CSA on bone healing in postmenopausal osteoporosis remains unknown. Therefore, this study aimed to investigate the effect of CSA on bone repair in an ovariectomized (OVX) rat model through both in vitro and in vivo experiments. We examined the interventions of CSA on osteoblast progenitor cells MC3T3-E1 and assessed their effects on biological function using RT-qPCR, CCK-8 assay, alizarin red staining, and alkaline phosphatase staining. Furthermore, we evaluated the effects of CSA on bone regeneration and bone mass in both OVX rat models and femoral diaphysis bone defect models. The results from the CCK-8 experiment indicated a positive influence of experimental doses of CSA on osteogenic differentiation of MC3T3-E1 cells. ALP expression levels and calcified nodules were also evaluated, suggesting that CSA intervention promoted osteogenic differentiation in MC3T3-E1 cells. Additionally, specific gene expressions including OPN, Runx-2, OC, and Col1a1 were up-regulated after CSA intervention. Biomechanical parameters aligned with histological analysis as well as micro-CT scans confirmed worse bone microstructure and strength following CSA intervention. Our findings preliminarily suggest that whether it is normal or osteoporotic bones, CSA has adverse effects on bone health which are associated with elevated-bone turnover.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China.
| | - Tao Ma
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China
| |
Collapse
|
2
|
Nourmohammadi K, Bayrami A, Naderi R, Shirpoor A, Soraya H. Moderate exercise mitigates cardiac dysfunction and injury induced by cyclosporine A through activation of the PGI 2 / PPAR-γ signaling pathway. Res Pharm Sci 2023; 18:696-707. [PMID: 39005570 PMCID: PMC11246107 DOI: 10.4103/1735-5362.389958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose The present study investigated the role of the prostaglandin I2/peroxisome proliferator activator receptor (PGI2/PPAR) signaling pathway in cardiac cell proliferation, apoptosis, and systemic hemodynamic variables under cyclosporine A (CsA) exposure alone or combined with moderate exercises. Experimental approach Twenty-four male Wistar rats were classified into three groups, namely, control, CsA, and CsA + exercise. Findings/Results After 42 days of treatment, the findings showed a significant enhancement in the expression of the β-MHC gene, enhancement in protein expression of Bax and caspase-3, and a significant decline in the protein expression of Bcl-2 expression, as well as increased proliferation intensity in the heart tissue of the CsA group compared to the control group. Systolic pressure, pulse pressure, mean arterial pressure (MAP), QT and QRS duration, and T wave amplitude, as well as QTc amount in the CsA group, showed a significant increase compared to the control group. PPAR-γ and PGI2 showed no significant changes compared to the control group. Moderate exercise along with CsA significantly enhanced the protein expression of PPAR-γ and PGI2 and declined protein expression of Bax, and caspase-3 compared to those in the CsA group. In the CsA + exercise group, systolic pressure, MAP, and Twave showed a significant decrease compared to the CsA group. Moderate exercises along CsA improved heart cell proliferation intensity and significantly reduced β- MHC gene expression compared to the CsA group. Conclusions and implications The results showed moderate exercise alleviated CsA-induced heart tissue apoptosis and proliferation with the corresponding activation of the PGI2/PPAR-γ pathway.
Collapse
Affiliation(s)
- Khatereh Nourmohammadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Abolfazl Bayrami
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Roya Naderi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Shirpoor
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Soraya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Ahmed OAA, Hassan NA, Azhar AS, El-Mas MM, El-Bassossy HM. A Nano-Pharmaceutical Formula of Quercetin Protects from Cardiovascular Complications Associated with Metabolic Syndrome. Front Pharmacol 2021; 12:696981. [PMID: 34456723 PMCID: PMC8385560 DOI: 10.3389/fphar.2021.696981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
Metabolic syndrome (MetS) is closely associated with the development of cardiovascular diseases. We recently developed a nano-preparation of the flavonoid quercetin (QU) in a self-nanoemulsifying drug delivery system (SNEDDS). The latter comprised a mixture composed of pumpkin seed oil, D-α-Tocopherol polyethylene glycol 1,000 succinate and polyethylene glycol. The QU SNEDDS preparations exhibited a considerably higher bioavailability compared with the standard quercetin suspension. Here, we investigated whether the quercetin loaded SNEDDS could offer better protection compared with the standard formulation against cardiovascular complications of MetS in rats. MetS was induced by high fructose, high salt and high fat diet for 12 weeks while the nano-preparation or the standard suspension of quercetin was orally administered for the last 6 weeks. Compared to little effect for the standard quercetin suspension (MQ), the treatment of MetS rats with the quercetin loaded SNEDDS (MNQ) virtually abolished the depressant effect of MetS on contractility index (control, 114 ± 4; MetS, 92 ± 3; MQ, 100 ± 2; MNQ, 114 ± 6 1/s) and rate of rise in left ventricular pressure (dP/dtmax) (control, 8,171 ± 274; MetS, 6,664 ± 135; MQ, 6,776 ± 108; MNQ, 7,498 ± 303 mmHg/s). Likewise, the prolongation by MetS of electrocardiographic markers of arrhythmogenesis (QTc, JT, and Tpeak-to-Tend intervals) and concomitant rises in dicrotic notch pressure were preferentially reversed by quercetin nano-preparation. On the other hand, the rises in the isovolumic relaxation constant (Tau, denotes diastolic dysfunction), blood pressure, pulse pressure, and difference between systolic and dicrotic pressure (SDP difference) were equally improved by the two preparations of quercetin. Additionally, no differences were noted in the ability of the two quercetin preparations in abrogating the elevated oxidative (MDA) and inflammatory (TNFα) markers in cardiac tissues of MetS rats. Histopathological, microscopical signs of necrosis, inflammatory cell infiltration, and vascular congestion in MetS hearts were more markedly inhibited by the nano-preparation, compared with the standard preparation of quercetin. In conclusion, the quercetin loaded SNEDDS is evidently more advantageous than the standard preparation of the drug in alleviating functional and histopathological manifestations of cardiac damage incited by MetS.
Collapse
Affiliation(s)
- Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noura A Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmad S Azhar
- Pediatric Cardiac Center of Excellence, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait city, Kuwait
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Abdallah HM, El-Bassossy HM, El-Halawany AM, Ahmed TA, Mohamed GA, Malebari AM, Hassan NA. Self-Nanoemulsifying Drug Delivery System Loaded with Psiadia punctulata Major Metabolites for Hypertensive Emergencies: Effect on Hemodynamics and Cardiac Conductance. Front Pharmacol 2021; 12:681070. [PMID: 34177590 PMCID: PMC8222910 DOI: 10.3389/fphar.2021.681070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Vasodilators are an important class of antihypertensive agents. However, they have limited clinical use due to the reflex tachycardia associated with their use which masks most of its antihypertensive effect and raises cardiac risk. Chemical investigation of Psiadia punctulata afforded five major methoxylated flavonoids (1–5) three of which (1, 4, and 5) showed vasodilator activity. Linoleic acid-based self-nanoemulsifying drug delivery system (SNEDDS) was utilized to develop intravenous (IV) formulations that contain compounds 1, 4, or 5. The antihypertensive effect of the prepared SNEDDS formulations, loaded with each of the vasodilator compounds, was tested in the angiotensin-induced rat model of hypertension. Rats were subjected to real-time recording of blood hemodynamics and surface Electrocardiogram (ECG) while the pharmaceutical formulations were individually slowly injected in cumulative doses. Among the tested formulations, only that contains umuhengerin (1) and 5,3′-dihydroxy-6,7,4′,5′-tetramethoxyflavone (5) showed potent antihypertensive effects. Low IV doses, from the prepared SNEDDS, containing either compound 1 or 5 showed a marked reduction in the elevated systolic blood pressure by 10 mmHg at 12 μg/kg and by more than 20 mmHg at 36 μg/kg. The developed SNEDDS formulation containing either compound 1 or 5 significantly reduced the elevated diastolic, pulse pressure, dicrotic notch pressure, and the systolic–dicrotic notch pressure difference. Moreover, both formulations decreased the ejection duration and increased the non-ejection duration while they did not affect the time to peak. Both formulations did not affect the AV conduction as appear from the lack of effect on p duration and PR intervals. Similarly, they did not affect the ventricular repolarization as no effect on QTc or JT interval. Both formulations decreased the R wave amplitude but increased the T wave amplitude. In conclusion, the careful selection of linoleic acid for the development of SNEDDS formulation rescues the vasodilating effect of P. punctulata compounds from being masked by the reflex tachycardia that is commonly associated with the decrease in peripheral resistance by most vasodilators. The prepared SNEDDS formulation could be suggested as an effective medication in the treatment of hypertensive emergencies, after clinical evaluation.
Collapse
Affiliation(s)
- Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hany M El-Bassossy
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ali M El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Azizah M Malebari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noura A Hassan
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Youssef ME, El-Mas MM, Abdelrazek HM, El-Azab MF. α7-nAChRs-mediated therapeutic angiogenesis accounts for the advantageous effect of low nicotine doses against myocardial infarction in rats. Eur J Pharmacol 2021; 898:173996. [PMID: 33684450 DOI: 10.1016/j.ejphar.2021.173996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/20/2022]
Abstract
Angiogenesis accelerates tissue regeneration in a variety of ischemic conditions including myocardial infarction (MI). Here we tested the hypothesis that angiogenesis induced by α7-nicotinic acetylcholine receptors (α7-nAChRs) mitigates histopathological, electrocardiographic, and molecular consequences of MI in rats. These profiles were evaluated in the isoprenaline (85 mg/kg/day i. p. For 2 days) MI rat model treated with or without nicotine or PHA-543613 (PHA, selective α7-nAChR agonist). Isoprenaline-insulted rats showed (i) ECG signs of MI such as significant ST-segment elevations and prolonged QT-intervals, (ii) deteriorated left ventricular histopathological scoring and elevated inflammatory cell infiltration, (iii) reduced immunohistochemical expression of cardiac CD34, a surrogate marker of capillary density, (iv) decreased cardiac expression of iNOS and α7-nAChRs, and (v) adaptive increases in cardiac HO-1 expression and plasma angiogenic markers such as vascular endothelial growth factor (VEGF) and nitric oxide (NO). These effects of isoprenaline, except cardiac iNOS and α7-nAChRs downregulation, were ameliorated in rats treated with a low dose (20 μg/kg/day s. c. For 16 days) of nicotine or PHA. We also show that concurrent α7-nAChR blockade by methyllycaconitine (MLA, 40 μg/kg/day, for 16 days) reversed the ECG, histopathological, and capillary density effects of nicotine, thereby reinforcing the advantageous cardioprotective and anti-ischemic roles of α7-nAChRs in this setting. The observed results showed promising effects on isoprenaline induced myocardial damage. In conclusion, the activation of α7-nAChRs by doses of nicotine or PHA in the microgram scale promotes neovascularization and offers a promising therapeutic strategy for MI. CATEGORY: Cardiovascular Pharmacology.
Collapse
Affiliation(s)
- Mahmoud E Youssef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait
| | - Heba M Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona F El-Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
6
|
Al-Jaouni S, Abdul-Hady S, El-Bassossy H, Salah N, Hagras M. Ajwa Nanopreparation Prevents Doxorubicin-Associated Cardiac Dysfunction: Effect on Cardiac Ischemia and Antioxidant Capacity. Integr Cancer Ther 2020; 18:1534735419862351. [PMID: 31282195 PMCID: PMC6614943 DOI: 10.1177/1534735419862351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background: This study evaluated the cardioprotective effect of Ajwa
nano-preparation against doxorubicin-associated cardiotoxicity.
Methods: Twenty-four male Wistar rats (200-250 g) were divided
into 3 groups. One group was given the nanopreparation containing both Ajwa
fruit and pit in a dose of 1.4 g/kg orally 1 hour before doxorubicin infusion
(Dates-DOX group). Another group was given the vehicle for 1 hour before
doxorubicin infusion (DOX group). The third group received the vehicle but no
DOX infusion (time control). Cardiac hemodynamics, blood pressure, cardiac
contractility, and conductivity were recorded before and after 45 minutes of
infusion of doxorubicin (15 mg/kg, slow intravenous over 45 minutes). Blood
samples were collected before and after doxorubicin infusion. Heart tissue
samples were collected and snap frozen until assay of reduced glutathione.
Results: Rats pre-administered Ajwa nanopreparation were
protected from doxorubicin-associated systolic and diastolic dysfunction based
on the significant elevation in the rate of rise in left ventricular pressure
(dp/dtmax) and
(dp/dtmin) compared with the
DOX group. In addition, it prevented the doxorubicin-associated ischemia based
on the significant shortening in QT interval, JT interval, and
Tpeak-Tend interval
versus the DOX group. There was no effect on atrial conductivity (PR interval
and P duration). Ajwa pretreatment increased the antioxidant capacity of cardiac
tissue, as evidenced by increasing the cardiac content of reduced glutathione
compared with the untreated doxorubicin group. Conclusion: Ajwa
nanopreparation protects from doxorubicin-associated cardiotoxicity through
alleviating cardiac ischemia and increasing cardiac antioxidant capacity.
Collapse
Affiliation(s)
- Soad Al-Jaouni
- 1 King Abduaziz University, Chair of Yousef Abdulatif Jameel of Prophetic Medicine Application, Kingdom of Saudi Arabia.,2 Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Seham Abdul-Hady
- 1 King Abduaziz University, Chair of Yousef Abdulatif Jameel of Prophetic Medicine Application, Kingdom of Saudi Arabia.,3 Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | | | - Numan Salah
- 1 King Abduaziz University, Chair of Yousef Abdulatif Jameel of Prophetic Medicine Application, Kingdom of Saudi Arabia.,5 Center of Nanotechnology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Magda Hagras
- 6 Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
7
|
El-Mas MM, Abdel-Rahman AA. Role of Alcohol Oxidative Metabolism in Its Cardiovascular and Autonomic Effects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:1-33. [PMID: 31368095 PMCID: PMC8034813 DOI: 10.1007/978-981-13-6260-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several review articles have been published on the neurobehavioral actions of acetaldehyde and other ethanol metabolites as well as in major alcohol-related disorders such as cancer and liver and lung disease. However, very few reviews dealt with the role of alcohol metabolism in the adverse cardiac and autonomic effects of alcohol and their potential underlying mechanisms, particularly in vulnerable populations. In this chapter, following a brief overview of the dose-related favorable and adverse cardiovascular effects of alcohol, we discuss the role of ethanol metabolism in its adverse effects in the brainstem and heart. Notably, current knowledge dismisses a major role for acetaldehyde in the adverse autonomic and cardiac effects of alcohol because of its low tissue level in vivo. Contrary to these findings in men and male rodents, women and hypertensive individuals are more sensitive to the adverse cardiac effects of similar amounts of alcohol. To understand this discrepancy, we discuss the autonomic and cardiac effects of alcohol and its metabolite acetaldehyde in a model of hypertension, the spontaneously hypertensive rat (SHR) and female rats. We present evidence that enhanced catalase activity, which contributes to cardioprotection in hypertension (compensatory) and in the presence of estrogen (inherent), becomes detrimental due to catalase catalysis of alcohol metabolism to acetaldehyde. Noteworthy, studies in SHRs and in estrogen deprived or replete normotensive rats implicate acetaldehyde in triggering oxidative stress in autonomic nuclei and the heart via (i) the Akt/extracellular signal-regulated kinases (ERK)/nitric oxide synthase (NOS) cascade and (ii) estrogen receptor-alpha (ERα) mediation of the higher catalase activity, which generates higher ethanol-derived acetaldehyde in female heart. The latter is supported by the ability of ERα blockade or catalase inhibition to attenuate alcohol-evoked myocardial oxidative stress and dysfunction. More mechanistic studies are needed to further understand the mechanisms of this public health problem.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
8
|
Azhar AS, El-Bassossy HM, Abdallah HM. Mentha longifolia alleviates experimentally induced angina via decreasing cardiac load. J Food Biochem 2018; 43:e12702. [PMID: 31353642 DOI: 10.1111/jfbc.12702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 11/28/2022]
Abstract
Angina occurs due to imbalance between heart oxygen demand and supply and is associated with serious morbidity and mortality. Here, the possible antianginal effect of Mentha longifolia extract was studied in experimental model of angina. Aerial parts of M. longifolia were extracted, standardized, and given to rats three days before angina. Heart hemodynamics and conductivity were recorded by microtip catheter and surface electrodes. M. longifolia extract significantly alleviated the sustained decline in cardiac contractility after vasopressin exposure. However, M. longifolia did not affect the impaired cardiac dilation after vasopressin. Heart rate was significantly decreased after vasopressin exposure in rats treated with M. longifolia compared with untreated animals. In addition, M. longifolia produced more increase in systolic and diastolic durations after vasopressin exposure compared with untreated animals. Moreover, the plant extract alleviated the ST height changes during vasopressin injection. M. longifolia extract alleviates impaired cardiac function associated with angina through decreasing heart work. PRACTICAL APPLICATIONS: The present study is the first to study the effect of M. longifolia in an experimental model of angina. M. longifolia alleviated the impaired cardiac contractility associated with angina exposure. The antianginal effect of M. longifolia could be through reducing cardiac load. This can be concluded from the decrease in heart rate and the systolic and diastolic cycles elongation after exposure to vasopressin in animals pretreated with M. longifolia. This helps in reducing the associated cardiac ischemia upon exposure to vasopressin as indicated by ST change. This could provide new directions in the management of the serious angina disease.
Collapse
Affiliation(s)
- Ahmad S Azhar
- Faculty of Medicine, Department of Pediatrics, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Hany M El-Bassossy
- Faculty of Pharmacy, Department of Pharmacology & Toxicology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Faculty of Pharmacy, Department of Pharmacology, Zagazig University, Zagazig, Egypt
| | - Hossam M Abdallah
- Faculty of Pharmacy, Department of Natural Products, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Faculty of Pharmacy, Department of Pharmacognosy, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
El-Bassossy HM, Eid BG. Cyclosporine A exhibits gender-specific nephrotoxicity in rats: Effect on renal tissue inflammation. Biochem Biophys Res Commun 2017; 495:468-472. [PMID: 29127010 DOI: 10.1016/j.bbrc.2017.11.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023]
Abstract
Cyclosporine A (CSA) is a widely used immunosuppressant drug known to commonly cause cardio and nephrotoxicity. A study looking at the sex specificity of the cardiotoxicity of CSA revealed that sexual dimorphism existed when looking at the electrocardiographs and left ventricles of CSA-treated rats. We hypothesized that cyclosporine A exhibited gender-specific nephrotoxicity by testing various parameters of kidney function in male and female rats treated for 21 days with 15 mg/kg CSA versus control male and female rats that received a vehicle consisting of 18% kolliphore and 2% ethanol in sterile saline. It was found that male rats treated with CSA had significantly higher levels of serum creatinine and lower creatinine clearance than control males. However, serum creatinine and creatinine clearance were not affected by CSA treatment in females. Histopathological examination of kidney cross-sections revealed a heavy aggregation of inflammatory cells and significant vascular congestion in males treated with CSA, which was less prominent in female rats receiving CSA. In addition CSA treated male rats had higher levels of serum cholesterol compared with control while, CSA did not affect serum cholesterol in female rats. Kidney tumor necrosis factor alpha (TNF-α) levels were found to drop in female rats following CSA treatment, whereas no change was observed in male rats before and after treatment. These results suggest that CSA exhibits gender-related nephrotoxicity in rats that might be mediated by differences in the inflammatory response between males and females.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Egypt.
| | - Basma G Eid
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
El-Bassossy HM, Awan Z, El-Mas MM. Perinatal ciclosporin A exposure elicits sex-related cardiac dysfunction and inflammation in the rat progeny. Toxicol Lett 2017; 281:35-43. [DOI: 10.1016/j.toxlet.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022]
|