1
|
Butterworth NJ, Benbow ME, Barton PS. The ephemeral resource patch concept. Biol Rev Camb Philos Soc 2022; 98:697-726. [PMID: 36517934 DOI: 10.1111/brv.12926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Ephemeral resource patches (ERPs) - short lived resources including dung, carrion, temporary pools, rotting vegetation, decaying wood, and fungi - are found throughout every ecosystem. Their short-lived dynamics greatly enhance ecosystem heterogeneity and have shaped the evolutionary trajectories of a wide range of organisms - from bacteria to insects and amphibians. Despite this, there has been no attempt to distinguish ERPs clearly from other resource types, to identify their shared spatiotemporal characteristics, or to articulate their broad ecological and evolutionary influences on biotic communities. Here, we define ERPs as any distinct consumable resources which (i) are homogeneous (genetically, chemically, or structurally) relative to the surrounding matrix, (ii) host a discrete multitrophic community consisting of species that cannot replicate solely in any of the surrounding matrix, and (iii) cannot maintain a balance between depletion and renewal, which in turn, prevents multiple generations of consumers/users or reaching a community equilibrium. We outline the wide range of ERPs that fit these criteria, propose 12 spatiotemporal characteristics along which ERPs can vary, and synthesise a large body of literature that relates ERP dynamics to ecological and evolutionary theory. We draw this knowledge together and present a new unifying conceptual framework that incorporates how ERPs have shaped the adaptive trajectories of organisms, the structure of ecosystems, and how they can be integrated into biodiversity management and conservation. Future research should focus on how inter- and intra-resource variation occurs in nature - with a particular focus on resource × environment × genotype interactions. This will likely reveal novel adaptive strategies, aid the development of new eco-evolutionary theory, and greatly improve our understanding of the form and function of organisms and ecosystems.
Collapse
Affiliation(s)
- Nathan J. Butterworth
- School of Biological Sciences, Monash University Wellington Road Clayton VIC 3800 Australia
- School of Life Sciences, University of Technology Sydney 15 Broadway Ultimo NSW 2007 Australia
| | - M. Eric Benbow
- Department of Entomology, Department of Osteopathic Medical Specialties, and Ecology, Evolution and Behavior Program Michigan State University 220 Trowbridge Rd East Lansing MI 48824 USA
| | - Philip S. Barton
- Future Regions Research Centre, Federation University University Drive, Mount Helen VIC 3350 Australia
| |
Collapse
|
2
|
Cuthbert RN, Dalu T, Wasserman RJ, Sentis A, Weyl OLF, Froneman PW, Callaghan A, Dick JTA. Prey and predator density-dependent interactions under different water volumes. Ecol Evol 2021; 11:6504-6512. [PMID: 34141235 PMCID: PMC8207356 DOI: 10.1002/ece3.7503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 01/28/2023] Open
Abstract
Predation is a critical ecological process that directly and indirectly mediates population stabilities, as well as ecosystem structure and function. The strength of interactions between predators and prey may be mediated by multiple density dependences concerning numbers of predators and prey. In temporary wetland ecosystems in particular, fluctuating water volumes may alter predation rates through differing search space and prey encounter rates. Using a functional response approach, we examined the influence of predator and prey densities on interaction strengths of the temporary pond specialist copepod Lovenula raynerae preying on cladoceran prey, Daphnia pulex, under contrasting water volumes. Further, using a population dynamic modeling approach, we quantified multiple predator effects across differences in prey density and water volume. Predators exhibited type II functional responses under both water volumes, with significant antagonistic multiple predator effects (i.e., antagonisms) exhibited overall. The strengths of antagonistic interactions were, however, enhanced under reduced water volumes and at intermediate prey densities. These findings indicate important biotic and abiotic contexts that mediate predator-prey dynamics, whereby multiple predator effects are contingent on both prey density and search area characteristics. In particular, reduced search areas (i.e., water volumes) under intermediate prey densities could enhance antagonisms by heightening predator-predator interference effects.
Collapse
Affiliation(s)
- Ross N. Cuthbert
- GEOMAR Helmholtz‐Zentrum für Ozeanforschung KielKielGermany
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | - Tatenda Dalu
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- School of Biology and Environmental SciencesUniversity of MpumalangaNelspruitSouth Africa
| | - Ryan J. Wasserman
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- Department of Zoology and EntomologyRhodes UniversityMakhandaSouth Africa
| | - Arnaud Sentis
- INRAEAix Marseille University, UMR RECOVERAix‐en‐ProvenceFrance
| | - Olaf L. F. Weyl
- DSI/NRF Research Chair in Inland Fisheries and Freshwater EcologySouth African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | | | - Amanda Callaghan
- Ecology and Evolutionary Biology, School of Biological SciencesUniversity of ReadingReadingUK
| | - Jaimie T. A. Dick
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
3
|
Dalu T, Cuthbert RN, Taylor JC, Magoro ML, Weyl OLF, Froneman PW, Wasserman RJ. Benthic diatom-based indices and isotopic biomonitoring of nitrogen pollution in a warm temperate Austral river system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142452. [PMID: 33113700 DOI: 10.1016/j.scitotenv.2020.142452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Rivers are impacted by pollutants from anthropogenic activities such as urbanisation and agricultural practices. Whilst point source pollution has been widely studied and in some cases remediated, non-point pollutant sources remain pervasive, particularly in developing countries that lack economic and human specialist capacity. Monitoring of pollution levels in many regions is additionally challenged by a lack of robust indicators for nitrogen inputs, however, diatom community indices and analysis of variation in microphytobenthos (MBP) stable isotope analysis variations have potential. The present study investigates variations and utilities in benthic diatom indices and MPB δ15N along different river sections (n = 31) of an austral river between two seasons (wet and dry), testing for relationships with key environmental variables (physical, water and sediment), in the context of N monitoring. One hundred and eighteen diatom taxa belonging to 36 genera were identified, with physical (water flow), water (nitrate, P and total dissolved solids) and sediment (B, Ca, Cr, Na, N, P, SOM, Pb and Zn) variables correlating to one or more of the 12 diatom indices presented. In particular, Biological Diatom Index, Biological Index of Water Quality, Central Economic Community, Index of Artois-Picardie Diatom (IDAP) and Sládeček's Index were strongly explained by sediment variables, whilst Descy's Pollution Index and Schiefele and Schreiner's Index were explained by water and physical variables. Whilst MPB δ15N were within the "no impact" level in the wet and dry seasons at reference (i.e. unpolluted) sites, all sites located in agricultural or urban areas, and downstream of sewage discharges, had a wider range that encompassed increasing organic impacts ("inorganic impacts" to high "organic impacts"). Temperature and turbidity (negative), as well as dissolved oxygen, waterway width and depth (positive), significantly affected MPB δ15N, whilst effects of chemistry variables were less apparent. Overall, we found that MPB δ15N signatures were significantly correlated with Trophic Diatom Index, the Specific Pollution Sensitivity Index and the Artois-Picardie Diatom Index, suggesting the utility of diatoms and MPB δ15N in assessments of aquatic pollution. In turn, MPB δ15N values are strong indicators of N pollution across spatial and seasonal gradients. Thus, the results showed the effects of sediment variables on diatoms to be strong, indicating that sediment rather than water characteristics more strongly structure diatom communities. Thus, sediment variables should be sampled when conducting bioassessment studies.
Collapse
Affiliation(s)
- Tatenda Dalu
- Aquatic Systems Research Group, Department of Ecology and Resource Management, University of Venda, Thohoyandou 0950, South Africa; South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa.
| | - Ross N Cuthbert
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa; GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany
| | - Jonathan C Taylor
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa; Unit for Environmental Science and Management, North-West University, Potchefstroom 2520, South Africa
| | - Mandla L Magoro
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa; DSI/NRF Research Chair in Inland Fisheries and Freshwater Ecology, South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
| | - Olaf L F Weyl
- DSI/NRF Research Chair in Inland Fisheries and Freshwater Ecology, South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
| | - P William Froneman
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa
| | - Ryan J Wasserman
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa; Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
4
|
Korotkevich AY, Potapov AM, Tiunov AV, Kuznetsova NA. Collapse of trophic‐niche structure in belowground communities under anthropogenic disturbance. Ecosphere 2018. [DOI: 10.1002/ecs2.2528] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Anastasiya Yu. Korotkevich
- Institute of Biology and Chemistry Moscow State Pedagogical University Kibalchicha Street 6k3 129164 Moscow Russia
| | - Anton M. Potapov
- A.N. Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Goettingen Germany
| | - Alexei V. Tiunov
- A.N. Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Natalia A. Kuznetsova
- Institute of Biology and Chemistry Moscow State Pedagogical University Kibalchicha Street 6k3 129164 Moscow Russia
| |
Collapse
|
5
|
Cuthbert RN, Dalu T, Wasserman RJ, Callaghan A, Weyl OLF, Dick JTA. Calanoid Copepods: An Overlooked Tool in the Control of Disease Vector Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1656-1658. [PMID: 30085266 DOI: 10.1093/jme/tjy132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Indexed: 05/25/2023]
Abstract
Biological control can assist in the management of disease vector mosquitoes. However, we urgently require the identification of novel and effective agents to aid population management strategies. Previously, predatory biocontrol of disease vector mosquito species has focused extensively on cyclopoid copepods, but prey size refuge effects have been identified as a hindrance to their predatory efficacy. Calanoid copepods have yet to be examined in the context of mosquito control, despite their high prevalence, diversity, and distribution. Here, we apply functional responses (FRs; resource use as a function of resource density) to examine predation efficiencies of a recently described ephemeral pond specialist species, the freshwater calanoid copepod Lovenula raynerae Suárez-Morales, Wasserman & Dalu 2015 (Calanoida: Diaptomidae), using different size classes of larvae of the disease vector complex Culex pipiens (Diptera: Culicidae) as prey. Lovenula raynerae effectively consumed Cx. pipiens larvae across their ontogeny. A potentially population destabilizing type II FR was exhibited toward both early and late instar mosquitoes, indicative of a lack of prey refuge across ontogenetic stages. Attack rates were greatest and handling times lowest for early instar larvae compared to late instar larvae. These traits contrast to other copepods commonly applied in biocontrol, which are only able to handle early instars, and in much smaller numbers. We thus advocate that calanoid copepods can exert particularly marked predatory impact on lower trophic groups, and that their use in disease vector mosquito control strategies should be further explored.
Collapse
Affiliation(s)
- Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Northern Ireland
- DST/NRF Research Chair in Inland Fisheries and Freshwater Ecology, South African Institute for Aquatic Biodiversity (SAIAB), South Africa
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, United Kingdom
| | - Tatenda Dalu
- Ecology and Resource Management, University of Venda, Limpopo, South Africa
- South African Institute for Aquatic Biodiversity (SAIAB), South Africa
| | - Ryan J Wasserman
- South African Institute for Aquatic Biodiversity (SAIAB), South Africa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Amanda Callaghan
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, United Kingdom
| | - Olaf L F Weyl
- DST/NRF Research Chair in Inland Fisheries and Freshwater Ecology, South African Institute for Aquatic Biodiversity (SAIAB), South Africa
| | - Jaimie T A Dick
- Institute for Global Food Security, School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Northern Ireland
| |
Collapse
|
6
|
Wasserman RJ, Weston M, Weyl OLF, Froneman PW, Welch RJ, Vink TJF, Dalu T. Sacrificial males: the potential role of copulation and predation in contributing to copepod sex-skewed ratios. OIKOS 2018. [DOI: 10.1111/oik.04832] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ryan J. Wasserman
- School of Science, Monash Univ. Malaysia; Jalan Lagoon Selatan, 47500 Bandar Sunway Selangor Darul Ehsan Malaysia
- South African Inst. for Aquatic Biodiversity (SAIAB); Grahamstown South Africa
| | - Mark Weston
- Zoology and Entomology; Rhodes Univ.; Grahamstown South Africa
- Dept of Biological Sciences; Univ. of Cape Town; Rondebosch, Cape Town South Africa
| | - Olaf L. F. Weyl
- DST/NRF Research Chair in Inland Fisheries and Freshwater Ecology; South African Inst. for Aquatic Biodiversity (SAIAB); Grahamstown South Africa
| | | | - Rebecca J. Welch
- Dept of Zoology and Entomology; Univ. of the Free State; Qwaqwa, Phuthaditjhaba South Africa
| | - Tim J. F. Vink
- Dept of Botany; Coastal and Marine Research Unit, Nelson Mandela Metropolitan Univ.; Port Elizabeth South Africa
| | - Tatenda Dalu
- South African Inst. for Aquatic Biodiversity (SAIAB); Grahamstown South Africa
- Dept of Ecology and Resource Management; Univ. of Venda, Thohoyandou; Limpopo South Africa
| |
Collapse
|
7
|
Trophic isotopic carbon variation increases with pond's hydroperiod: Evidence from an Austral ephemeral ecosystem. Sci Rep 2017; 7:7572. [PMID: 28790380 PMCID: PMC5548932 DOI: 10.1038/s41598-017-08026-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/05/2017] [Indexed: 11/08/2022] Open
Abstract
Trophic variation in food web structure occurs among and within ecosystems. The magnitude of variation, however, differs from system to system. In ephemeral pond ecosystems, temporal dynamics are relatively more important than in many systems given that hydroperiod is the ultimate factor determining the presence of an aquatic state. Here, using stable isotopes we tested for changes in trophic chain length and shape over time in these dynamic aquatic ecosystems. We found that lower and intermediate trophic level structure increased over time. We discuss these findings within the context of temporal environmental stability. The dynamic nature of these ephemeral systems seems to be conducive to greater levels of intermediate and lower trophic level diversity, with omnivorous traits likely being advantageous.
Collapse
|