1
|
Song CY, Huang HZ, Yan TT, Cui CX, Wu HY, Chen J, Peng JH, Chen NY, Tang J, Pan SL. Downregulation of miR-27a-3p induces endothelial injury and senescence and its significance in the development of coronary heart disease. Cell Signal 2025; 131:111759. [PMID: 40147550 DOI: 10.1016/j.cellsig.2025.111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
miR-27a-3p is a multifunctional miRNA that plays a critical role in the process of angiogenesis. However, its specific effect on coronary heart disease (CHD), particularly on the regulation of downstream molecules and the resulting impact on endothelial cell injury, has not yet been fully elucidated. This study aimed to explore the relationship between miR-27a-3p and CHD and its underlying mechanical molecular pathways in CHD patients and modeled endothelial cells with techniques such as RT-qPCR, RNA sequencing and bioinformatics. Consequently, the expression of miR-27a-3p was significantly decreased in CHD patients. In endothelial cells, overexpression of miR-27a-3p was observed to decrease malonaldehyde, gamma H2A histone family member X and interleukin 6 while increased superoxide dismutase, thus reduced endothelial injury and senescence. RNA sequencing and bioinformatics revealed glutamate ionotropic receptor NMDA type subunit 2D (GRIN2D) as a target gene of miR-27a-3p, and dual luciferase assays confirmed the direct binding of miR-27a-3p to the 3'UTR of GRIN2D. Subsequent validation experiments demonstrated that miR-27a-3p inhibited the protein expression of GRIN2D and PKC and suppressed the activation of the MAPK/ERK signaling pathway by reduced downstream MEK and ERK phosphorylation, leading to enhanced endothelial apoptosis. In conclusion, miR-27a-3p played a crucial role in regulating endothelial cell dysfunction which may trigger coronary atherosclerosis and CHD by targeting GRIN2D in the PKC/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Chong-Yang Song
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Hai-Zhen Huang
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Ting-Ting Yan
- Department of General Geriatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Chen-Xi Cui
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China; Department of pathology, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning 530022, Guangxi, China
| | - Hua-Yu Wu
- Experimental Center for Medicine, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning 530022, Guangxi, China
| | - Jing Chen
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China; Biobank, Department of Scientific Research, the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning 530022, Guangxi, China
| | - Jun-Hua Peng
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Ning-Yuan Chen
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Jun Tang
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Shang-Ling Pan
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| |
Collapse
|
2
|
Li Y, Tang X, Wang B, Chen M, Zheng J, Chang K. Current landscape of exosomal non-coding RNAs in prostate cancer: Modulators and biomarkers. Noncoding RNA Res 2024; 9:1351-1362. [PMID: 39247145 PMCID: PMC11380467 DOI: 10.1016/j.ncrna.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| |
Collapse
|
3
|
Sletten M, Skogstrøm KB, Lind SM, Tinholt M, Stavik B, Rayner S, Iversen N. Elevated TFPI is a prognostic factor in hepatocellular carcinoma: Putative role of miR-7-5p and miR-1236-3p. Thromb Res 2024; 241:109073. [PMID: 38945092 DOI: 10.1016/j.thromres.2024.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Primary liver cancer is the third leading cause of cancer related deaths worldwide, and the disease is associated with high incidence rate of thrombosis. Studies indicate that Tissue Factor Pathway Inhibitor (TFPI) plays a role in cancer development. We aimed to study its expression, clinical role and regulation by micro RNAs (miRNAs) in hepatocellular carcinoma (HCC). METHODS Publically available datasets were used for clinical analysis of TFPI and miRNAs expression by web analysis tools. miRNA mimics targeting TFPIα 3'untranslated region (UTR) were selected from target prediction programs and verified by luciferase reporter assay. In vitro effects of miRNAs overexpression in HCC cell lines on TFPI expression and cell proliferation and apoptosis were analysed. RESULTS TFPI expression was significantly increased in HCC tumours compared to normal tissue. Low TFPI tumour expression was associated with better survival probability. Four candidate miRNAs were selected from the target prediction programs. miR-7-5p and miR-1236-3p were validated in HepG2 and Huh7 cells to reduce TFPI mRNA and protein levels following overexpression. Furthermore, miR-7-5p and miR-1236-3p reduced TFPIα-3'UTR-controlled luciferase activity. The two validated miRNAs inhibited proliferation of HepG2 cells, and had clinical significance in HCC. CONCLUSIONS TFPI was increased in HCC tumours compared to normal tissue and high TFPI expression was associated with an unfavorable outcome in HCC patients. miR-7-5p and miR-1236-3p were identified as novel regulators of TFPI in vitro.
Collapse
Affiliation(s)
- M Sletten
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - K B Skogstrøm
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - S M Lind
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - M Tinholt
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - B Stavik
- Department of Haematology, Oslo University Hospital, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - S Rayner
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Institue of Clinical Medicine, University of Oslo, Oslo, Norway
| | - N Iversen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Danckwardt S, Trégouët DA, Castoldi E. Post-transcriptional control of haemostatic genes: mechanisms and emerging therapeutic concepts in thrombo-inflammatory disorders. Cardiovasc Res 2023; 119:1624-1640. [PMID: 36943786 PMCID: PMC10325701 DOI: 10.1093/cvr/cvad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023] Open
Abstract
The haemostatic system is pivotal to maintaining vascular integrity. Multiple components involved in blood coagulation have central functions in inflammation and immunity. A derailed haemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders, and lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a hyperactivated haemostatic system through adaptive changes in gene expression. While this is mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are increasingly perceived as central hubs governing multiple facets of the haemostatic system. This layer of regulation modulates the biogenesis of haemostatic components, for example in situations of increased turnover and demand. However, they can also be 'hijacked' in disease processes, thereby perpetuating and even causally entertaining associated pathologies. This review summarizes examples and emerging concepts that illustrate the importance of posttranscriptional mechanisms in haemostatic control and crosstalk with the immune system. It also discusses how such regulatory principles can be used to usher in new therapeutic concepts to combat global medical threats such as sepsis or cardiovascular disorders.
Collapse
Affiliation(s)
- Sven Danckwardt
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research (DZHK),
Berlin, Germany
- Posttranscriptional Gene Regulation, University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University
Medical Centre Mainz, Langenbeckstr. 1, 55131
Mainz, Germany
- Center for Healthy Aging (CHA), Mainz,
Germany
| | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health Research Center, UMR 1219, Department of
Molecular Epidemiology of Vascular and Brain Disorders (ELEANOR), University of
Bordeaux, Bordeaux, France
| | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht
(CARIM), Maastricht University, Universiteitsingel 50, 6229
ER Maastricht, The Netherlands
| |
Collapse
|
5
|
Pan L, Shi Y, Zhang J, Luo G. Association Between Single Nucleotide Polymorphisms of miRNAs and Gastric Cancer: A Scoping Review. Genet Test Mol Biomarkers 2022; 26:459-467. [PMID: 36251855 DOI: 10.1089/gtmb.2021.0258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background: Gastric cancer (GC) is the third leading cause of cancer-related mortality worldwide, and single nucleotide polymorphisms (SNPs) in microRNAs (miRNAs) are believed to affect the occurrence and progression of cancer by altering the expression and biological functions of miRNAs. Methods: The present scoping review was designed to evaluate and discuss microRNA SNPs (miR-SNPs) that have been found to be associated with GC in the following two contexts: (1) the biological effects on GC based on SNP localization; and (2) the associations between miRNA-SNPs and clinical factors (susceptibility, tumor size, metastasis, overall survival, and prognosis) of GC. Results and Conclusions: Information on miRNAs was collected, including the SNPs, their proven target genes, and the possible impact of the SNPs on GC outcome. Our findings suggest an etiological or modifying role for multiple miRNA SNPs (miR-499, miR-146a, miR-149, miR-148, miR-27a, miR-608, miR-196a-2) in GC and its progression. The findings of this study reinforce the multiple roles of miRNA SNPs in GC.
Collapse
Affiliation(s)
- Lili Pan
- Comprehensive Laboratory, Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yuanping Shi
- Comprehensive Laboratory, Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Zhang
- Comprehensive Laboratory, Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guanghua Luo
- Comprehensive Laboratory, Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
6
|
Sobrero M, Montecucco F, Carbone F. Circulating MicroRNAs for Diagnosis of Acute Pulmonary Embolism: Still a Long Way to Go. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4180215. [PMID: 35047634 PMCID: PMC8763471 DOI: 10.1155/2022/4180215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022]
Abstract
Venous thromboembolism (VTE) represents the third most frequent cause of acute cardiovascular syndrome. Among VTE, acute pulmonary embolism (APE) is the most life-threatening complication. Due to the low specificity of symptoms clinical diagnosis of APE may be sometimes very difficult. Accordingly, the latest European guidelines only suggest clinical prediction tests for diagnosis of APE, eventually associated with D-dimer, a biomarker burdened by a very low specificity. A growing body of evidence is highlighting the role of miRNAs in hemostasis and thrombosis. Due to their partial inheritance and susceptibility to the environmental factors, miRNAs are increasingly described as active modifiers of the classical Virchow's triad. Clinical evidence on deep venous thrombosis reported specific miRNA signatures associated to thrombosis development, organization, recanalization, and resolution. Conversely, data of miRNA profiling as a predictor/diagnostic marker of APE are still preliminary. Here, we have summarized clinical evidence on the potential role of miRNA in diagnosis of APE. Despite some intriguing insight, miRNA assay is still far from any potential clinical application. Especially, the small sample size of cohorts likely represents the major limitation of published studies, so that extensive analysis of miRNA profiles with a machine learning approach are warranted in the next future. In addition, the cost-benefit ratio of miRNA assay still has a negative impact on their clinical application and routinely test.
Collapse
Affiliation(s)
- Matteo Sobrero
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| |
Collapse
|
7
|
Prigol AN, Rode MP, Silva AH, Cisilotto J, Creczynski-Pasa TB. Pro-angiogenic effect of PC-3 exosomes in endothelial cells in vitro. Cell Signal 2021; 87:110126. [PMID: 34474113 DOI: 10.1016/j.cellsig.2021.110126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
The progression to a castration-resistant prostate cancer can occur after treatment with androgen deprivation therapy, resulting in poor prognosis and ineffective therapy response. Hormone dependence transition has been associated with increased tumor vascularization. Considering that exosomes are important components in communication between tumor cells and the microenvironment, we examined the angiogenic potential of exosomes released from Pca cell lines with distinctive profiles of androgen response through exosomes isolation, microscopy and uptake, functional assays follow up by microarray, RT-qPCR and bioinformatics analysis. HUVEC cells treated with PC-3 exosomes (androgen independent) showed increased invasion and tube formation ability. In order to identify microRNAs (miRNAs) related to the angiogenic response, the characterization of exosomal miRNA profile was performed. As result we suggest that the miR-27a-3p could be involved in the pro-angiogenic effect of PC-3 exosomes.
Collapse
Affiliation(s)
- Anne Natalie Prigol
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
| | - Michele Patrícia Rode
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
| | - Adny Henrique Silva
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
| | - Júlia Cisilotto
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil; Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil.
| |
Collapse
|
8
|
Raman R, Fallatah W, Al Qaryoute A, Dhinoja S, Jagadeeswaran P. Knockdown screening of chromatin binding and regulatory proteins in zebrafish identified Suz12b as a regulator of tfpia and an antithrombotic drug target. Sci Rep 2021; 11:15238. [PMID: 34315984 PMCID: PMC8316476 DOI: 10.1038/s41598-021-94715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022] Open
Abstract
Tissue factor pathway inhibitor (TFPI) is an anticoagulant protein that inhibits factor VIIa and Xa in the coagulation cascade. It has been shown that forkhead box P3 protein is a TFPI transcriptional repressor. However, there are no studies on chromatin remodeling that control TFPI expression. We hypothesized that the genome-wide knockdowns of the chromatin binding and regulatory proteins (CBRPs) in zebrafish could identify novel tfpia gene regulators. As an initial step, we selected 69 CBRP genes from the list of zebrafish thrombocyte-expressed genes. We then performed a 3-gene piggyback knockdown screen of these 69 genes, followed by quantification of tfpia mRNA levels. The results revealed that knockdown of brd7, ing2, ing3, ing4, and suz12b increased tfpia mRNA levels. The simultaneous knockdown of these 5 genes also increased tfpia mRNA levels. We also performed individual gene and simultaneous 5-gene knockdowns on the 5 genes in zebrafish larvae. We found that after laser injury, it took a longer time for the formation of the thrombus to occlude the caudal vessel compared to the control larvae. We then treated the larvae and adults with a chemical UNC6852 known to proteolytically degrade polycomb repressor complex 2, where SUZ12 is a member, and observed prolongation of time to occlude (TTO) the caudal vein after laser injury and increased tfpia mRNA levels in larvae and adults, respectively. In summary, our results have identified novel epigenetic regulators for tfpia and exploited this information to discover a drug that enhances tfpia mRNA levels and prolongation of TTO. This discovery provides the basis for testing whether UNC6852 could be used as an antithrombotic drug. This approach could be used to study the regulation of other plasma proteins, including coagulant and anticoagulant factors.
Collapse
Affiliation(s)
- Revathi Raman
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Weam Fallatah
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Ayah Al Qaryoute
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Sanchi Dhinoja
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA.
| |
Collapse
|
9
|
A novel rationale for targeting FXI: Insights from the hemostatic microRNA targetome for emerging anticoagulant strategies. Pharmacol Ther 2021; 218:107676. [DOI: 10.1016/j.pharmthera.2020.107676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
|
10
|
Danese E, Montagnana M, Gelati M, Lippi G. The Role of Epigenetics in the Regulation of Hemostatic Balance. Semin Thromb Hemost 2020; 47:53-62. [PMID: 33368118 DOI: 10.1055/s-0040-1718400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetics, a term conventionally used to explain the intricate interplay between genes and the environment, is now regarded as the fundament of developmental biology. Several lines of evidence garnered over the past decades suggest that epigenetic alterations, mostly encompassing DNA methylation, histone tail modifications, and generation of microRNAs, play an important, though still incompletely explored, role in both primary and secondary hemostasis. Epigenetic variations may interplay with platelet functions and their responsiveness to antiplatelet drugs, and they may also exert a substantial contribution in modulating the production and release into the bloodstream of proteins involved in blood coagulation and fibrinolysis. This emerging evidence may have substantial biological and clinical implications. An enhanced understanding of posttranscriptional mechanisms would help to clarify some remaining enigmatic issues in primary and secondary hemostasis, which cannot be thoughtfully explained by genetics or biochemistry alone. Increased understanding would also pave the way to developing innovative tests for better assessment of individual risk of bleeding or thrombosis. The accurate recognition of key epigenetic mechanisms in hemostasis would then contribute to identify new putative therapeutic targets, and develop innovative agents that could be helpful for preventing or managing a vast array of hemostasis disturbances.
Collapse
Affiliation(s)
- Elisa Danese
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Martina Montagnana
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Matteo Gelati
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
11
|
Hawley ZCE, Campos-Melo D, Strong MJ. Evidence of A Negative Feedback Network Between TDP-43 and miRNAs Dependent on TDP-43 Nuclear Localization. J Mol Biol 2020; 432:166695. [PMID: 33137311 DOI: 10.1016/j.jmb.2020.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 01/09/2023]
Abstract
TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA-binding protein that is integral to RNA processing. Among these functions is a critical role in microRNA (miRNA) biogenesis through interactions with the DROSHA and DICER complexes. It has been previously shown that there is a general reduction in miRNA levels within the spinal cord and spinal motor neurons of amyotrophic lateral sclerosis (ALS) patients. In addition, the most common pathological feature of ALS is re-distribution of TDP-43 from the nucleus to the cytoplasm where it forms cytoplasmic inclusions. Among miRNAs dysregulated in ALS, several are known to regulate TDP-43 expression. In this study, we demonstrate that TDP-43 is in a regulatory negative feedback network with miR-181c-5p and miR-27b-3p that is dependent on its nuclear localization within HEK293T cells. Further, we show that cellular stress which induces a redistribution of TDP-43 from the nucleus to the cytoplasm correlates with the reduced production of miR-27b-3p and miR-181c-5p. This suggests that reduced nuclear TDP-43 disrupts a negative feedback network between itself and miRNAs. These findings provide a further understanding of altered miRNA biogenesis as a key pathogenic process in ALS.
Collapse
Affiliation(s)
- Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Neuroscience Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Neuroscience Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
12
|
Jankowska KI, Sauna ZE, Atreya CD. Role of microRNAs in Hemophilia and Thrombosis in Humans. Int J Mol Sci 2020; 21:ijms21103598. [PMID: 32443696 PMCID: PMC7279366 DOI: 10.3390/ijms21103598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNA) play an important role in gene expression at the posttranscriptional level by targeting the untranslated regions of messenger RNA (mRNAs). These small RNAs have been shown to control cellular physiological processes including cell differentiation and proliferation. Dysregulation of miRNAs have been associated with numerous diseases. In the past few years miRNAs have emerged as potential biopharmaceuticals and the first miRNA-based therapies have entered clinical trials. Our recent studies suggest that miRNAs may also play an important role in the pathology of genetic diseases that are currently considered to be solely due to mutations in the coding sequence. For instance, among hemophilia A patients there exist a small subset, with normal wildtype genes; i.e., lacking in mutations in the coding and non-coding regions of the F8 gene. Similarly, in many patients with missense mutations in the F8 gene, the genetic defect does not fully explain the severity of the disease. Dysregulation of miRNAs that target mRNAs encoding coagulation factors have been shown to disturb gene expression. Alterations in protein levels involved in the coagulation cascade mediated by miRNAs could lead to bleeding disorders or thrombosis. This review summarizes current knowledge on the role of miRNAs in hemophilia and thrombosis. Recognizing and understanding the functions of miRNAs by identifying their targets is important in identifying their roles in health and diseases. Successful basic research may result in the development and improvement of tools for diagnosis, risk evaluation or even new treatment strategies.
Collapse
Affiliation(s)
- Katarzyna I. Jankowska
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Zuben E. Sauna
- OTAT/DPPT/HB in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Chintamani D. Atreya
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
- Correspondence:
| |
Collapse
|
13
|
Lopez-Pedrera C, Barbarroja N, Patiño-Trives AM, Luque-Tévar M, Torres-Granados C, Aguirre-Zamorano MA, Collantes-Estevez E, Pérez-Sánchez C. Role of microRNAs in the Development of Cardiovascular Disease in Systemic Autoimmune Disorders. Int J Mol Sci 2020; 21:E2012. [PMID: 32188016 PMCID: PMC7139533 DOI: 10.3390/ijms21062012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid Arthritis (RA), Systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) are the systemic autoimmune diseases (SADs) most associated with an increased risk of developing cardiovascular (CV) events. Cardiovascular disease (CVD) in SADs results from a complex interaction between traditional CV-risk factors, immune deregulation and disease activity. Oxidative stress, dyslipidemia, endothelial dysfunction, inflammatory/prothrombotic mediators (cytokines/chemokines, adipokines, proteases, adhesion-receptors, NETosis-derived-products, and intracellular-signaling molecules) have been implicated in these vascular pathologies. Genetic and genomic analyses further allowed the identification of signatures explaining the pro-atherothrombotic profiles in RA, SLE and APS. However, gene modulation has left significant gaps in our understanding of CV co-morbidities in SADs. MicroRNAs (miRNAs) are emerging as key post-transcriptional regulators of a suite of signaling pathways and pathophysiological effects. Abnormalities in high number of miRNA and their associated functions have been described in several SADs, suggesting their involvement in the development of atherosclerosis and thrombosis in the setting of RA, SLE and APS. This review focusses on recent insights into the potential role of miRNAs both, as clinical biomarkers of atherosclerosis and thrombosis in SADs, and as therapeutic targets in the regulation of the most influential processes that govern those disorders, highlighting the potential diagnostic and therapeutic properties of miRNAs in the management of CVD.
Collapse
|
14
|
Androgen-Regulated microRNAs (AndroMiRs) as Novel Players in Adipogenesis. Int J Mol Sci 2019; 20:ijms20225767. [PMID: 31744106 PMCID: PMC6888160 DOI: 10.3390/ijms20225767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
The development, homeostasis, or increase of the adipose tissue is driven by the induction of the adipogenic differentiation (adipogenesis) of undifferentiated mesenchymal stem cells (MSCs). Adipogenesis can be inhibited by androgen stimulation of these MSCs resulting in the transcription initiation or repression of androgen receptor (AR) regulated genes. AR not only regulates the transcription of protein-coding genes but also the transcription of several non-coding microRNAs involved in the posttranscriptional gene regulation (herein designated as AndroMiRs). As microRNAs are largely involved in differentiation processes such as adipogenesis, the involvement of AndroMiRs in the androgen-mediated inhibition of adipogenesis is likely, however, not yet intensively studied. In this review, existing knowledge about adipogenesis-related microRNAs and AndroMiRs is summarized, and putative cross-links are drawn, which are still prone to experimental validation.
Collapse
|
15
|
Inflammation‐regulatory microRNAs: Valuable targets for intracranial atherosclerosis. J Neurosci Res 2019; 97:1242-1252. [DOI: 10.1002/jnr.24487] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
|
16
|
Reyes-García AMDL, Aroca A, Arroyo AB, García-Barbera N, Vicente V, González-Conejero R, Martínez C. Neutrophil extracellular trap components increase the expression of coagulation factors. Biomed Rep 2019; 10:195-201. [PMID: 30906549 DOI: 10.3892/br.2019.1187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
Neutrophil extracellular traps (NETs) represent an important link between inflammation and thrombosis. Here, the present study aimed to investigate the influence of the NET components, DNA and histone H4, on hemostatic gene expression. A further aim was to confirm the influence of H4 on the expression of tissue factor (TF) and investigate a potential effect of DNA, and to test the involvement of miR-17/92 and its paralog miR-106b-25 in this regulation. In HepG2 cells, the mRNA levels of factor VII and factor XII, which are crucial in the activation of the coagulation cascade, and of serpin family F member 2 (encoding α2-antiplasmin) were significantly upregulated by DNA and H4; while the mRNA levels of factor V, which is essential for thrombin generation of protein S, a cofactor of protein C that also has the ability to inhibit the factor X activation pathway, and of serpin family C member 1 (encoding antithrombin, the main endogenous anticoagulant) were significantly upregulated only by H4. H4 and DNA also provoked an increase in hepatocyte nuclear factor 4α (HNF4A) mRNA expression that could be responsible for the increase in the expression of certain coagulant factors. In THP-1 cells, it was also demonstrated that H4 caused an increase in TF mRNA while decreasing several of the microRNAs (miRNA/miRs) of the cluster miR-17/92, which may in part explain the increase in the expression of TF. The present results suggest the ability of NET components to alter the hemostatic balance and a possible involvement of HNF4α and miRNAs in this regulation.
Collapse
Affiliation(s)
- Ascensión María de Los Reyes-García
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain
| | - Alejandra Aroca
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain
| | - Ana Belén Arroyo
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain
| | - Nuria García-Barbera
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain
| | - Vicente Vicente
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain
| | - Rocío González-Conejero
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain
| | - Constantino Martínez
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain
| |
Collapse
|
17
|
Chaudhari S, Cushen SC, Osikoya O, Jaini PA, Posey R, Mathis KW, Goulopoulou S. Mechanisms of Sex Disparities in Cardiovascular Function and Remodeling. Compr Physiol 2018; 9:375-411. [PMID: 30549017 DOI: 10.1002/cphy.c180003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidemiological studies demonstrate disparities between men and women in cardiovascular disease prevalence, clinical symptoms, treatments, and outcomes. Enrollment of women in clinical trials is lower than men, and experimental studies investigating molecular mechanisms and efficacy of certain therapeutics in cardiovascular disease have been primarily conducted in male animals. These practices bias data interpretation and limit the implication of research findings in female clinical populations. This review will focus on the biological origins of sex differences in cardiovascular physiology, health, and disease, with an emphasis on the sex hormones, estrogen and testosterone. First, we will briefly discuss epidemiological evidence of sex disparities in cardiovascular disease prevalence and clinical manifestation. Second, we will describe studies suggesting sexual dimorphism in normal cardiovascular function from fetal life to older age. Third, we will summarize and critically discuss the current literature regarding the molecular mechanisms underlying the effects of estrogens and androgens on cardiac and vascular physiology and the contribution of these hormones to sex differences in cardiovascular disease. Fourth, we will present cardiovascular disease risk factors that are positively associated with the female sex, and thus, contributing to increased cardiovascular risk in women. We conclude that inclusion of both men and women in the investigation of the role of estrogens and androgens in cardiovascular physiology will advance our understanding of the mechanisms underlying sex differences in cardiovascular disease. In addition, investigating the role of sex-specific factors in the development of cardiovascular disease will reduce sex and gender disparities in the treatment and diagnosis of cardiovascular disease. © 2019 American Physiological Society. Compr Physiol 9:375-411, 2019.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Paresh A Jaini
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rachel Posey
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
18
|
Li X, He P, Li Z, Wang H, Liu M, Xiao Y, Xu D, Kang Y, Wang H. Interleukin‑1β‑mediated suppression of microRNA‑27a‑3p activity in human cartilage via MAPK and NF‑κB pathways: A potential mechanism of osteoarthritis pathogenesis. Mol Med Rep 2018; 18:541-549. [PMID: 29749508 DOI: 10.3892/mmr.2018.8970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 03/29/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the role of microRNA (miR)‑27a‑3p in osteoarthritis (OA). Reverse transcription‑quantitative polymerase chain reaction and western blotting were performed to determine the expression of miR‑27a‑3p and aggrecanase‑2 (ADAMTS5) in cartilage tissues from patients with OA and healthy controls, and also in interleukin (IL)‑1β‑treated primary human chondrocytes. Primary human chondrocytes were transfected with miR‑27a‑3p. A luciferase reporter assay was used to validate the direct contact between miR‑27a‑3p and its putative binding site in the 3'‑untranslated region ADAMTS5 mRNA. Furthermore, the effects of IL‑1β‑induced activation of mitogen‑activated protein kinase (MAPK) and nuclear factor (NF)‑κB on miR‑27a‑3p were evaluated using specific inhibitors. The results revealed that the level of miR‑27a‑3p was reduced in OA cartilage tissues compared with those of normal controls. In addition, decreased miR‑27a‑3p and increased ADAMTS5 expression was observed in a time‑ and dose‑dependent manner in chondrocytes treated with IL‑1β. Furthermore, overexpression of miR‑27a‑3p suppressed the expression of ADAMTS5 in human chondrocytes induced by IL‑1β. miR‑27a‑3p overexpression also decreased the luciferase activity of the wild‑type ADAMTS5 reporter plasmid. Mutation of the miR‑27a‑3p binding site in the 3'‑untranslated region of ADAMTS5 mRNA abolished the miR‑27a‑3p‑mediated repression of reporter activity. Furthermore, the use of specific inhibitors demonstrated that IL‑1β may regulate miR‑27a‑3p expression via NF‑κB and MAPK signaling pathways in chondrocytes. The present study concluded that miR‑27a‑3p was downregulated in human OA and was suppressed by IL‑1β, and functions as a crucial regulator of ADAMTS5 in OA chondrocytes. In addition, IL‑1β‑mediated suppression of miR‑27a‑3p activity may occur via the MAPK and NF‑κB pathways. The present study may provide a novel strategy for clinical treatment of OA caused by upregulation of miR‑27a‑3p.
Collapse
Affiliation(s)
- Xing Li
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Peiheng He
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ziqing Li
- Department of Anatomy and Cell Biology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104‑6030, USA
| | - Haixing Wang
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Minghao Liu
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yinbo Xiao
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Dongliang Xu
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yan Kang
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hua Wang
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
19
|
Arroyo AB, de Los Reyes-García AM, Teruel-Montoya R, Vicente V, González-Conejero R, Martínez C. microRNAs in the haemostatic system: More than witnesses of thromboembolic diseases? Thromb Res 2018; 166:1-9. [PMID: 29649766 DOI: 10.1016/j.thromres.2018.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous RNAs that post-transcriptionally regulate gene expression. In the last few years, these molecules have been implicated in the regulation of haemostasis, and an increasing number of studies have investigated their relationship with the development of thrombosis. In this review, we discuss the latest developments regarding the role of miRNAs in the regulation of platelet function and secondary haemostasis. We also discuss the genetic and environmental factors that regulate miRNAs. Finally, we address the potential use of miRNAs as prognostic and diagnostic tools in thrombosis.
Collapse
Affiliation(s)
- Ana B Arroyo
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Ascensión M de Los Reyes-García
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Raúl Teruel-Montoya
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain; Red CIBERER CB15/00055, Murcia, Spain
| | - Vicente Vicente
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain; Red CIBERER CB15/00055, Murcia, Spain
| | - Rocío González-Conejero
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - Constantino Martínez
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|