1
|
Panigrahi R, Glover JNM. Structural insights into DNA double-strand break signaling. Biochem J 2021; 478:135-156. [PMID: 33439989 DOI: 10.1042/bcj20200066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Genomic integrity is most threatened by double-strand breaks, which, if left unrepaired, lead to carcinogenesis or cell death. The cell generates a network of protein-protein signaling interactions that emanate from the DNA damage which are now recognized as a rich basis for anti-cancer therapy development. Deciphering the structures of signaling proteins has been an uphill task owing to their large size and complex domain organization. Recent advances in mammalian protein expression/purification and cryo-EM-based structure determination have led to significant progress in our understanding of these large multidomain proteins. This review is an overview of the structural principles that underlie some of the key signaling proteins that function at the double-strand break site. We also discuss some plausible ideas that could be considered for future structural approaches to visualize and build a more complete understanding of protein dynamics at the break site.
Collapse
Affiliation(s)
- Rashmi Panigrahi
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
2
|
Zhang Q, Hou B, Li Y, Zhang W, Liu J. DNA interactive and selective anticancer activity studies of copper(II) complexes decorated water‐soluble porphyrin. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qian Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Bing‐jie Hou
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Yan‐yan Li
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Wen‐yuan Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Jia‐cheng Liu
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| |
Collapse
|
3
|
Zhang W, Hu X, Shen Q, Xing D. Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy. Nat Commun 2019; 10:1704. [PMID: 30979885 PMCID: PMC6461692 DOI: 10.1038/s41467-019-09566-3] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
Cancer cells exhibit slightly elevated levels of reactive oxygen species (ROS) compared with normal cells, and approximately 90% of intracellular ROS is produced in mitochondria. In situ mitochondrial ROS amplification is a promising strategy to enhance cancer therapy. Here we report cancer cell and mitochondria dual-targeting polyprodrug nanoreactors (DT-PNs) covalently tethered with a high content of repeating camptothecin (CPT) units, which release initial free CPT in the presence of endogenous mitochondrial ROS (mtROS). The in situ released CPT acts as a cellular respiration inhibitor, inducing mtROS upregulation, thus achieving subsequent self-circulation of CPT release and mtROS burst. This mtROS amplification endows long-term high oxidative stress to induce cancer cell apoptosis. This current strategy of endogenously activated mtROS amplification for enhanced chemodynamic therapy overcomes the short lifespan and action range of ROS, avoids the penetration limitation of exogenous light in photodynamic therapy, and is promising for theranostics.
Collapse
Affiliation(s)
- Wenjia Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, 510631, Guangzhou, China
- College of Biophotonics, South China Normal University, 510631, Guangzhou, China
| | - Xianglong Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, 510631, Guangzhou, China.
- College of Biophotonics, South China Normal University, 510631, Guangzhou, China.
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, 510631, Guangzhou, China
- College of Biophotonics, South China Normal University, 510631, Guangzhou, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, 510631, Guangzhou, China.
- College of Biophotonics, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
4
|
Lv M, Wang M, Lu K, Peng L, Zhao Y. DNA/Lysozyme-binding affinity study of novel peptides from TAT (47-57) and BRCA1 (782-786) in vitro by spectroscopic analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 209:109-117. [PMID: 30384016 DOI: 10.1016/j.saa.2018.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
SISLL-TAT and TAT-SISLL were synthesized by modifying the N- or C-termini of cell-penetrating peptides as transacting activator of transcription TAT (47-57) by attaching BRCA1 (782-786) (SISLL). The novel peptides were synthesized through Fmoc solid-phase synthesis procedures and characterized by LCQ Fleet MS, 1H NMR and 13C NMR. SISLL-TAT and TAT-SISLL displayed forceful antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella typhimurium with low hemolysis. SISLL-TAT showed better antibacterial activity than TAT-SISLL, with the minimum inhibitory concentration (MIC) values of 10-33 μg·mL-1. The results of the DNA-binding activities showed that both SISLL-TAT and TAT-SISLL could interact with DNA via the minor groove mode, and the binding constants were 4.97 × 105 L·mol-1 and 4.42 × 105 L·mol-1 at 310 K, respectively. Circular dichroism analysis showed slight transformation of the lysozyme secondary structure caused by SISLL-TAT and TAT-SISLL. We also found that the novel peptides SISLL-TAT and TAT-SISLL targeted bacterial DNA resulting in cell death. This explains the antibacterial mechanism of SISLL-TAT and TAT-SISLL, and is a solid theoretical basis for further designing novel and highly effective antibiotics for clinical application.
Collapse
Affiliation(s)
- Mingxiu Lv
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 450007, Henan, China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Mengwei Wang
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 450007, Henan, China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kui Lu
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 450007, Henan, China; School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, Zhengzhou 450044, Henan, China.
| | - Lu Peng
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 450007, Henan, China
| | - Yufen Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
5
|
Liang Y, Dearnaley WJ, Alden NA, Solares MJ, Gilmore BL, Pridham KJ, Varano AC, Sheng Z, Alli E, Kelly DF. Correcting errors in the BRCA1 warning system. DNA Repair (Amst) 2018; 73:120-128. [PMID: 30503669 DOI: 10.1016/j.dnarep.2018.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Abstract
Given its important role in human health and disease, remarkably little is known about the full-length three-dimensional (3D) molecular architecture of the breast cancer type 1 susceptibility protein (BRCA1), or its mechanisms to engage the tumor suppressor, TP53 (p53). Here, we show how a prevalent cancer-related mutation in the C-terminal region of the full-length protein, BRCA15382insC, affects its structural properties, yet can be biochemically corrected to restore its functional capacity. As a downstream consequence of restoring the ubiquitin ligase activity of mutated BRCA15382insC, the DNA repair response of p53 was enhanced in cellular extracts naturally deficient in BRCA1 protein expression. Complementary structural insights of p53 tetramers bound to DNA in different stage of the repair process support these biochemical findings in the context of human cancer cells. Equally important, we show how this knowledge can be used to lower the viability of breast cancer cells by modulating the stability of the BRCA1 protein and its associated players.
Collapse
Affiliation(s)
- Yanping Liang
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA
| | - William J Dearnaley
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA; Center for Structural Oncology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Nick A Alden
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA
| | - Maria J Solares
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA; Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Brian L Gilmore
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA
| | - Kevin J Pridham
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA; Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - A Cameron Varano
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA; Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA; Center for Structural Oncology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhi Sheng
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA
| | - Elizabeth Alli
- Comprehensive Cancer Center, Wake Forest School of Medicine, Wake Forest, NC, 27157, USA
| | - Deborah F Kelly
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA; Center for Structural Oncology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
6
|
Gilmore BL, Varano AC, Dearnaley W, Liang Y, Marcinkowski BC, Dukes MJ, Kelly DF. Preparation of Tunable Microchips to Visualize Native Protein Complexes for Single-Particle Electron Microscopy. Methods Mol Biol 2018; 1764:45-58. [PMID: 29605907 DOI: 10.1007/978-1-4939-7759-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent advances in technology have enabled single-particle electron microscopy (EM) to rapidly progress as a preferred tool to study protein assemblies. Newly developed materials and methods present viable alternatives to traditional EM specimen preparation. Improved lipid monolayer purification reagents offer considerable flexibility, while ultrathin silicon nitride films provide superior imaging properties to the structural study of protein complexes. Here, we describe the steps for combining monolayer purification with silicon nitride microchips to create a tunable approach for the EM community.
Collapse
Affiliation(s)
| | - A Cameron Varano
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, USA
| | | | - Yanping Liang
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | | | | | - Deborah F Kelly
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA. .,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
7
|
Liang Y, Dearnaley WJ, Varano AC, Winton CE, Gilmore BL, Alden NA, Sheng Z, Kelly DF. RETRACTED: Structural analysis of BRCA1 reveals modification hotspot. SCIENCE ADVANCES 2017; 3:e1701386. [PMID: 28948225 PMCID: PMC5606707 DOI: 10.1126/sciadv.1701386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/30/2017] [Indexed: 05/21/2023]
Abstract
Cancer cells afflicted with mutations in the breast cancer susceptibility protein (BRCA1) often suffer from increased DNA damage and genomic instability. The precise manner in which physical changes to BRCA1 influence its role in DNA maintenance remains unclear. We used single-particle electron microscopy to study the three-dimensional properties of BRCA1 naturally produced in breast cancer cells. Structural studies revealed new information for full-length BRCA1, engaging its nuclear binding partner, the BRCA1-associated RING domain protein (BARD1). Equally important, we identified a region in mutated BRCA1 that was highly susceptible to ubiquitination. We refer to this site as a modification "hotspot." Ubiquitin adducts in the hotspot region proved to be biochemically reversible. Collectively, we show how key changes to BRCA1 affect its structure-function relationship, and present new insights to potentially modulate mutated BRCA1 in human cancer cells.
Collapse
Affiliation(s)
- Yanping Liang
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
| | - William J. Dearnaley
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
| | - A. Cameron Varano
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Carly E. Winton
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
- School of Biomedical Engineering and Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Brian L. Gilmore
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
| | - Nick A. Alden
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
| | - Zhi Sheng
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA
| | - Deborah F. Kelly
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
- School of Biomedical Engineering and Science, Virginia Tech, Blacksburg, VA 24061, USA
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|