1
|
Misra G, Rajawat J, Pal R, Smith JC, Kumar A. Targeted inhibition of MASTL kinase activity induces apoptosis in breast cancer. Life Sci 2023; 334:122250. [PMID: 37931742 DOI: 10.1016/j.lfs.2023.122250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Microtubule-associated serine/threonine kinase-like (MASTL) (or Greatwall kinase (GWL)) is an important cell cycle regulating kinase that regulates the G2-M transition. Uncontrolled MASTL activity is implicated in breast cancer progression. To date, very few inhibitors have been reported against this protein. Here, structure-based computational modeling indicates that the natural product flavopiridol (FLV) binds strongly to MASTL and these results are validated using molecular dynamics simulation studies. An in vitro kinase assay reveals an EC50 (effective concentration) value of FLV to be 82.1 nM and a better IC50 compared to the positive reference compound, staurosporine. FLV is found to inhibit MASTL kinase activity, arresting the cell growth in the G1 phase and inducing apoptosis in breast cancer cells. Consistent with these results differential gene expression obtained using RNA sequencing studies, and validated by RT PCR and immunoblot analysis, indicate that MASTL inhibition induces cell cycle arrest and apoptotic-related genes. Furthermore, metastasis- and inflammation-related genes are downregulated. Thus, the deregulation of MASTL signaling pathways on targeted inhibition of its kinase activity is revealed. This study lays a strong foundation for investigating FLV as a lead compound in breast cancer therapeutics.
Collapse
Affiliation(s)
- Gauri Misra
- National Institute of Biologicals (Ministry of Health and Family Welfare, Government of India), Noida 201309, India.
| | - Jyotika Rajawat
- Institute of Advanced Molecular Genetics & Infectious Diseases, ONGC, Centre for Advanced Studies, University of Lucknow, Lucknow 226 007, UP, India
| | - Rajesh Pal
- Precision Sarcoma Research Group, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jeremy C Smith
- Oak Ridge National Laboratory, Biosciences Division, UT/ORNL Center for Molecular Biophysics, Oak Ridge, TN, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
2
|
Laus A, Kumar A, Caboni P, De Luca MA, Baumann MH, Pieroni E, Tocco G. In silico characterization of ligand-receptor interactions for U-47700, N,N-didesmethyl-U-47700, U-50488 at mu- and kappa-opioid receptors. Arch Pharm (Weinheim) 2023; 356:e2300256. [PMID: 37452407 DOI: 10.1002/ardp.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
The increasing misuse of novel synthetic opioids (NSOs) represents a serious public health concern. In this regard, U-47700 (trans-3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide) and related "U-compounds" emerged on recreational drug markets as synthetic substitutes for illicit heroin and constituents of counterfeit pain medications. While the pharmacology of U-compounds has been investigated using in vitro and in vivo methods, there is still a lack of understanding about the details of ligand-receptor interactions at the molecular level. To this end, we have developed a molecular modeling protocol based on docking and molecular dynamics simulations to assess the nature of ligand-receptor interactions for U-47700, N,N-didesmethyl U-47700, and U-50488 at the mu-opioid receptor (MOR) and kappa-opioid receptor (KOR). The evaluation of ligand-receptor and ligand-receptor-membrane interaction energies enabled the identification of subtle conformational shifts in the receptors induced by ligand binding. Interestingly, the removal of two key methyl groups from U-47700, to form N,N-didesmethyl U-47700, caused a loss of hydrogen bond contact with tryptophan (Trp)229, which may underlie the lower interaction energy and reduced MOR affinity for the compound. Taken together, our results are consistent with the reported biological findings for U-compounds and provide a molecular basis for the MOR selectivity of U-47700 and KOR selectivity of U-50488.
Collapse
MESH Headings
- Receptors, Opioid, kappa/chemistry
- Receptors, Opioid, kappa/metabolism
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Ligands
- Structure-Activity Relationship
- Receptors, Opioid, mu/metabolism
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/chemistry
Collapse
Affiliation(s)
- Antonio Laus
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Maria A De Luca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Enrico Pieroni
- CRS4, Modelling, Simulation and Data Analysis Program, Pula, Italy
| | - Graziella Tocco
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| |
Collapse
|
3
|
The role of polyspecific T-cell exhaustion in severe outcomes for COVID-19 patients having latent pathogen infections such as Toxoplasmagondii. Microb Pathog 2021; 161:105299. [PMID: 34813900 PMCID: PMC8605814 DOI: 10.1016/j.micpath.2021.105299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 11/21/2022]
Abstract
Various categories of coronavirus disease 19 (COVID-19) patients have exhibited major mortality rate differences and symptoms. Some papers have recently explained these differences in mortality rates and symptoms as a consequence of this virus infection acting in synergy with one or more latent pathogen infections in some patients. A latent pathogen infection likely to be involved in millions of these patients is the protozoan parasite Toxoplasma gondii, which infects approximately one third of the global human population. However, other papers have concluded that latent protozoan parasite infections can reduce the severity of viral infections. The aims and purposes of this paper include providing explanations for the contradictions between these studies and introducing a significant new category of T-cell exhaustion. Latent pathogens can have different genetic strains with great differences in their effects on a second pathogen infection. Furthermore, depending on the timing and effectiveness of drug treatments, pathogen infections that become latent may or may not later induce immune cell dysfunctions, including T-cell exhaustion. Concurrent multiple pathogen T-cell exhaustion is herein called "polyspecific T-cell exhaustion."
Collapse
|
4
|
Bingöl EN, Serçinoğlu O, Ozbek P. Unraveling the Allosteric Communication Mechanisms in T-Cell Receptor-Peptide-Loaded Major Histocompatibility Complex Dynamics Using Molecular Dynamics Simulations: An Approach Based on Dynamic Cross Correlation Maps and Residue Interaction Energy Calculations. J Chem Inf Model 2021; 61:2444-2453. [PMID: 33930270 DOI: 10.1021/acs.jcim.1c00338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antigen presentation by major histocompatibility complex (MHC) proteins to T-cell receptors (TCRs) plays a crucial role in triggering the adaptive immune response. Most of our knowledge on TCR-peptide-loaded major histocompatibility complex (pMHC) interaction stemmed from experiments yielding static structures, yet the dynamic aspects of this molecular interaction are equally important to understand the underlying molecular mechanisms and to develop treatment strategies against diseases such as cancer and autoimmune diseases. To this end, computational biophysics studies including all-atom molecular dynamics simulations have provided useful insights; however, we still lack a basic understanding of an overall allosteric mechanism that results in conformational changes in the TCR and subsequent T-cell activation. Previous hydrogen-deuterium exchange and nuclear magnetic resonance studies provided clues regarding these molecular mechanisms, including global rigidification and allosteric effects on the constant domain of TCRs away from the pMHC interaction site. Here, we show that molecular dynamics simulations can be used to identify how this overall rigidification may be related to the allosteric communication within TCRs upon pMHC interaction via essential dynamics and nonbonded residue-residue interaction energy analyses. The residues taking part in the rigidification effect are highlighted with an intricate analysis on residue interaction changes, which lead to a detailed outline of the complex formation event. Our results indicate that residues of the Cβ domain of TCRs show significant differences in their nonbonded interactions upon complex formation. Moreover, the dynamic cross correlations between these residues are also increased, in line with their nonbonded interaction energy changes. Altogether, our approach may be valuable for elucidating intramolecular allosteric changes in the TCR structure upon pMHC interaction in molecular dynamics simulations.
Collapse
Affiliation(s)
- Elif Naz Bingöl
- Department of Bioengineering, Institute of Pure and Applied Sciences, Marmara University, 34722 Istanbul, Turkey
| | - Onur Serçinoğlu
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul 34722, Turkey
| |
Collapse
|
5
|
Pal R, Kumar A, Misra G. Exploring TEAD2 as a drug target for therapeutic intervention of cancer: A multi-computational case study. Brief Bioinform 2021; 22:6145134. [PMID: 33611407 DOI: 10.1093/bib/bbab007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/30/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Transcriptional enhanced associate domain (TEAD) is a family of transcription factors that plays a significant role during embryonic developmental processes, and its dysregulation is responsible for tumour progression. TEAD is considered as druggable targets in various diseases, namely cancer, cardiovascular diseases and neurodegenerative disorders. Previous structural studies revealed the importance of the central hydrophobic pocket of TEAD as a potential target for small-molecule inhibitors and demonstrated flufenamic acid (FLU) (a COX-2 enzyme inhibitor) to bind and inhibit TEAD2 functions. However, to date, no drug candidates that bind specifically to TEAD2 with high selectivity and efficacy have been developed or proposed. Within this framework, we present here a case study where we have identified potential TEAD2 inhibitor candidates by integrating multiple computational approaches. Among the candidates, the top two ranked compounds ZINC95969481 (LG1) which is a fused pyrazole derivative and ZINC05203789 (LG2), a fluorene derivative resulted in much favourable binding energy scores than the reference ligand, FLU. The drug likeliness of the best compounds was also evaluated in silico to ensure the bioavailability of these compounds particularly LG1 as compared to FLU thus providing a strong rationale for their development as leads against TEAD. Molecular dynamics simulations results highlighted the role of key residues contributing to favourable interactions in TEAD2-LG1 complex with much favourable interaction and binding free energy values with respect to the reference compound. Altogether, this study provides a starting platform to be more exploited by future experimental research towards the development of inhibitors against TEAD, a persuasive strategy for therapeutic intervention in cancer treatment.
Collapse
Affiliation(s)
- Rajesh Pal
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Amit Kumar
- Department of Biomedical Sciences, University of Cagliari, Noida, Uttar Pradesh, India
| | - Gauri Misra
- Department of Electrical and Electronic Engineering, University of Cagliari, Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Dargahi N, Matsoukas J, Apostolopoulos V. Streptococcus thermophilus ST285 Alters Pro-Inflammatory to Anti-Inflammatory Cytokine Secretion against Multiple Sclerosis Peptide in Mice. Brain Sci 2020; 10:brainsci10020126. [PMID: 32102262 PMCID: PMC7071487 DOI: 10.3390/brainsci10020126] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/05/2023] Open
Abstract
Probiotic bacteria have beneficial effects to the development and maintenance of a healthy microflora that subsequently has health benefits to humans. Some of the health benefits attributed to probiotics have been noted to be via their immune modulatory properties suppressing inflammatory conditions. Hence, probiotics have become prominent in recent years of investigation with regard to their health benefits. As such, in the current study, we determined the effects of Streptococcus thermophilus to agonist MBP83-99 peptide immunized mouse spleen cells. It was noted that Streptococcus thermophilus induced a significant increase in the expression of anti-inflammatory IL-4, IL-5, IL-10 cytokines, and decreased the secretion of pro-inflammatory IL-1β and IFN-γ Regular consumption of Streptococcus thermophilus may therefore be beneficial in the management and treatment of autoimmune diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Narges Dargahi
- Institute for Health and Sport, Victoria University, Melbourne VIC 3030, Australia;
| | | | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne VIC 3030, Australia;
- Correspondence: ; Tel.: +613-9919-2025
| |
Collapse
|
7
|
Abstract
T cells recognize and respond to self antigens in both cancer and autoimmunity. One strategy to influence this response is to incorporate amino acid substitutions into these T cell-specific epitopes. This strategy is being reconsidered now with the goal of increasing time to regression with checkpoint blockade therapies in cancer and antigen-specific immunotherapies in autoimmunity. We discuss how these amino acid substitutions change the interactions with the MHC class I or II molecule and the responding T cell repertoire. Amino acid substitutions in epitopes that are the most effective in therapies bind more strongly to T cell receptor and/or MHC molecules and cross-react with the same repertoire of T cells as the natural antigen.
Collapse
Affiliation(s)
- Jill E Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19thAvenue, Aurora, CO 80045, USA.
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19thAvenue, Aurora, CO 80045, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, 1775 Aurora Court, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Roy S, Kar M, Roy S, Padhi S, Kumar A, Thakur S, Akhter Y, Gatto G, Banerjee B. Inhibition of CD44 sensitizes cisplatin-resistance and affects Wnt/β-catenin signaling in HNSCC cells. Int J Biol Macromol 2020; 149:501-512. [PMID: 31953176 DOI: 10.1016/j.ijbiomac.2020.01.131] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/20/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
CD44 is one of the key cancer stem-like cell (CSC) marker and may have a potential role in tumorigenesis. In this study, we investigated the role of CD44 in prognosis of HNSCC patients, its possible crosstalk with Wnt/β-catenin signaling and modulating cisplatin resistance. We observed increased expression of CD44 in the cut margin of recurrent HNSCC patients were associated with poor prognosis. We observed that inhibition of CD44 by using 1,2,3,4 tetrahydroisoquinoline (THIQ) modulates the expression of Wnt/ β-catenin signaling proteins and further silencing of β-catenin also decreases the expression of CD44. This led us to investigate the possible protein-protein interaction between CD44 and β-catenin. Co-immunoprecipitation study illustrated possible interaction between CD44 and β-catenin which was further confirmed by molecular docking and molecular dynamic (MD) simulation studies. Molecular docking study revealed that one interface amino acid residue Glu642 of β -catenin interacts with Lys92 of CD44 which was also present for 20% of simulation time. Furthermore, we observed that inhibition of CD44 chemosensitizes cisplatin-resistant HNSCC cells towards cisplatin. In conclusion, this study investigated the possible role of CD44 along with Wnt/ β-catenin signaling and their possible therapeutic role to abrogate cisplatin resistance.
Collapse
Affiliation(s)
- Souvick Roy
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT, Bhubaneswar, Odisha 751024, India
| | - Madhabananda Kar
- Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha 751019, India
| | - Shomereeta Roy
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT, Bhubaneswar, Odisha 751024, India
| | - Swatishree Padhi
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT, Bhubaneswar, Odisha 751024, India
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
| | - Shweta Thakur
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur, Himachal Pradesh 176206, India
| | - Yusuf Akhter
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur, Himachal Pradesh 176206, India; Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Gianluca Gatto
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
| | - Birendranath Banerjee
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
9
|
Agrahari AK, Pieroni E, Gatto G, Kumar A. The impact of missense mutation in PIGA associated to paroxysmal nocturnal hemoglobinuria and multiple congenital anomalies-hypotonia-seizures syndrome 2: A computational study. Heliyon 2019; 5:e02709. [PMID: 31687525 PMCID: PMC6820265 DOI: 10.1016/j.heliyon.2019.e02709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 08/12/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal blood disorder that manifests with hemolytic anemia, thrombosis, and peripheral blood cytopenias. The disease is caused by the deficiency of two glycosylphosphatidylinositols (GPI)-anchored proteins (CD55 and CD59) in the hemopoietic stem cells. The deficiency of GPI-anchored proteins has been associated with the somatic mutations in phosphatidylinositol glycan class A (PIGA). However, the mutations that do not cause PNH is associated with the multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2). To best of our knowledge, no computational study has been performed to explore at an atomistic level the impact of PIGA missense mutations on the structure and dynamics of the protein. Therefore, we focused our study to provide molecular insights into the changes in protein structural dynamics upon mutation. In the initial step, screening for the most pathogenic mutations from the pool of publicly available mutations was performed. Further, to get a better understanding, pathogenic mutations were mapped to the modeled structure and the resulting protein was subjected to 100 ns molecular dynamics simulation. The residues close to C- and N-terminal regions of the protein were found to exhibit greater flexibility upon mutation. Our study suggests that four mutations are highly effective in altering the structural conformation and stability of the PIGA protein. Among them, mutant G48D was found to alter protein's structural dynamics to the greatest extent, both on a local and a global scale.
Collapse
Affiliation(s)
- Ashish Kumar Agrahari
- Department of Integrative Biology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Enrico Pieroni
- CRS4 – Modeling & Simulation Group, Biosciences Department, 09010, Pula, Italy
| | - Gianluca Gatto
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
10
|
Dominguez JL, Knapp B. How peptide/MHC presence affects the dynamics of the LC13 T-cell receptor. Sci Rep 2019; 9:2638. [PMID: 30804417 PMCID: PMC6389892 DOI: 10.1038/s41598-019-38788-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/19/2018] [Indexed: 12/04/2022] Open
Abstract
The interaction between T-cell receptors (TCRs) of T-cells and potentially immunogenic peptides presented by MHCs of antigen presenting cells is one of the most important mechanisms of the adaptive human immune system. A large number of structural simulations of the TCR/peptide/MHC system have been carried out. However, to date no study has investigated the differences of the dynamics between free TCRs and pMHC bound TCRs on a large scale. Here we present a study totalling 37 100 ns investigating the LC13 TCR in its free form as well as in complex with HLA-B*08:01 and different peptides. Our results show that the dynamics of the bound and unbound LC13 TCR differ significantly. This is reflected in (a) expected results such as an increased flexibility and increased solvent accessible surface of the CDRs of unbound TCR simulations but also in (b) less expected results such as lower CDR distances and compactness as well as alteration in the hydrogen bond network around CDR3α of unbound TCR simulations. Our study further emphasises the structural flexibility of TCRs and confirms the importance of the CDR3 loops for the adoption to MHC.
Collapse
Affiliation(s)
- Jose Luis Dominguez
- Department of Basic Sciences, International University of Catalonia, Barcelona, Spain
| | - Bernhard Knapp
- Department of Basic Sciences, International University of Catalonia, Barcelona, Spain.
- Department of Statistics, Protein Informatics Group, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Roy S, Roy S, Kar M, Thakur S, Akhter Y, Kumar A, Delogu F, Padhi S, Saha A, Banerjee B. p38 MAPK pathway and its interaction with TRF2 in cisplatin induced chemotherapeutic response in head and neck cancer. Oncogenesis 2018; 7:53. [PMID: 29983416 PMCID: PMC6036057 DOI: 10.1038/s41389-018-0062-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/30/2018] [Accepted: 05/20/2018] [Indexed: 12/17/2022] Open
Abstract
TRF2 is a telomere binding protein, a component of the shelterin complex that plays a major role in maintaining the integrity of the genome. TRF2 is over-expressed in a number of human cancers including Head and Neck cancer and might play a key role in tumor initiation and development. p38 MAPK signaling pathway is strongly activated in response to various environmental and cellular stresses and thus overexpressed in most of the Head and Neck cancer cases. In this study, we investigated potential interactions of TRF2 with p38 in HNSCC cells and patient samples. Using in silico experiments, we identified interface polar residue Asp-354 of p38 and Arg-492, Arg-496 of TRF2 as protein–protein interaction hotspots. In addition to these interactions, Arg-49 residue of p38 was also found to interact with Glu-456 of TRF2. A detailed understanding of how phosphorylated and unphosphorylated state of p38 protein can influence the stability, specificity and to some extent a conformational change of p38-TRF2 binding is presented. Silencing of TRF2 significantly decreased the phosphorylation of p38 in HNSCC cells which was confirmed by western blot, immunofluorescence and co-immunoprecipitation and alternatively inhibiting p38 using p38 inhibitor (SB 203580) decreased the expression of TRF2 in HNSCC cells. Furthermore, we checked the effect of TRF2 silencing and p38 inhibition in cisplatin induced chemosensitivity of SCC-131 cells. TRF2 silencing and p38 inhibition chemosensitize HNSCC cells to cisplatin. Thus, targeting TRF2 in combinatorial therapeutics can be a treatment modality for Head and Neck cancer which involves inhibition of p38 MAPK pathway.
Collapse
Affiliation(s)
- Shomereeta Roy
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Souvick Roy
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Madhabananda Kar
- Professor and Head, Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, 751019, India
| | - Shweta Thakur
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur, Himachal Pradesh, 176206, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Amit Kumar
- Departments of Mechanical, Chemical and Materials Engineering, University of Cagliari, via Marengo 2, 09123, Cagliari, Italy.,Biosciences Sector, Center for Advanced Study Research and Development in Sardinia (CRS4), Loc. Piscina Manna, 09010, Pula, Italy
| | - Francesco Delogu
- Departments of Mechanical, Chemical and Materials Engineering, University of Cagliari, via Marengo 2, 09123, Cagliari, Italy
| | - Swatishree Padhi
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Arka Saha
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Birendranath Banerjee
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
12
|
Identification of new inhibitors against human Great wall kinase using in silico approaches. Sci Rep 2018; 8:4894. [PMID: 29559668 PMCID: PMC5861128 DOI: 10.1038/s41598-018-23246-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
Microtubule associated serine/threonine kinase (MASTL) is an important Ser/Thr kinase belonging to the family of AGC kinases. It is the human orthologue of Greatwall kinase (Gwl) that plays a significant role in mitotic progression and cell cycle regulation. Upregulation of MASTL in various cancers and its association with poor patient survival establishes it as an important drug target in cancer therapy. Nevertheless, the target remains unexplored with the paucity of studies focused on identification of inhibitors against MASTL, which emphasizes the relevance of our present study. We explored various drug databases and performed virtual screening of compounds from both natural and synthetic sources. A list of promising compounds displaying high binding characteristics towards MASTL protein is reported. Among the natural compounds, we found a 6-hydroxynaphthalene derivative ZINC85597499 to display best binding energy value of −9.32 kcal/mol. While among synthetic compounds, a thieno-pyrimidinone based tricyclic derivative ZINC53845290 compound exhibited best binding affinity of value −7.85 kcal/mol. MASTL interactions with these two compounds were further explored using molecular dynamics simulations. Altogether, this study identifies potential inhibitors of human Gwl kinase from both natural and synthetic origin and calls for studying these compounds as potential drugs for cancer therapy.
Collapse
|
13
|
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder representing the leading cause of dementia and is affecting nearly 44 million people worldwide. AD is characterized by a progressive decline in acetylcholine levels in the cholinergic systems, which results in severe memory loss and cognitive impairments. Expression levels and activity of butyrylcholinesterase (BChE) enzyme has been noted to increase significantly in the late stages of AD, thus making it a viable drug target. A series of hydroxylated 2-phenylbenzofurans compounds were designed, synthesized and their inhibitory activities toward acetylcholinesterase (AChE) and BChE enzymes were evaluated. Two compounds (15 and 17) displayed higher inhibitory activity towards BChE with IC50 values of 6.23 μM and 3.57 μM, and a good antioxidant activity with EC50 values 14.9 μM and 16.7 μM, respectively. The same compounds further exhibited selective inhibitory activity against BChE over AChE. Computational studies were used to compare protein-binding pockets and evaluate the interaction fingerprints of the compound. Molecular simulations showed a conserved protein residue interaction network between the compounds, resulting in similar interaction energy values. Thus, combination of biochemical and computational approaches could represent rational guidelines for further structural modification of these hydroxy-benzofuran derivatives as future drugs for treatment of AD.
Collapse
|
14
|
Wang C, Li S, Jia H, Chen G, Fang Y, Zeng S, He X, Yao W, Jin Q, Cheng W, Feng Y, Yin H, Jing Z. Monoclonal and oligoclonal TCR AV and BV gene usage in CD4 + T cells from pigs immunised with C-strain CSFV vaccine. Sci Rep 2018; 8:1655. [PMID: 29374266 PMCID: PMC5786037 DOI: 10.1038/s41598-018-19974-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/05/2018] [Indexed: 11/23/2022] Open
Abstract
The classical swine fever virus C-strain vaccine (C-strain vaccine) plays a vital role in preventing and controlling the spread of classical swine fever (CSF). However, the protective mechanisms of C-strain vaccine and cellular immunity conferred by T cell receptors (TCRs) are less well defined. We aimed to analyse the association between the complementarity determining region 3 (CDR3) spectratype of αβTCR in CD4+ T cells and C-strain vaccine; and to find conserved CDR3 amino acid motifs in specific TCR α- and β-chains. We found that the CDR3 spectratype showed dynamic changes correlating with C-strain vaccine immunisation and that TCR AV5S/8–3S/8–4S/14/38 and BV4S/6S/7S/15S/30 gene families showed clonal expansion in immunised pigs. The sequences of CDR3 from these clonally expanded T cells indicated a high frequency of the ‘KLX’ motif in the TCR α chain and the ‘GGX’ motif in β chain, and Jα39, Jα43, Jβ2.5 and Jβ2.3 genes were also found in high frequency. To the best of our knowledge, this is the first report describing the dynamic changes of αβTCRs and conserved CDR3 amino acid motifs in CD4+ T cells from C-strain vaccine-immunised pigs, which will provide a basis for the development of high-efficiency epitope vaccines.
Collapse
Affiliation(s)
- Chunyan Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Shoujie Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Guohua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Yongxiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Shuang Zeng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Wenjuan Yao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Qiwang Jin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Wenyu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Yuan Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China.
| |
Collapse
|
15
|
Agrahari AK, Kumar A, R S, Zayed H, C GPD. Substitution impact of highly conserved arginine residue at position 75 in GJB1 gene in association with X-linked Charcot-Marie-tooth disease: A computational study. J Theor Biol 2018; 437:305-317. [PMID: 29111421 DOI: 10.1016/j.jtbi.2017.10.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
X-linked Charcot-Marie-Tooth type 1 X (CMTX1) disease is a subtype of Charcot-Marie-Tooth (CMT), which is mainly caused by mutations in the GJB1 gene. It is also known as connexin 32 (Cx32) that leads to Schwann cell abnormalities and peripheral neuropathy. CMTX1 is considered as the second most common form of CMT disease. The aim of this study is to computationally predict the potential impact of different single amino acid substitutions at position 75 of Cx32, from arginine (R) to proline (P), glutamine (Q) and tryptophan (W). This position is known to be highly conserved among the family of connexin. To understand the structural and functional changes due to these single amino acid substitutions, we employed a homology-modeling technique to build the three-dimensional structure models for the native and mutant proteins. The protein structures were further embedded into a POPC lipid bilayer, inserted into a water box, and subjected to molecular dynamics simulation for 50 ns. Our results show that the mutants R75P, R75Q and R75W display variable structural conformation and dynamic behavior compared to the native protein. Our data proves useful in predicting the potential pathogenicity of the mutant proteins and is expected to serve as a platform for drug discovery for patients with CMT.
Collapse
Affiliation(s)
| | - Amit Kumar
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy; Biosciences Sector, Center for advanced study research and development in Sardinia (CRS4), Loc. Piscina Manna, 09010 Pula, Italy
| | - Siva R
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar
| | - George Priya Doss C
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
16
|
Jaravine V, Mösch A, Raffegerst S, Schendel DJ, Frishman D. Expitope 2.0: a tool to assess immunotherapeutic antigens for their potential cross-reactivity against naturally expressed proteins in human tissues. BMC Cancer 2017; 17:892. [PMID: 29282079 PMCID: PMC5745885 DOI: 10.1186/s12885-017-3854-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Adoptive immunotherapy offers great potential for treating many types of cancer but its clinical application is hampered by cross-reactive T cell responses in healthy human tissues, representing serious safety risks for patients. We previously developed a computational tool called Expitope for assessing cross-reactivity (CR) of antigens based on tissue-specific gene expression. However, transcript abundance only indirectly indicates protein expression. The recent availability of proteome-wide human protein abundance information now facilitates a more direct approach for CR prediction. Here we present a new version 2.0 of Expitope, which computes all naturally possible epitopes of a peptide sequence and the corresponding CR indices using both protein and transcript abundance levels weighted by a proposed hierarchy of importance of various human tissues. RESULTS We tested the tool in two case studies: The first study quantitatively assessed the potential CR of the epitopes used for cancer immunotherapy. The second study evaluated HLA-A*02:01-restricted epitopes obtained from the Immune Epitope Database for different disease groups and demonstrated for the first time that there is a high variation in the background CR depending on the disease state of the host: compared to a healthy individual the CR index is on average two-fold higher for the autoimmune state, and five-fold higher for the cancer state. CONCLUSIONS The ability to predict potential side effects in normal tissues helps in the development and selection of safer antigens, enabling more successful immunotherapy of cancer and other diseases.
Collapse
Affiliation(s)
- Victor Jaravine
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, 85354, Germany
- Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, 82152, Germany
| | - Anja Mösch
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, 85354, Germany
- Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, 82152, Germany
| | - Silke Raffegerst
- Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, 82152, Germany
| | - Dolores J Schendel
- Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, 82152, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, 85354, Germany.
- St Petersburg State Polytechnical University, St Petersburg, 195251, Russia.
| |
Collapse
|