1
|
Ling Z, Liu W, Yoon K, Hou J, Forghani P, Hua X, Yoon H, Bagheri M, Dasi LP, Mandracchia B, Xu C, Nie S, Jia S. Multiscale and recursive unmixing of spatiotemporal rhythms for live-cell and intravital cardiac microscopy. NATURE CARDIOVASCULAR RESEARCH 2025; 4:637-648. [PMID: 40335723 DOI: 10.1038/s44161-025-00649-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 04/01/2025] [Indexed: 05/09/2025]
Abstract
Cardiovascular diseases remain a pressing public health issue, necessitating the development of advanced therapeutic strategies underpinned by precise cardiac observations. While fluorescence microscopy is an invaluable tool for probing biological processes, cardiovascular signals are often complicated by persistent autofluorescence, overlaying dynamic cardiovascular entities and nonspecific labeling from tissue microenvironments. Here we present multiscale recursive decomposition for the precise extraction of dynamic cardiovascular signals. Multiscale recursive decomposition constructs a comprehensive framework for cardiac microscopy that includes pixel-wise image enhancement, robust principal component analysis and recursive motion segmentation. This method has been validated in various cardiac systems, including in vitro studies with human induced pluripotent stem cell-derived cardiomyocytes and in vivo studies of cardiovascular morphology and function in Xenopus embryos. The approach advances light-field cardiac microscopy, facilitating simultaneous, multiparametric and volumetric analysis of cardiac activities with minimum photodamage. We anticipate that the methodology will advance cardiovascular studies across a broad spectrum of cardiac models.
Collapse
Affiliation(s)
- Zhi Ling
- Laboratory for Systems Biophotonics, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wenhao Liu
- Laboratory for Systems Biophotonics, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Kyungduck Yoon
- Laboratory for Systems Biophotonics, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jessica Hou
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Parvin Forghani
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Xuanwen Hua
- Laboratory for Systems Biophotonics, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hansol Yoon
- Laboratory for Systems Biophotonics, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Maryam Bagheri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lakshmi P Dasi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Biagio Mandracchia
- Laboratory for Systems Biophotonics, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Laboratorio de Procesado de Imagen, Universidad de Valladolid, Valladolid, Spain
| | - Chunhui Xu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Shuyi Nie
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shu Jia
- Laboratory for Systems Biophotonics, Georgia Institute of Technology, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
2
|
Pang W, Yuan C, Zhong T, Huang X, Pan Y, Qu J, Nie L, Zhou Y, Lai P. Diagnostic and therapeutic optical imaging in cardiovascular diseases. iScience 2024; 27:111216. [PMID: 39569375 PMCID: PMC11576408 DOI: 10.1016/j.isci.2024.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Cardiovascular disease (CVD) is one of the most prevalent health threats globally. Traditional diagnostic methods for CVDs, including electrocardiography, ultrasound, and cardiac magnetic resonance imaging, have inherent limitations in real-time monitoring and high-resolution visualization of cardiovascular pathophysiology. In recent years, optical imaging technology has gained considerable attention as a non-invasive, high-resolution, real-time monitoring solution in the study and diagnosis of CVD. This review discusses the latest advancements, and applications of optical techniques in cardiac imaging. We compare the advantages of optical imaging over traditional modalities and especially scrutinize techniques such as optical coherence tomography, photoacoustic imaging, and fluorescence imaging. We summarize their investigations in atherosclerosis, myocardial infarction, and heart valve disease, etc. Additionally, we discuss challenges like deep-tissue imaging and high spatiotemporal resolution adjustment, and review existing solutions such as multimodal integration, artificial intelligence, and enhanced optical probes. This article aims to drive further development in optical imaging technologies to provide more precise and efficient tools for early diagnosis, pathological mechanism exploration, and treatment of CVD.
Collapse
Affiliation(s)
- Weiran Pang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Chuqi Yuan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tianting Zhong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiazi Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanchang Research Institute, Sun Yat-Sen University, Nanchang 330096, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen 518060, China
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yingying Zhou
- College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- The Joint Research Centre for Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
3
|
Kim AH, Sakin I, Viviano S, Tuncel G, Aguilera SM, Goles G, Jeffries L, Ji W, Lakhani SA, Kose CC, Silan F, Oner SS, Kaplan OI, Ergoren MC, Mishra-Gorur K, Gunel M, Sag SO, Temel SG, Deniz E. CC2D1A causes ciliopathy, intellectual disability, heterotaxy, renal dysplasia, and abnormal CSF flow. Life Sci Alliance 2024; 7:e202402708. [PMID: 39168639 PMCID: PMC11339347 DOI: 10.26508/lsa.202402708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Intellectual and developmental disabilities result from abnormal nervous system development. Over a 1,000 genes have been associated with intellectual and developmental disabilities, driving continued efforts toward dissecting variant functionality to enhance our understanding of the disease mechanism. This report identified two novel variants in CC2D1A in a cohort of four patients from two unrelated families. We used multiple model systems for functional analysis, including Xenopus, Drosophila, and patient-derived fibroblasts. Our experiments revealed that cc2d1a is expressed explicitly in a spectrum of ciliated tissues, including the left-right organizer, epidermis, pronephric duct, nephrostomes, and ventricular zone of the brain. In line with this expression pattern, loss of cc2d1a led to cardiac heterotaxy, cystic kidneys, and abnormal CSF circulation via defective ciliogenesis. Interestingly, when we analyzed brain development, mutant tadpoles showed abnormal CSF circulation only in the midbrain region, suggesting abnormal local CSF flow. Furthermore, our analysis of the patient-derived fibroblasts confirmed defective ciliogenesis, further supporting our observations. In summary, we revealed novel insight into the role of CC2D1A by establishing its new critical role in ciliogenesis and CSF circulation.
Collapse
Affiliation(s)
| | - Irmak Sakin
- Department of ENT, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Acibadem University School of Medicine, Istanbul, Turkey
| | - Stephen Viviano
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Gulten Tuncel
- DESAM Research Institute, Near East University, Nicosia, Cyprus
| | | | - Gizem Goles
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Saquib A Lakhani
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Canan Ceylan Kose
- Canakkale 18 March University, Faculty of Medicine, Department of Medical Genetics, Canakkale, Turkey
| | - Fatma Silan
- Canakkale 18 March University, Faculty of Medicine, Department of Medical Genetics, Canakkale, Turkey
| | - Sukru Sadik Oner
- Department of Pharmacology, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), Istanbul, Turkey
| | - Oktay I Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Mahmut Cerkez Ergoren
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Program in Brain Tumor Research, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Sehime G Temel
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
- Department of Histology and Embryology and Health Sciences Institute, Department of Translational Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Willsey HR, Seaby EG, Godwin A, Ennis S, Guille M, Grainger RM. Modelling human genetic disorders in Xenopus tropicalis. Dis Model Mech 2024; 17:dmm050754. [PMID: 38832520 PMCID: PMC11179720 DOI: 10.1242/dmm.050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Recent progress in human disease genetics is leading to rapid advances in understanding pathobiological mechanisms. However, the sheer number of risk-conveying genetic variants being identified demands in vivo model systems that are amenable to functional analyses at scale. Here we provide a practical guide for using the diploid frog species Xenopus tropicalis to study many genes and variants to uncover conserved mechanisms of pathobiology relevant to human disease. We discuss key considerations in modelling human genetic disorders: genetic architecture, conservation, phenotyping strategy and rigour, as well as more complex topics, such as penetrance, expressivity, sex differences and current challenges in the field. As the patient-driven gene discovery field expands significantly, the cost-effective, rapid and higher throughput nature of Xenopus make it an essential member of the model organism armamentarium for understanding gene function in development and in relation to disease.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94518, USA
| | - Eleanor G Seaby
- Genomic Informatics Group, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Annie Godwin
- European Xenopus Resource Centre (EXRC), School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Sarah Ennis
- Genomic Informatics Group, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Matthew Guille
- European Xenopus Resource Centre (EXRC), School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Robert M Grainger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
5
|
Deniz E, Pasha M, Guerra ME, Viviano S, Ji W, Konstantino M, Jeffries L, Lakhani SA, Medne L, Skraban C, Krantz I, Khokha MK. CFAP45, a heterotaxy and congenital heart disease gene, affects cilia stability. Dev Biol 2023; 499:75-88. [PMID: 37172641 PMCID: PMC10373286 DOI: 10.1016/j.ydbio.2023.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Congenital heart disease (CHD) is the most common and lethal birth defect, affecting 1.3 million individuals worldwide. During early embryogenesis, errors in Left-Right (LR) patterning called Heterotaxy (Htx) can lead to severe CHD. Many of the genetic underpinnings of Htx/CHD remain unknown. In analyzing a family with Htx/CHD using whole-exome sequencing, we identified a homozygous recessive missense mutation in CFAP45 in two affected siblings. CFAP45 belongs to the coiled-coil domain-containing protein family, and its role in development is emerging. When we depleted Cfap45 in frog embryos, we detected abnormalities in cardiac looping and global markers of LR patterning, recapitulating the patient's heterotaxy phenotype. In vertebrates, laterality is broken at the Left-Right Organizer (LRO) by motile monocilia that generate leftward fluid flow. When we analyzed the LRO in embryos depleted of Cfap45, we discovered "bulges" within the cilia of these monociliated cells. In addition, epidermal multiciliated cells lost cilia with Cfap45 depletion. Via live confocal imaging, we found that Cfap45 localizes in a punctate but static position within the ciliary axoneme, and depletion leads to loss of cilia stability and eventual detachment from the cell's apical surface. This work demonstrates that in Xenopus, Cfap45 is required to sustain cilia stability in multiciliated and monociliated cells, providing a plausible mechanism for its role in heterotaxy and congenital heart disease.
Collapse
Affiliation(s)
- E Deniz
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - M Pasha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - M E Guerra
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - S Viviano
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - W Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - M Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - L Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - S A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - L Medne
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, USA
| | - C Skraban
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, USA
| | - I Krantz
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, USA
| | - M K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
6
|
Mishra-Gorur K, Barak T, Kaulen LD, Henegariu O, Jin SC, Aguilera SM, Yalbir E, Goles G, Nishimura S, Miyagishima D, Djenoune L, Altinok S, Rai DK, Viviano S, Prendergast A, Zerillo C, Ozcan K, Baran B, Sencar L, Goc N, Yarman Y, Ercan-Sencicek AG, Bilguvar K, Lifton RP, Moliterno J, Louvi A, Yuan S, Deniz E, Brueckner M, Gunel M. Pleiotropic role of TRAF7 in skull-base meningiomas and congenital heart disease. Proc Natl Acad Sci U S A 2023; 120:e2214997120. [PMID: 37043537 PMCID: PMC10120005 DOI: 10.1073/pnas.2214997120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/27/2023] [Indexed: 04/13/2023] Open
Abstract
While somatic variants of TRAF7 (Tumor necrosis factor receptor-associated factor 7) underlie anterior skull-base meningiomas, here we report the inherited mutations of TRAF7 that cause congenital heart defects. We show that TRAF7 mutants operate in a dominant manner, inhibiting protein function via heterodimerization with wild-type protein. Further, the shared genetics of the two disparate pathologies can be traced to the common origin of forebrain meninges and cardiac outflow tract from the TRAF7-expressing neural crest. Somatic and inherited mutations disrupt TRAF7-IFT57 interactions leading to cilia degradation. TRAF7-mutant meningioma primary cultures lack cilia, and TRAF7 knockdown causes cardiac, craniofacial, and ciliary defects in Xenopus and zebrafish, suggesting a mechanistic convergence for TRAF7-driven meningiomas and developmental heart defects.
Collapse
Affiliation(s)
- Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Leon D. Kaulen
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Sheng Chih Jin
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | | | - Ezgi Yalbir
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Gizem Goles
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Sayoko Nishimura
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Lydia Djenoune
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Selin Altinok
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Devendra K. Rai
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Stephen Viviano
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Andrew Prendergast
- Department of Internal Medicine, Section of Cardiology, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT06510
| | - Cynthia Zerillo
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Kent Ozcan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Burcin Baran
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Leman Sencar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Nukte Goc
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Yanki Yarman
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | - Richard P. Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT06510
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT06510
| | - Shiaulou Yuan
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Martina Brueckner
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT06510
| |
Collapse
|
7
|
Faubert AC, Larina IV, Wang S. Open-source, highly efficient, post-acquisition synchronization for 4D dual-contrast imaging of the mouse embryonic heart over development with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:163-181. [PMID: 36698661 PMCID: PMC9842004 DOI: 10.1364/boe.475027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 05/28/2023]
Abstract
Dynamic imaging of the beating embryonic heart in 3D is critical for understanding cardiac development and defects. Optical coherence tomography (OCT) plays an important role in embryonic heart imaging with its unique imaging scale and label-free contrasts. In particular, 4D (3D + time) OCT imaging enabled biomechanical analysis of the developing heart in various animal models. While ultrafast OCT systems allow for direct volumetric imaging of the beating heart, the imaging speed remains limited, leading to an image quality inferior to that produced by post-acquisition synchronization. As OCT systems become increasingly available to a wide range of biomedical researchers, a more accessible 4D reconstruction method is required to enable the broader application of OCT in the dynamic, volumetric assessment of embryonic heartbeat. Here, we report an open-source, highly efficient, post-acquisition synchronization method for 4D cardiodynamic and hemodynamic imaging of the mouse embryonic heart. Relying on the difference between images to characterize heart wall movements, the method provides good sensitivity to the cardiac activity when aligning heartbeat phases, even at early stages when the heart wall occupies only a small number of pixels. The method works with a densely sampled single 3D data acquisition, which, unlike the B-M scans required by other methods, is readily available in most commercial OCT systems. Compared with an existing approach for the mouse embryonic heart, this method shows superior reconstruction quality. We present the robustness of the method through results from different embryos with distinct heart rates, ranging from 1.24 Hz to 2.13 Hz. Since the alignment process operates on a 1D signal, the method has a high efficiency, featuring sub-second alignment time while utilizing ∼100% of the original image files. This allows us to achieve repeated, dual-contrast imaging of mouse embryonic heart development. This new, open-source method could facilitate research using OCT to study early cardiogenesis.
Collapse
Affiliation(s)
- Andre C. Faubert
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Irina V. Larina
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
8
|
Deniz E, Mis EK, Lane M, Khokha MK. Xenopus Tadpole Craniocardiac Imaging Using Optical Coherence Tomography. Cold Spring Harb Protoc 2022; 2022:Pdb.prot105676. [PMID: 34031211 PMCID: PMC11995308 DOI: 10.1101/pdb.prot105676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Optical coherence tomography (OCT) imaging can be used to visualize craniocardiac structures in the Xenopus model system. OCT is analogous to ultrasound, utilizing light instead of sound to create a gray-scale image from the echo time delay of infrared light reflected from the specimen. OCT is a high-speed, cross-sectional, label-free imaging modality, which can outline dynamic in vivo morphology at resolutions approaching histological detail. OCT imaging can acquire 2D and 3D data in real time to assess cardiac and facial structures. Additionally, during cardiac imaging, Doppler imaging can be used to assess the blood flow pattern in relation to the intracardiac structures. Importantly, OCT can reproducibly and efficiently provide comprehensive, nondestructive in vivo cardiac and facial phenotyping. Tadpoles do not require preprocessing and thus can be further raised or analyzed after brief immobilization during imaging. The rapid development of the Xenopus model combined with a rapid OCT imaging protocol allows the identification of specific gene/teratogen phenotype relationships in a short period of time. Loss- or gain-of-function experiments can be evaluated in 4-5 d, and OCT imaging only requires ∼5 min per tadpole. Thus, we find this pairing an efficient workflow for screening numerous candidate genes derived from human genomic studies to in-depth mechanistic studies.
Collapse
Affiliation(s)
- Engin Deniz
- Pediatric Genomics Discovery Program, Department of Pediatrics,
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics
| | - Maura Lane
- Pediatric Genomics Discovery Program, Department of Pediatrics
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
9
|
Su Y, Fan J, Wang X, Wang X, Li J, Duan B, Kang L, Wei L, Yao XS. Noninvasive examination of the cardiac properties of insect embryos enabled by optical coherence tomography. JOURNAL OF BIOPHOTONICS 2022; 15:e202100308. [PMID: 35234351 DOI: 10.1002/jbio.202100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Understanding the cardiac properties of insect embryos at different development stages is important, however, few works have been conducted probably due to the lack of effective tools. Using locust embryos as an example, here we show, for the first time, that optical coherence tomography (OCT) is capable of obtaining detailed information of embryos' heart activities and irregularities, such as the heart rate, cardiac cycle, diastolic and systolic diameters, hemolymph pumping rate and ejection fraction at different stages of embryonic development and at different temperatures. We develop algorithms and mathematical methods for extracting and analyzing cardiac behavior information of locust embryos. We discover that locust embryos experienced suspended development (quiescence) caused by cold storage have a heart rate 20% more than that of embryos without experiencing quiescence and that the hemolymph pumping rate of the two types of embryos behaves differently as the embryos grow. In addition, using OCT as an accurate cardiac activity examination tool, we show that the heart rates of locust embryos are effectively reduced due to nitric oxide synthase gene silencing by RNA interference, indicating potential application of using locust embryos as a good model organism to study cardiovascular diseases, including the congenital heart disease and arrhythmia. Finally, the capabilities offered by OCT in the studies of locust embryonic development may also prove helpful to promote locust reproduction for nutritions or restrain locust reproduction for pest control.
Collapse
Affiliation(s)
- Ya Su
- Photonics Information Innovation Center and Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Jiangling Fan
- College of Life Sciences, Hebei University, Baoding, China
| | - Xiuli Wang
- Photonics Information Innovation Center and Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Xiaoxiao Wang
- College of Life Sciences, Hebei University, Baoding, China
| | - Jing Li
- College of Life Sciences, Hebei University, Baoding, China
| | - Bingbing Duan
- Photonics Information Innovation Center and Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Le Kang
- College of Life Sciences, Hebei University, Baoding, China
| | - Liya Wei
- College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - X Steve Yao
- Photonics Information Innovation Center and Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| |
Collapse
|
10
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
11
|
Abstract
Congenital birth defects result from an abnormal development of an embryo and have detrimental effects on children's health. Specifically, congenital heart malformations are a leading cause of death among pediatric patients and often require surgical interventions within the first year of life. Increased efforts to navigate the human genome provide an opportunity to discover multiple candidate genes in patients suffering from birth defects. These efforts, however, fail to provide an explanation regarding the mechanisms of disease pathogenesis and emphasize the need for an efficient platform to screen candidate genes. Xenopus is a rapid, cost effective, high-throughput vertebrate organism to model the mechanisms behind human disease. This review provides numerous examples describing the successful use of Xenopus to investigate the contribution of patient mutations to complex phenotypes including congenital heart disease and heterotaxy. Moreover, we describe a variety of unique methods that allow us to rapidly recapitulate patients' phenotypes in frogs: gene knockout and knockdown strategies, the use of fate maps for targeted manipulations, and novel imaging modalities. The combination of patient genomics data and the functional studies in Xenopus will provide necessary answers to the patients suffering from birth defects. Furthermore, it will allow for the development of better diagnostic methods to ensure early detection and intervention. Finally, with better understanding of disease pathogenesis, new treatment methods can be tailored specifically to address patient's phenotype and genotype.
Collapse
Affiliation(s)
- Valentyna Kostiuk
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
12
|
Gao J, Shen W. Xenopus in revealing developmental toxicity and modeling human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115809. [PMID: 33096388 DOI: 10.1016/j.envpol.2020.115809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The Xenopus model offers many advantages for investigation of the molecular, cellular, and behavioral mechanisms underlying embryo development. Moreover, Xenopus oocytes and embryos have been extensively used to study developmental toxicity and human diseases in response to various environmental chemicals. This review first summarizes recent advances in using Xenopus as a vertebrate model to study distinct types of tissue/organ development following exposure to environmental toxicants, chemical reagents, and pharmaceutical drugs. Then, the successful use of Xenopus as a model for diseases, including fetal alcohol spectrum disorders, autism, epilepsy, and cardiovascular disease, is reviewed. The potential application of Xenopus in genetic and chemical screening to protect against embryo deficits induced by chemical toxicants and related diseases is also discussed.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
13
|
Marquez J, Criscione J, Charney RM, Prasad MS, Hwang WY, Mis EK, García-Castro MI, Khokha MK. Disrupted ER membrane protein complex-mediated topogenesis drives congenital neural crest defects. J Clin Invest 2020; 130:813-826. [PMID: 31904590 DOI: 10.1172/jci129308] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Multipass membrane proteins have a myriad of functions, including transduction of cell-cell signals, ion transport, and photoreception. Insertion of these proteins into the membrane depends on the endoplasmic reticulum (ER) membrane protein complex (EMC). Recently, birth defects have been observed in patients with variants in the gene encoding a member of this complex, EMC1. Patient phenotypes include congenital heart disease, craniofacial malformations, and neurodevelopmental disease. However, a molecular connection between EMC1 and these birth defects is lacking. Using Xenopus, we identified defects in neural crest cells (NCCs) upon emc1 depletion. We then used unbiased proteomics and discovered a critical role for emc1 in WNT signaling. Consistent with this, readouts of WNT signaling and Frizzled (Fzd) levels were reduced in emc1-depleted embryos, while NCC defects could be rescued with β-catenin. Interestingly, other transmembrane proteins were mislocalized upon emc1 depletion, providing insight into additional patient phenotypes. To translate our findings back to humans, we found that EMC1 was necessary for human NCC development in vitro. Finally, we tested patient variants in our Xenopus model and found the majority to be loss-of-function alleles. Our findings define molecular mechanisms whereby EMC1 dysfunction causes disease phenotypes through dysfunctional multipass membrane protein topogenesis.
Collapse
Affiliation(s)
- Jonathan Marquez
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - June Criscione
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Rebekah M Charney
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Maneeshi S Prasad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Woong Y Hwang
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Martín I García-Castro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Farley-Barnes KI, Deniz E, Overton MM, Khokha MK, Baserga SJ. Paired Box 9 (PAX9), the RNA polymerase II transcription factor, regulates human ribosome biogenesis and craniofacial development. PLoS Genet 2020; 16:e1008967. [PMID: 32813698 PMCID: PMC7437866 DOI: 10.1371/journal.pgen.1008967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of ribosome production can lead to a number of developmental disorders called ribosomopathies. Despite the ubiquitous requirement for these cellular machines used in protein synthesis, ribosomopathies manifest in a tissue-specific manner, with many affecting the development of the face. Here we reveal yet another connection between craniofacial development and making ribosomes through the protein Paired Box 9 (PAX9). PAX9 functions as an RNA Polymerase II transcription factor to regulate the expression of proteins required for craniofacial and tooth development in humans. We now expand this function of PAX9 by demonstrating that PAX9 acts outside of the cell nucleolus to regulate the levels of proteins critical for building the small subunit of the ribosome. This function of PAX9 is conserved to the organism Xenopus tropicalis, an established model for human ribosomopathies. Depletion of pax9 leads to craniofacial defects due to abnormalities in neural crest development, a result consistent with that found for depletion of other ribosome biogenesis factors. This work highlights an unexpected layer of how the making of ribosomes is regulated in human cells and during embryonic development.
Collapse
Affiliation(s)
- Katherine I. Farley-Barnes
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maya M. Overton
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mustafa K. Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Susan J. Baserga
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
15
|
Nguyen JKB, Eames BF. Evolutionary repression of chondrogenic genes in the vertebrate osteoblast. FEBS J 2020; 287:4354-4361. [PMID: 31994313 DOI: 10.1111/febs.15228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/30/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
Gene expression in extant animals might reveal how skeletal cells have evolved over the past 500 million years. The cells that make up cartilage (chondrocytes) and bone (osteoblasts) express many of the same genes, but they also have important molecular differences that allow us to distinguish them as separate cell types. For example, traditional studies of later-diverged vertebrates, such as mouse and chick, defined the genes Col2a1 and sex-determining region Y-box 9 as cartilage-specific. However, recent studies have shown that osteoblasts of earlier-diverged vertebrates, such as frog, gar, and zebrafish, express these 'chondrogenic' markers. In this review, we examine the resulting hypothesis that chondrogenic gene expression became repressed in osteoblasts over evolutionary time. The amphibian is an underexplored skeletal model that is uniquely positioned to address this hypothesis, especially given that it diverged when life transitioned from water to land. Given the relationship between phylogeny and ontogeny, a novel discovery for skeletal cell evolution might bolster our understanding of skeletal cell development.
Collapse
Affiliation(s)
- Jason K B Nguyen
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - B Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
16
|
Su Y, Wei L, Tan H, Li J, Li W, Fu L, Wang T, Kang L, Yao XS. Optical coherence tomography as a noninvasive 3D real time imaging tool for the rapid evaluation of phenotypic variations in insect embryonic development. JOURNAL OF BIOPHOTONICS 2020; 13:e201960047. [PMID: 31682322 DOI: 10.1002/jbio.201960047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/24/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Noninvasive visualization of embryos at different development stages is crucial for the understanding of the basic developmental biology. It is therefore desirable to have an imaging tool capable of rapidly evaluating the effects of gene manipulation or genome editing in developing embryos for the studies of gene functions and genetic engineering. Here, we propose and demonstrate a novel use of optical coherence tomography (OCT) to noninvasively exam the embryonic development of the migratory locusts in real time with 3-dimensional (3D) view capability. In particular, we obtain the sufficiently high spatial resolution tomographic 2D and 3D images of live locust embryos throughout their development processes. We show that not only we are able to noninvasively observe all previously known forms of blastokinesis as an embryo develops, such as anatrepsis, katatrepsis, revolution, rotation and diapauses, and determine their precise occurring time or duration, but also discover an unreported rotation form we named "twist." In addition, with the OCT images we determined the exact occurring time of diapauses of the locusts from Tibetan plateau for the first time. Finally, we demonstrate that OCT systems can be used to rapidly capture the development defects of genetically modified embryos in which certain genes essential for embryonic development were suppressed by RNA interference. Our work shows that OCT is an enabling imaging tool with sufficient spatial resolution for the rapid evaluation of embryonic variations of small animals.
Collapse
Affiliation(s)
- Ya Su
- Photonics Information Innovation Center, Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Liya Wei
- College of Life Sciences, Hebei University, Baoding, China
| | - Hao Tan
- Photonics Information Innovation Center, Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Jing Li
- College of Life Sciences, Hebei University, Baoding, China
| | - Wenping Li
- Photonics Information Innovation Center, Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Lei Fu
- Photonics Information Innovation Center, Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Tongxin Wang
- College of Life Sciences, Hebei University, Baoding, China
| | - Le Kang
- College of Life Sciences, Hebei University, Baoding, China
| | - X Steve Yao
- Photonics Information Innovation Center, Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| |
Collapse
|
17
|
Deniz E, Jonas S, Khokha MK, Choma MA. Quantitative Phenotyping of Xenopus Embryonic Heart Pathophysiology Using Hemoglobin Contrast Subtraction Angiography to Screen Human Cardiomyopathies. Front Physiol 2019; 10:1197. [PMID: 31620018 PMCID: PMC6763566 DOI: 10.3389/fphys.2019.01197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 09/03/2019] [Indexed: 01/09/2023] Open
Abstract
Congenital heart disease (CHD) is a significant cause of mortality in infants and adults. Currently human genomic analysis has identified a number of candidate genes in these patients. These genes span diverse categories of gene function suggesting that despite the similarity in cardiac lesion, the underlying pathophysiology may be different. In fact, patients with similar CHDs can have drastically different outcomes, including a dramatic decrease in myocardial function. To test these human candidate genes for their impact on myocardial function, we need efficient animals models of disease. For this purpose, we paired Xenopus tropicalis with our microangiography technique, hemoglobin contrast subtraction angiography (HCSA). To demonstrate the gene-teratogen-physiology relationship, we modeled human cardiomyopathy in tadpoles. First we depleted the sarcomeric protein myosin heavy chain 6 (myh6) expression using morpholino oligos. Next, we exposed developing embryos to the teratogen ethanol and in both conditions showed varying degrees of cardiac dysfunction. Our results demonstrate that HCSA can distinguish biomechanical phenotypes in the context of gene dysfunction or teratogen. This approach can be used to screen numerous candidate CHD genes or suspected teratogens for their effect on cardiac function.
Collapse
Affiliation(s)
- Engin Deniz
- Department of Pediatrics, Yale University, New Haven, CT, United States
| | - Stephan Jonas
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Mustafa K Khokha
- Department of Pediatrics, Yale University, New Haven, CT, United States.,Department of Genetics, Yale University, New Haven, CT, United States
| | - Michael A Choma
- Department of Pediatrics, Yale University, New Haven, CT, United States.,Department of Diagnostic Radiology, Yale University, New Haven, CT, United States.,Department of Biomedical Engineering, Yale University, New Haven, CT, United States.,Department of Applied Physics, Yale University, New Haven, CT, United States
| |
Collapse
|
18
|
Hwang WY, Marquez J, Khokha MK. Xenopus: Driving the Discovery of Novel Genes in Patient Disease and Their Underlying Pathological Mechanisms Relevant for Organogenesis. Front Physiol 2019; 10:953. [PMID: 31417417 PMCID: PMC6682594 DOI: 10.3389/fphys.2019.00953] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
Frog model organisms have been appreciated for their utility in exploring physiological phenomena for nearly a century. Now, a vibrant community of biologists that utilize this model organism has poised Xenopus to serve as a high throughput vertebrate organism to model patient-driven genetic diseases. This has facilitated the investigation of effects of patient mutations on specific organs and signaling pathways. This approach promises a rapid investigation into novel mechanisms that disrupt normal organ morphology and function. Considering that many disease states are still interrogated in vitro to determine relevant biological processes for further study, the prospect of interrogating genetic disease in Xenopus in vivo is an attractive alternative. This model may more closely capture important aspects of the pathology under investigation such as cellular micro environments and local forces relevant to a specific organ's development and homeostasis. This review aims to highlight recent methodological advances that allow investigation of genetic disease in organ-specific contexts in Xenopus as well as provide examples of how these methods have led to the identification of novel mechanisms and pathways important for understanding human disease.
Collapse
Affiliation(s)
| | | | - Mustafa K. Khokha
- Department of Pediatrics and Genetics, The Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
19
|
Lasser M, Pratt B, Monahan C, Kim SW, Lowery LA. The Many Faces of Xenopus: Xenopus laevis as a Model System to Study Wolf-Hirschhorn Syndrome. Front Physiol 2019; 10:817. [PMID: 31297068 PMCID: PMC6607408 DOI: 10.3389/fphys.2019.00817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/11/2019] [Indexed: 01/09/2023] Open
Abstract
Wolf–Hirschhorn syndrome (WHS) is a rare developmental disorder characterized by intellectual disability and various physical malformations including craniofacial, skeletal, and cardiac defects. These phenotypes, as they involve structures that are derived from the cranial neural crest, suggest that WHS may be associated with abnormalities in neural crest cell (NCC) migration. This syndrome is linked with assorted mutations on the short arm of chromosome 4, most notably the microdeletion of a critical genomic region containing several candidate genes. However, the function of these genes during embryonic development, as well as the cellular and molecular mechanisms underlying the disorder, are still unknown. The model organism Xenopus laevis offers a number of advantages for studying WHS. With the Xenopus genome sequenced, genetic manipulation strategies can be readily designed in order to alter the dosage of the WHS candidate genes. Moreover, a variety of assays are available for use in Xenopus to examine how manipulation of WHS genes leads to changes in the development of tissue and organ systems affected in WHS. In this review article, we highlight the benefits of using X. laevis as a model system for studying human genetic disorders of development, with a focus on WHS.
Collapse
Affiliation(s)
- Micaela Lasser
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Benjamin Pratt
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Connor Monahan
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Seung Woo Kim
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Laura Anne Lowery
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
20
|
Musunuru K, Bernstein D, Cole FS, Khokha MK, Lee FS, Lin S, McDonald TV, Moskowitz IP, Quertermous T, Sankaran VG, Schwartz DA, Silverman EK, Zhou X, Hasan AAK, Luo XZJ. Functional Assays to Screen and Dissect Genomic Hits: Doubling Down on the National Investment in Genomic Research. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002178. [PMID: 29654098 DOI: 10.1161/circgen.118.002178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The National Institutes of Health have made substantial investments in genomic studies and technologies to identify DNA sequence variants associated with human disease phenotypes. The National Heart, Lung, and Blood Institute has been at the forefront of these commitments to ascertain genetic variation associated with heart, lung, blood, and sleep diseases and related clinical traits. Genome-wide association studies, exome- and genome-sequencing studies, and exome-genotyping studies of the National Heart, Lung, and Blood Institute-funded epidemiological and clinical case-control studies are identifying large numbers of genetic variants associated with heart, lung, blood, and sleep phenotypes. However, investigators face challenges in identification of genomic variants that are functionally disruptive among the myriad of computationally implicated variants. Studies to define mechanisms of genetic disruption encoded by computationally identified genomic variants require reproducible, adaptable, and inexpensive methods to screen candidate variant and gene function. High-throughput strategies will permit a tiered variant discovery and genetic mechanism approach that begins with rapid functional screening of a large number of computationally implicated variants and genes for discovery of those that merit mechanistic investigation. As such, improved variant-to-gene and gene-to-function screens-and adequate support for such studies-are critical to accelerating the translation of genomic findings. In this White Paper, we outline the variety of novel technologies, assays, and model systems that are making such screens faster, cheaper, and more accurate, referencing published work and ongoing work supported by the National Heart, Lung, and Blood Institute's R21/R33 Functional Assays to Screen Genomic Hits program. We discuss priorities that can accelerate the impressive but incomplete progress represented by big data genomic research.
Collapse
Affiliation(s)
- Kiran Musunuru
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.).
| | - Daniel Bernstein
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - F Sessions Cole
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Mustafa K Khokha
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Frank S Lee
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Shin Lin
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Thomas V McDonald
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Ivan P Moskowitz
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Thomas Quertermous
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Vijay G Sankaran
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - David A Schwartz
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Edwin K Silverman
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Xiaobo Zhou
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Ahmed A K Hasan
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Xiao-Zhong James Luo
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| |
Collapse
|
21
|
Date P, Ackermann P, Furey C, Fink IB, Jonas S, Khokha MK, Kahle KT, Deniz E. Visualizing flow in an intact CSF network using optical coherence tomography: implications for human congenital hydrocephalus. Sci Rep 2019; 9:6196. [PMID: 30996265 PMCID: PMC6470164 DOI: 10.1038/s41598-019-42549-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/02/2019] [Indexed: 12/30/2022] Open
Abstract
Cerebrospinal fluid (CSF) flow in the brain ventricles is critical for brain development. Altered CSF flow dynamics have been implicated in congenital hydrocephalus (CH) characterized by the potentially lethal expansion of cerebral ventricles if not treated. CH is the most common neurosurgical indication in children effecting 1 per 1000 infants. Current treatment modalities are limited to antiquated brain surgery techniques, mostly because of our poor understanding of the CH pathophysiology. We lack model systems where the interplay between ependymal cilia, embryonic CSF flow dynamics and brain development can be analyzed in depth. This is in part due to the poor accessibility of the vertebrate ventricular system to in vivo investigation. Here, we show that the genetically tractable frog Xenopus tropicalis, paired with optical coherence tomography imaging, provides new insights into CSF flow dynamics and role of ciliary dysfunction in hydrocephalus pathogenesis. We can visualize CSF flow within the multi-chambered ventricular system and detect multiple distinct polarized CSF flow fields. Using CRISPR/Cas9 gene editing, we modeled human L1CAM and CRB2 mediated aqueductal stenosis. We propose that our high-throughput platform can prove invaluable for testing candidate human CH genes to understand CH pathophysiology.
Collapse
Affiliation(s)
- Priya Date
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Pascal Ackermann
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Medical Informatics, Uniklinik RWTH Aachen, Pauwelsstr 30, 52074, Aachen, Germany
| | - Charuta Furey
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Neurosurgery and Cellular & Molecular Physiology, and Centers for Mendelian Genomics, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Ina Berenice Fink
- Department of Medical Informatics, Uniklinik RWTH Aachen, Pauwelsstr 30, 52074, Aachen, Germany
| | - Stephan Jonas
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Kristopher T Kahle
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Department of Neurosurgery and Cellular & Molecular Physiology, and Centers for Mendelian Genomics, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
22
|
Mills A, Bearce E, Cella R, Kim SW, Selig M, Lee S, Lowery LA. Wolf-Hirschhorn Syndrome-Associated Genes Are Enriched in Motile Neural Crest Cells and Affect Craniofacial Development in Xenopus laevis. Front Physiol 2019; 10:431. [PMID: 31031646 PMCID: PMC6474402 DOI: 10.3389/fphys.2019.00431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 01/08/2023] Open
Abstract
Wolf-Hirschhorn Syndrome (WHS) is a human developmental disorder arising from a hemizygous perturbation, typically a microdeletion, on the short arm of chromosome four. In addition to pronounced intellectual disability, seizures, and delayed growth, WHS presents with a characteristic facial dysmorphism and varying prevalence of microcephaly, micrognathia, cartilage malformation in the ear and nose, and facial asymmetries. These affected craniofacial tissues all derive from a shared embryonic precursor, the cranial neural crest (CNC), inviting the hypothesis that one or more WHS-affected genes may be critical regulators of neural crest development or migration. To explore this, we characterized expression of multiple genes within or immediately proximal to defined WHS critical regions, across the span of craniofacial development in the vertebrate model system Xenopus laevis. This subset of genes, whsc1, whsc2, letm1, and tacc3, are diverse in their currently-elucidated cellular functions; yet we find that their expression demonstrates shared tissue-specific enrichment within the anterior neural tube, migratory neural crest, and later craniofacial structures. We examine the ramifications of this by characterizing craniofacial development and neural crest migration following individual gene depletion. We observe that several WHS-associated genes significantly impact facial patterning, cartilage formation, neural crest motility in vivo and in vitro, and can separately contribute to forebrain scaling. Thus, we have determined that numerous genes within and surrounding the defined WHS critical regions potently impact craniofacial patterning, suggesting their role in WHS presentation may stem from essential functions during neural crest-derived tissue formation.
Collapse
Affiliation(s)
- Alexandra Mills
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Elizabeth Bearce
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Rachael Cella
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Seung Woo Kim
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Megan Selig
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Sangmook Lee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Laura Anne Lowery
- Biology Department, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
23
|
Griffin JN, Sondalle SB, Robson A, Mis EK, Griffin G, Kulkarni SS, Deniz E, Baserga SJ, Khokha MK. RPSA, a candidate gene for isolated congenital asplenia, is required for pre-rRNA processing and spleen formation in Xenopus. Development 2018; 145:145/20/dev166181. [PMID: 30337486 DOI: 10.1242/dev.166181] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022]
Abstract
A growing number of tissue-specific inherited disorders are associated with impaired ribosome production, despite the universal requirement for ribosome function. Recently, mutations in RPSA, a protein component of the small ribosomal subunit, were discovered to underlie approximately half of all isolated congenital asplenia cases. However, the mechanisms by which mutations in this ribosome biogenesis factor lead specifically to spleen agenesis remain unknown, in part due to the lack of a suitable animal model for study. Here we reveal that RPSA is required for normal spleen development in the frog, Xenopus tropicalis Depletion of Rpsa in early embryonic development disrupts pre-rRNA processing and ribosome biogenesis, and impairs expression of the key spleen patterning genes nkx2-5, bapx1 and pod1 in the spleen anlage. Importantly, we also show that whereas injection of human RPSA mRNA can rescue both pre-rRNA processing and spleen patterning, injection of human mRNA bearing a common disease-associated mutation cannot. Together, we present the first animal model of RPSA-mediated asplenia and reveal a crucial requirement for RPSA in pre-rRNA processing and molecular patterning during early Xenopus development.
Collapse
Affiliation(s)
- John N Griffin
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Samuel B Sondalle
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Andrew Robson
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Gerald Griffin
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Saurabh S Kulkarni
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA .,Departments of Molecular Biophysics and Biochemistry, and Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA .,Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| |
Collapse
|
24
|
Deniz E, Mis EK, Lane M, Khokha MK. CRISPR/Cas9 F0 Screening of Congenital Heart Disease Genes in Xenopus tropicalis. Methods Mol Biol 2018; 1865:163-174. [PMID: 30151766 DOI: 10.1007/978-1-4939-8784-9_12] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the US and Europe, birth defects are the leading cause of infant mortality. Among birth defects, Congenital Heart Disease (CHD) occurs in approximately 8 out of 1000 live births, affects 1.3 million newborns per year worldwide, and has the highest mortality rate. While there is evidence to indicate that CHD does have a genetic basis, most of the CHD burden remains unexplained genetically. Fortunately, new genomics technologies are enabling genetic analyses of CHD patients. Whole exome sequencing of trios as well as copy number variations assayed by high-density SNP arrays can now be obtained at high efficiency and relatively low cost. These efforts are identifying a number of sequence variations in patients with CHD, but only a small percentage have second unrelated alleles to validate them as disease causing. Importantly, most of these candidate genes do not have an identified molecular mechanism implicating them in cardiac development. Therefore, there is a pressing need to develop rapid functional assays to evaluate candidate genes for a role in cardiac development, and then to investigate the underlying developmental mechanisms. Most recently, the advent of CRISPR/Cas9 genome editing technology has greatly enhanced the ability to manipulate and observe the function of the genome in model systems and cell culture. Incorporating the power of a developmental system such as Xenopus tropicalis with the CRISPR/Cas9 system and the microscale imaging modality optical coherence tomography (OCT), the analysis of thousands of different genes in cardiac development becomes possible.
Collapse
Affiliation(s)
- Engin Deniz
- Pediatric Genomics Discovery Program, Section of Pediatric Critical Care, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA.
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Section of Pediatric Critical Care, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Maura Lane
- Pediatric Genomics Discovery Program, Section of Pediatric Critical Care, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Section of Pediatric Critical Care, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
25
|
Kennedy AE, Kandalam S, Olivares-Navarrete R, Dickinson AJG. E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells. PLoS One 2017; 12:e0185729. [PMID: 28957438 PMCID: PMC5619826 DOI: 10.1371/journal.pone.0185729] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022] Open
Abstract
Since electronic cigarette (ECIG) introduction to American markets in 2007, vaping has surged in popularity. Many, including women of reproductive age, also believe that ECIG use is safer than traditional tobacco cigarettes and is not hazardous when pregnant. However, there are few studies investigating the effects of ECIG exposure on the developing embryo and nothing is known about potential effects on craniofacial development. Therefore, we have tested the effects of several aerosolized e-cigarette liquids (e-cigAM) in an in vivo craniofacial model, Xenopus laevis, as well as a mammalian neural crest cell line. Results demonstrate that e-cigAM exposure during embryonic development induces a variety of defects, including median facial clefts and midface hypoplasia in two of e-cigAMs tested e-cigAMs. Detailed quantitative analyses of the facial morphology revealed that nicotine is not the main factor in inducing craniofacial defects, but can exacerbate the effects of the other e-liquid components. Additionally, while two different e-cigAMs can have very similar consequences on facial appearances, there are subtle differences that could be due to the differences in e-cigAM components. Further assessment of embryos exposed to these particular e-cigAMs revealed cranial cartilage and muscle defects and a reduction in the blood supply to the face. Finally, the expression of markers for vascular and cartilage differentiation was reduced in a mammalian neural crest cell line corroborating the in vivo effects. Our work is the first to show that ECIG use could pose a potential hazard to the developing embryo and cause craniofacial birth defects. This emphasizes the need for more testing and regulation of this new popular product.
Collapse
Affiliation(s)
- Allyson E. Kennedy
- Virginia Commonwealth University, Department of Biology, Richmond, VA, United States of America
| | - Suraj Kandalam
- Virginia Commonwealth University, Department of Biomedical Engineering, Richmond, VA, United States of America
| | - Rene Olivares-Navarrete
- Virginia Commonwealth University, Department of Biomedical Engineering, Richmond, VA, United States of America
| | - Amanda J. G. Dickinson
- Virginia Commonwealth University, Department of Biology, Richmond, VA, United States of America
| |
Collapse
|