1
|
Xu SJ, Shen HM, Cui YB, Chen SB, Xu B, Chen JH. Genetic diversity and natural selection of rif gene (PF3D7_1254800) in the Plasmodium falciparum global populations. Mol Biochem Parasitol 2023; 254:111558. [PMID: 36918126 DOI: 10.1016/j.molbiopara.2023.111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
To reveal the genetic characteristics of one member of the Plasmodium falciparum repetitive interspersed family (rif), we sequenced the rif gene (PF3D7_1254800) in 53 field isolates collected from Ghana-imported cases into China and compared them with 350 publicly available P. falciparum rif sequences from global populations. In the Ghana-imported population, the nucleotide diversities were 0.05714 and 0.06616 for the full length and variable region of rif gene, respectively. Meanwhile, 22 and 20 haplotypes were identified for the full length and variable region of rif gene (Hd = 0.843 and 0.838, respectively). Diversity of rif gene in Ghana-imported population was higher than that observed in Cambodia, Thailand, Vietnam, Myanmar, Mali, Ghana, and Senegal populations. In this analysis, we found high genetic diversity of rif gene in global P. falciparum populations and identified 158 haplotypes. Tajima's D-test shows that there are large differences in the direction of selection between the conserved and variable region of rif gene. Tajima's D value for the variable region was 0.20074, indicating that balancing selection existed in this region. We found that the variable region was the main target of selection for positive diversification, and most mutation sites were located in this region. The population structure suggested optimized cluster values of K = 6. The five groups in Ghana-imported population included a unique subpopulation. Our results reveal the dynamics of the rif gene (PF3D7_1254800) in P. falciparum populations, which can aid in the rational design of P. falciparum rif-based vaccines.
Collapse
Affiliation(s)
- Shao-Jie Xu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Yan-Bing Cui
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310013, PR China.
| |
Collapse
|
2
|
Zelter T, Strahilevitz J, Simantov K, Yajuk O, Adams Y, Ramstedt Jensen A, Dzikowski R, Granot Z. Neutrophils impose strong immune pressure against PfEMP1 variants implicated in cerebral malaria. EMBO Rep 2022; 23:e53641. [PMID: 35417070 PMCID: PMC9171683 DOI: 10.15252/embr.202153641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Plasmodium falciparum, the deadliest form of human malaria, remains one of the major threats to human health in endemic regions. Its virulence is attributed to its ability to modify infected red blood cells (iRBC) to adhere to endothelial receptors by placing variable antigens known as PfEMP1 on the iRBC surface. PfEMP1 expression determines the cytoadhesive properties of the iRBCs and is implicated in severe malaria. To evade antibody‐mediated responses, the parasite undergoes continuous switches of expression between different PfEMP1 variants. Recently, it became clear that in addition to antibody‐mediated responses, PfEMP1 triggers innate immune responses; however, the role of neutrophils, the most abundant white blood cells in the human circulation, in malaria remains elusive. Here, we show that neutrophils recognize and kill blood‐stage P. falciparum isolates. We identify neutrophil ICAM‐1 and specific PfEMP1 implicated in cerebral malaria as the key molecules involved in this killing. Our data provide mechanistic insight into the interactions between neutrophils and iRBCs and demonstrate the important influence of PfEMP1 on the selective innate response to cerebral malaria.
Collapse
Affiliation(s)
- Tamir Zelter
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel.,Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Jacob Strahilevitz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Karina Simantov
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Olga Yajuk
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Yvonne Adams
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Ramstedt Jensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
3
|
Antibodies to Peptides in Semiconserved Domains of RIFINs and STEVORs Correlate with Malaria Exposure. mSphere 2019; 4:4/2/e00097-19. [PMID: 30894432 PMCID: PMC6429043 DOI: 10.1128/msphere.00097-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria, an infectious disease caused by the parasite Plasmodium falciparum, causes nearly 435,000 deaths annually worldwide. RIFINs and STEVORs are two variant surface antigen families that are involved in malaria pathogenesis and immune evasion. Recent work has shown that a lack of humoral immunity to these proteins is associated with severe malaria vulnerability in Malian children. This is the first study to have compared serologic responses of children and adults to RIFINs and STEVORs in settings of malaria endemicity and to examine such serologic responses before and after a clinical malaria episode. Using microarrays, we determined that the semiconserved domains in these two parasite variant surface antigen families harbor peptides whose seroreactivity reflects malaria exposure. A similar approach has the potential to illuminate the role of variant surface antigens in the development of natural immunity to clinical malaria. Potential vaccines for severe malaria should include consideration of peptides within the semiconserved domains of RIFINs and STEVORs. The repetitive interspersed family (RIFIN) and the subtelomeric variable open reading frame (STEVOR) family represent two of three major Plasmodium falciparum variant surface antigen families involved in malaria pathogenesis and immune evasion and are potential targets in the development of natural immunity. Protein and peptide microarrays populated with RIFINs and STEVORs associated with severe malaria vulnerability in Malian children were probed with adult and pediatric sera to identify epitopes that reflect malaria exposure. Adult sera recognized and reacted with greater intensity to all STEVOR proteins than pediatric sera did. Serorecognition of and seroreactivity to peptides within the semiconserved domain of STEVORs increased with age and seasonal malaria exposure, while serorecognition and seroreactivity increased for the semiconserved and second hypervariable domains of RIFINs only with age. Serologic responses to RIFIN and STEVOR peptides within the semiconserved domains may play a role in natural immunity to severe malaria. IMPORTANCE Malaria, an infectious disease caused by the parasite Plasmodium falciparum, causes nearly 435,000 deaths annually worldwide. RIFINs and STEVORs are two variant surface antigen families that are involved in malaria pathogenesis and immune evasion. Recent work has shown that a lack of humoral immunity to these proteins is associated with severe malaria vulnerability in Malian children. This is the first study to have compared serologic responses of children and adults to RIFINs and STEVORs in settings of malaria endemicity and to examine such serologic responses before and after a clinical malaria episode. Using microarrays, we determined that the semiconserved domains in these two parasite variant surface antigen families harbor peptides whose seroreactivity reflects malaria exposure. A similar approach has the potential to illuminate the role of variant surface antigens in the development of natural immunity to clinical malaria. Potential vaccines for severe malaria should include consideration of peptides within the semiconserved domains of RIFINs and STEVORs.
Collapse
|