1
|
Fares J, Wan Y, Mayrand R, Li Y, Mair R, Price SJ. Decoding Glioblastoma Heterogeneity: Neuroimaging Meets Machine Learning. Neurosurgery 2025; 96:1181-1192. [PMID: 39570018 PMCID: PMC12052239 DOI: 10.1227/neu.0000000000003260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/18/2024] [Indexed: 11/22/2024] Open
Abstract
Recent advancements in neuroimaging and machine learning have significantly improved our ability to diagnose and categorize isocitrate dehydrogenase (IDH)-wildtype glioblastoma, a disease characterized by notable tumoral heterogeneity, which is crucial for effective treatment. Neuroimaging techniques, such as diffusion tensor imaging and magnetic resonance radiomics, provide noninvasive insights into tumor infiltration patterns and metabolic profiles, aiding in accurate diagnosis and prognostication. Machine learning algorithms further enhance glioblastoma characterization by identifying distinct imaging patterns and features, facilitating precise diagnoses and treatment planning. Integration of these technologies allows for the development of image-based biomarkers, potentially reducing the need for invasive biopsy procedures and enabling personalized therapy targeting specific pro-tumoral signaling pathways and resistance mechanisms. Although significant progress has been made, ongoing innovation is essential to address remaining challenges and further improve these methodologies. Future directions should focus on refining machine learning models, integrating emerging imaging techniques, and elucidating the complex interplay between imaging features and underlying molecular processes. This review highlights the pivotal role of neuroimaging and machine learning in glioblastoma research, offering invaluable noninvasive tools for diagnosis, prognosis prediction, and treatment planning, ultimately improving patient outcomes. These advances in the field promise to usher in a new era in the understanding and classification of IDH-wildtype glioblastoma.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
- Cambridge Brain Tumour Imaging Laboratory, Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yizhou Wan
- Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
- Cambridge Brain Tumour Imaging Laboratory, Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
| | - Roxanne Mayrand
- Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
- Cambridge Brain Tumour Imaging Laboratory, Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
| | - Yonghao Li
- Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
- Cambridge Brain Tumour Imaging Laboratory, Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
| | - Richard Mair
- Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
| | - Stephen J. Price
- Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
- Cambridge Brain Tumour Imaging Laboratory, Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Guo Y, Li T, Gong B, Hu Y, Wang S, Yang L, Zheng C. From Images to Genes: Radiogenomics Based on Artificial Intelligence to Achieve Non-Invasive Precision Medicine in Cancer Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408069. [PMID: 39535476 PMCID: PMC11727298 DOI: 10.1002/advs.202408069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/19/2024] [Indexed: 11/16/2024]
Abstract
With the increasing demand for precision medicine in cancer patients, radiogenomics emerges as a promising frontier. Radiogenomics is originally defined as a methodology for associating gene expression information from high-throughput technologies with imaging phenotypes. However, with advancements in medical imaging, high-throughput omics technologies, and artificial intelligence, both the concept and application of radiogenomics have significantly broadened. In this review, the history of radiogenomics is enumerated, related omics technologies, the five basic workflows and their applications across tumors, the role of AI in radiogenomics, the opportunities and challenges from tumor heterogeneity, and the applications of radiogenomics in tumor immune microenvironment. The application of radiogenomics in positron emission tomography and the role of radiogenomics in multi-omics studies is also discussed. Finally, the challenges faced by clinical transformation, along with future trends in this field is discussed.
Collapse
Affiliation(s)
- Yusheng Guo
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Tianxiang Li
- Department of UltrasoundState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical. SciencesPeking Union Medical CollegeBeijing100730China
| | - Bingxin Gong
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Yan Hu
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Sichen Wang
- School of Life Science and TechnologyComputational Biology Research CenterHarbin Institute of TechnologyHarbin150001China
| | - Lian Yang
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Chuansheng Zheng
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| |
Collapse
|
3
|
Wang Z, Guan F, Duan W, Guo Y, Pei D, Qiu Y, Wang M, Xing A, Liu Z, Yu B, Zheng H, Liu X, Yan D, Ji Y, Cheng J, Yan J, Zhang Z. Diffusion tensor imaging-based machine learning for IDH wild-type glioblastoma stratification to reveal the biological underpinning of radiomic features. CNS Neurosci Ther 2023; 29:3339-3350. [PMID: 37222229 PMCID: PMC10580329 DOI: 10.1111/cns.14263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/09/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION This study addresses the lack of systematic investigation into the prognostic value of hand-crafted radiomic features derived from diffusion tensor imaging (DTI) in isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM), as well as the limited understanding of the biological interpretation of individual DTI radiomic features and metrics. AIMS To develop and validate a DTI-based radiomic model for predicting prognosis in patients with IDH wild-type GBM and reveal the biological underpinning of individual DTI radiomic features and metrics. RESULTS The DTI-based radiomic signature was an independent prognostic factor (p < 0.001). Incorporating the radiomic signature into a clinical model resulted in a radiomic-clinical nomogram that predicted survival better than either the radiomic model or clinical model alone, with a better calibration and classification accuracy. Four categories of pathways (synapse, proliferation, DNA damage response, and complex cellular functions) were significantly correlated with the DTI-based radiomic features and DTI metrics. CONCLUSION The prognostic radiomic features derived from DTI are driven by distinct pathways involved in synapse, proliferation, DNA damage response, and complex cellular functions of GBM.
Collapse
Affiliation(s)
- Zilong Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Fangzhan Guan
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Wenchao Duan
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yu Guo
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dongling Pei
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuning Qiu
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Minkai Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Aoqi Xing
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhongyi Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Bin Yu
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hongwei Zheng
- Department of MRIThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xianzhi Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dongming Yan
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuchen Ji
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jingliang Cheng
- Department of MRIThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jing Yan
- Department of MRIThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
4
|
Kersch CN, Muldoon LL, Claunch CJ, Fu R, Schwartz D, Cha S, Starkey J, Neuwelt EA, Barajas RF. Multiparametric magnetic resonance imaging discerns glioblastoma immune microenvironmental heterogeneity. Neuroradiol J 2023:19714009231163560. [PMID: 37306690 DOI: 10.1177/19714009231163560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
RATIONALE AND OBJECTIVE Poor clinical outcomes for patients with glioblastoma are in part due to dysfunction of the tumor-immune microenvironment. An imaging approach able to characterize immune microenvironmental signatures could provide a framework for biologically based patient stratification and response assessment. We hypothesized spatially distinct gene expression networks can be distinguished by multiparametric Magnetic Resonance Imaging (MRI) phenotypes. MATERIALS AND METHODS Patients with newly diagnosed glioblastoma underwent image-guided tissue sampling allowing for co-registration of MRI metrics with gene expression profiles. MRI phenotypes based on gadolinium contrast enhancing lesion (CEL) and non-enhancing lesion (NCEL) regions were subdivided based on imaging parameters (relative cerebral blood volume (rCBV) and apparent diffusion coefficient (ADC)). Gene set enrichment analysis and immune cell type abundance was estimated using CIBERSORT methodology. Significance thresholds were set at a p-value cutoff 0.005 and an FDR q-value cutoff of 0.1. RESULTS Thirteen patients (eight men, five women, mean age 58 ± 11 years) provided 30 tissue samples (16 CEL and 14 NCEL). Six non-neoplastic gliosis samples differentiated astrocyte repair from tumor associated gene expression. MRI phenotypes displayed extensive transcriptional variance reflecting biological networks, including multiple immune pathways. CEL regions demonstrated higher immunologic signature expression than NCEL, while NCEL regions demonstrated stronger immune signature expression levels than gliotic non-tumor brain. Incorporation of rCBV and ADC metrics identified sample clusters with differing immune microenvironmental signatures. CONCLUSION Taken together, our study demonstrates that MRI phenotypes provide an approach for non-invasively characterizing tumoral and immune microenvironmental glioblastoma gene expression networks.
Collapse
Affiliation(s)
- Cymon N Kersch
- Department of Neurology, Blood-Brain Barrier Program, Oregon Health & Sciences University, USA
- Department of Radiation Medicine, Oregon Health & Sciences University, USA
| | - Leslie L Muldoon
- Department of Neurology, Blood-Brain Barrier Program, Oregon Health & Sciences University, USA
| | - Cheryl J Claunch
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Sciences University, USA
| | - Rongwei Fu
- OHSU-PSU School of Public Health, Oregon Health & Sciences University, USA
| | - Daniel Schwartz
- Advanced Imaging Research Center, Oregon Health & Sciences University, USA
- Department of Neurology, Layton Aging and Alzheimer's Disease Center, Oregon Health & Sciences University, USA
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Jay Starkey
- Department of Radiology, Oregon Health & Sciences University, USA
| | - Edward A Neuwelt
- Department of Neurology, Blood-Brain Barrier Program, Oregon Health & Sciences University, USA
- Department of Neurosurgery, Oregon Health & Sciences University, USA
- Office of Research and Development, Department of Veterans Affairs Medical Center, USA
| | - Ramon F Barajas
- Advanced Imaging Research Center, Oregon Health & Sciences University, USA
- Department of Radiology, Oregon Health & Sciences University, USA
- Knight Cancer Institute, Oregon Health & Sciences University, USA
| |
Collapse
|
5
|
Duan K, Ma Y, Tan J, Miao Y, Zhang Q. Identification of genetic molecular markers and immune infiltration characteristics of Alzheimer's disease through weighted gene co-expression network analysis. Front Neurol 2022; 13:947781. [PMID: 36071897 PMCID: PMC9441600 DOI: 10.3389/fneur.2022.947781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disease that leads to cognitive impairment and memory loss. Currently, the pathogenesis and underlying causative genes of AD remain unclear, and there exists no effective treatment for this disease. This study explored AD-related diagnostic and therapeutic biomarkers from the perspective of immune infiltration by analyzing public data from the NCBI Gene Expression Omnibus database. Method In this study, weighted gene co-expression network analysis (WGCNA) was conducted to identify modules and hub genes contributing to AD development. A protein–protein interaction network was constructed when the genes in the modules were enriched and examined by Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Furthermore, a gene network was established using topological WGCNA, from which five hub genes were selected. Logistic regression analysis and receiver operating characteristic curve analysis were performed to explore the clinical value of genes in AD diagnosis. The genes in the core module intersected with the hub genes, and four intersection genes (ATP2A2, ATP6V1D, CAP2, and SYNJ1) were selected. These four genes were enriched by gene set enrichment analysis (GSEA). Finally, an immune infiltration analysis was performed. Results The GO/KEGG analysis suggested that genes in the core module played a role in the differentiation and growth of neural cells and in the transmission of neurotransmitters. The GSEA of core genes showed that these four genes were mainly enriched in immune/infection pathways (e.g., cholera infection and Helicobacter pylori infection pathways) and other metabolic pathways. An investigation of immune infiltration characteristics revealed that activated mast cells, regulatory T cells, plasma cells, neutrophils, T follicular helper cells, CD8 T cells, resting memory CD4 T cells, and M1 macrophages were the core immune cells contributing to AD progression. qRT-PCR analysis showed that the ATP6V1D is upregulated in AD. Conclusion The results of enrichment and immuno-osmotic analyses indicated that immune pathways and immune cells played an important role in the occurrence and development of AD. The selected key genes were used as biomarkers related to the pathogenesis of AD to further explore the pathways and cells, which provided new perspectives on therapeutic targets in AD.
Collapse
Affiliation(s)
- KeFei Duan
- Department of Geriatrics, Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Ma
- Department of Geriatrics, Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin Tan
- Department of Geriatrics, Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuyang Miao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Qiang Zhang
| |
Collapse
|
6
|
Chen P, Yao M, Fang T, Ye C, Du Y, Jin Y, Wu R. Identification of NFASC and CHL1 as Two Novel Hub Genes in Endometriosis Using Integrated Bioinformatic Analysis and Experimental Verification. Pharmgenomics Pers Med 2022; 15:377-392. [PMID: 35496348 PMCID: PMC9041605 DOI: 10.2147/pgpm.s354957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Endometriosis (EMS) is a common and highly recurrent gynecological disease characterized by chronic pain and infertility. There are no definitive therapies for endometriosis since the pathogenesis remains undetermined. This study aimed to identify EMS-related functional modules and hub genes by integrated bioinformatics analysis. Methods Three endometriosis expression profiling series (GSE25628, GSE23339, and GSE7305) were obtained from Gene Expression Omnibus (GEO). The EMS-related module was constructed by weighted gene co-expression network analysis (WGCNA), followed by Gene Ontology (GO) enrichment analyses. Cytohubba and the MCODE plug-ins of Cytoscape were used to screen out the hub genes, which were verified via receiver operating characteristic (ROC) curves. Immunohistochemistry was performed to verify the protein expression of the hub genes in ectopic endometrial tissues. Moreover, CIBERSORT was used to analyze the relationship between the abundance of immune cells infiltration and the expression of hub genes. Results Among the 18 modules obtained, the darkmagenta module was identified as the EMS-related module, genes of which were significantly enriched to terms referring to cell migration and neurogenesis. NFASC and CHL1 were screened out and prioritized as hub genes through Cytoscape and confirmed to be differentially upregulated in ectopic endometrial samples. Finally, the expression of hub genes was related to the abundance of immune cells infiltration. The higher expression of NFASC or CHL1 correlated with increased M2 macrophages and decreased natural killer (NK) cells in ectopic lesions. Conclusion This study provided new insights into the molecular factors underlying the pathogenesis of endometriosis and provided a theoretical basis for the potential that the two hub genes, NFASC and CHL1, might be novel biomarkers and therapeutic targets in the future.
Collapse
Affiliation(s)
- Pei Chen
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Mengyun Yao
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Tao Fang
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Chaoshuang Ye
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yongjiang Du
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yang Jin
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Ruijin Wu
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Correspondence: Ruijin Wu, Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China, Tel +86 571-8706223, Email
| |
Collapse
|
7
|
Chen Y, Li B, Jiang Z, Li H, Dang Y, Tang C, Xia Y, Zhang H, Song B, Long L. Multi-parameter diffusion and perfusion magnetic resonance imaging and radiomics nomogram for preoperative evaluation of aquaporin-1 expression in rectal cancer. Abdom Radiol (NY) 2022; 47:1276-1290. [PMID: 35166938 DOI: 10.1007/s00261-021-03397-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE The overexpression of aquaporin-1 (AQP1) is associated with poor prognosis in rectal cancer. This study aimed to explore the value of multi-parameter diffusion and perfusion MRI and radiomics models in predicting AQP1 high expression. METHODS This prospective study was performed from July 2019 to February 2021, which included rectal cancer participants after preoperative rectal MRI, with diffusion-weighted imaging, intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), and dynamic contrast-enhanced (DCE) sequences. Radiomic features were extracted from MR images, and immunohistochemical tests assessed AQP1 expression. Selected quantitative MRI and radiomic features were analyzed. Receiver operating characteristic (ROC) curves evaluated the predictive performance. The nomogram performance was evaluated by its calibration, discrimen, and clinical utility. The intraclass correlation coefficient evaluated the interobserver agreement for the MRI features. RESULTS 110 participants with the age of 60.7 ± 12.5 years been enrolled in this study. The apparent diffusion coefficient (ADC), IVIM_D, DKI_diffusivity, and DCE_Ktrans were significantly higher in participants with high AQP1 expression than in those with low expression (P < 0.05). ADC (b = 1000, 2000, and 3000 s/mm2), IVIM_D, DKI_diffusivity, and DCE_Ktrans were positively correlated (r = 0.205, 0.275, 0.37, 0.235, 0.229, and 0.227, respectively; P < 0.05), whereas DKI_Kurtosis was negatively correlated (r = - 0.22, P = 0.021) with AQP1 expression. ADC (b = 3000 s/mm2), IVIM_D, DKI_ diffusivity, DKI_Kurtosis, and DCE_Ktrans had moderate diagnostic efficiencies for high AQP1 expression (AUC = 0.715, 0.636, 0.627, 0.633, and 0.632, respectively; P < 0.05). The radiomic features had excellent predictive efficiency for high AQP1 expression (AUC = 0.967 and 0.917 for training and validation). The model-based nomogram had C-indexes of 0.932 and 0.851 for the training and validation cohorts, which indicated good fitting to the calibration curves (p > 0.05). CONCLUSION Diffusion and perfusion MRI can indicate the aquaporin-1 expression in rectal cancer, and radiomic features can enhance the predictive efficiency for high AQP1 expression. A nomogram for high aquaporin-1 expression will improve clinical decision-making.
Collapse
Affiliation(s)
- Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Basen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zijian Jiang
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hui Li
- Department of Anus and Intestine Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Cheng Tang
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yuwei Xia
- Huiying Medical Technology, Beijing, 100192, China
| | | | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liling Long
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Gaungxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
8
|
Fekonja LS, Wang Z, Cacciola A, Roine T, Aydogan DB, Mewes D, Vellmer S, Vajkoczy P, Picht T. Network analysis shows decreased ipsilesional structural connectivity in glioma patients. Commun Biol 2022; 5:258. [PMID: 35322812 PMCID: PMC8943189 DOI: 10.1038/s42003-022-03190-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Gliomas that infiltrate networks and systems, such as the motor system, often lead to substantial functional impairment in multiple systems. Network-based statistics (NBS) allow to assess local network differences and graph theoretical analyses enable investigation of global and local network properties. Here, we used network measures to characterize glioma-related decreases in structural connectivity by comparing the ipsi- with the contralesional hemispheres of patients and correlated findings with neurological assessment. We found that lesion location resulted in differential impairment of both short and long connectivity patterns. Network analysis showed reduced global and local efficiency in the ipsilesional hemisphere compared to the contralesional hemispheric networks, which reflect the impairment of information transfer across different regions of a network. Tumors and their location distinctly alter both local and global brain connectivity within the ipsilesional hemisphere of glioma patients.
Collapse
Affiliation(s)
- Lucius S Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany.
| | - Ziqian Wang
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Timo Roine
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - D Baran Aydogan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Department of Psychiatry, Helsinki University and Helsinki University Hospital, Helsinki, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Darius Mewes
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Vellmer
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| |
Collapse
|
9
|
Corr F, Grimm D, Saß B, Pojskić M, Bartsch JW, Carl B, Nimsky C, Bopp MHA. Radiogenomic Predictors of Recurrence in Glioblastoma—A Systematic Review. J Pers Med 2022; 12:jpm12030402. [PMID: 35330402 PMCID: PMC8952807 DOI: 10.3390/jpm12030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma, as the most aggressive brain tumor, is associated with a poor prognosis and outcome. To optimize prognosis and clinical therapy decisions, there is an urgent need to stratify patients with increased risk for recurrent tumors and low therapeutic success to optimize individual treatment. Radiogenomics establishes a link between radiological and pathological information. This review provides a state-of-the-art picture illustrating the latest developments in the use of radiogenomic markers regarding prognosis and their potential for monitoring recurrence. Databases PubMed, Google Scholar, and Cochrane Library were searched. Inclusion criteria were defined as diagnosis of glioblastoma with histopathological and radiological follow-up. Out of 321 reviewed articles, 43 articles met these inclusion criteria. Included studies were analyzed for the frequency of radiological and molecular tumor markers whereby radiogenomic associations were analyzed. Six main associations were described: radiogenomic prognosis, MGMT status, IDH, EGFR status, molecular subgroups, and tumor location. Prospective studies analyzing prognostic features of glioblastoma together with radiological features are lacking. By reviewing the progress in the development of radiogenomic markers, we provide insights into the potential efficacy of such an approach for clinical routine use eventually enabling early identification of glioblastoma recurrence and therefore supporting a further personalized monitoring and treatment strategy.
Collapse
Affiliation(s)
- Felix Corr
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- EDU Institute of Higher Education, Villa Bighi, Chaplain’s House, KKR 1320 Kalkara, Malta
- Correspondence:
| | - Dustin Grimm
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- EDU Institute of Higher Education, Villa Bighi, Chaplain’s House, KKR 1320 Kalkara, Malta
| | - Benjamin Saß
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
| | - Mirza Pojskić
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
| | - Jörg W. Bartsch
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, Ludwig-Erhard-Strasse 100, 65199 Wiesbaden, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| |
Collapse
|
10
|
Yan J, Zhao Y, Chen Y, Wang W, Duan W, Wang L, Zhang S, Ding T, Liu L, Sun Q, Pei D, Zhan Y, Zhao H, Sun T, Sun C, Wang W, Liu Z, Hong X, Wang X, Guo Y, Li W, Cheng J, Liu X, Lv X, Li ZC, Zhang Z. Deep learning features from diffusion tensor imaging improve glioma stratification and identify risk groups with distinct molecular pathway activities. EBioMedicine 2021; 72:103583. [PMID: 34563923 PMCID: PMC8479635 DOI: 10.1016/j.ebiom.2021.103583] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND To develop and validate a deep learning signature (DLS) from diffusion tensor imaging (DTI) for predicting overall survival in patients with infiltrative gliomas, and to investigate the biological pathways underlying the developed DLS. METHODS The DLS was developed based on a deep learning cohort (n = 688). The key pathways underlying the DLS were identified on a radiogenomics cohort with paired DTI and RNA-seq data (n=78), where the prognostic value of the pathway genes was validated in public databases (TCGA, n = 663; CGGA, n = 657). FINDINGS The DLS was associated with survival (log-rank P < 0.001) and was an independent predictor (P < 0.001). Incorporating the DLS into existing risk system resulted in a deep learning nomogram predicting survival better than either the DLS or the clinicomolecular nomogram alone, with a better calibration and classification accuracy (net reclassification improvement 0.646, P < 0.001). Five kinds of pathways (synaptic transmission, calcium signaling, glutamate secretion, axon guidance, and glioma pathways) were significantly correlated with the DLS. Average expression value of pathway genes showed prognostic significance in our radiogenomics cohort and TCGA/CGGA cohorts (log-rank P < 0.05). INTERPRETATION DTI-derived DLS can improve glioma stratification by identifying risk groups with dysregulated biological pathways that contributed to survival outcomes. Therapies inhibiting neuron-to-brain tumor synaptic communication may be more effective in high-risk glioma defined by DTI-derived DLS. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Glioma Multidisciplinary Research Group, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanshen Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yinsheng Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weiwei Wang
- Glioma Multidisciplinary Research Group, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenchao Duan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shenghai Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tianqing Ding
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lei Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiuchang Sun
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dongling Pei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yunbo Zhan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haibiao Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tao Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chen Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenqing Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuanke Hong
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangxiang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaofei Lv
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Zhi-Cheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; National Innovation Center for Advanced Medical Devices, Shenzhen, China.
| | - Zhenyu Zhang
- Glioma Multidisciplinary Research Group, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Abstract
The 2016 World Health Organization brain tumor classification is based on genomic and molecular profile of tumor tissue. These characteristics have improved understanding of the brain tumor and played an important role in treatment planning and prognostication. There is an ongoing effort to develop noninvasive imaging techniques that provide insight into tissue characteristics at the cellular and molecular levels. This article focuses on the molecular characteristics of gliomas, transcriptomic subtypes, and radiogenomic studies using semantic and radiomic features. The limitations and future directions of radiogenomics as a standalone diagnostic tool also are discussed.
Collapse
Affiliation(s)
- Chaitra Badve
- Department of Radiology, Division of Neuroradiology, University Hospitals Cleveland Medical Center, BSH 5056, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Sangam Kanekar
- Department of Radiology and Neurology, Division of Neuroradiology, Penn State College of Medicine, Penn State Milton Hershey Medical Center, Mail Code H066 500, University Drive, Hershey, PA 17033, USA
| |
Collapse
|
12
|
Predicting Survival in Glioblastoma Patients Using Diffusion MR Imaging Metrics-A Systematic Review. Cancers (Basel) 2020; 12:cancers12102858. [PMID: 33020420 PMCID: PMC7600641 DOI: 10.3390/cancers12102858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary An accurate survival analysis is crucial for disease management in glioblastoma (GBM) patients. Due to the ability of the diffusion MRI techniques of providing a quantitative assessment of GBM tumours, an ever-growing number of studies aimed at investigating the role of diffusion MRI metrics in survival prediction of GBM patients. Since the role of diffusion MRI in prediction and evaluation of survival outcomes has not been fully addressed and results are often controversial or unsatisfactory, we performed this systematic review in order to collect, summarize and evaluate all studies evaluating the role of diffusion MRI metrics in predicting survival in GBM patients. We found that quantitative diffusion MRI metrics provide useful information for predicting survival outcomes in GBM patients, mainly in combination with other clinical and multimodality imaging parameters. Abstract Despite advances in surgical and medical treatment of glioblastoma (GBM), the medium survival is about 15 months and varies significantly, with occasional longer survivors and individuals whose tumours show a significant response to therapy with respect to others. Diffusion MRI can provide a quantitative assessment of the intratumoral heterogeneity of GBM infiltration, which is of clinical significance for targeted surgery and therapy, and aimed at improving GBM patient survival. So, the aim of this systematic review is to assess the role of diffusion MRI metrics in predicting survival of patients with GBM. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, a systematic literature search was performed to identify original articles since 2010 that evaluated the association of diffusion MRI metrics with overall survival (OS) and progression-free survival (PFS). The quality of the included studies was evaluated using the QUIPS tool. A total of 52 articles were selected. The most examined metrics were associated with the standard Diffusion Weighted Imaging (DWI) (34 studies) and Diffusion Tensor Imaging (DTI) models (17 studies). Our findings showed that quantitative diffusion MRI metrics provide useful information for predicting survival outcomes in GBM patients, mainly in combination with other clinical and multimodality imaging parameters.
Collapse
|
13
|
Fathi Kazerooni A, Bakas S, Saligheh Rad H, Davatzikos C. Imaging signatures of glioblastoma molecular characteristics: A radiogenomics review. J Magn Reson Imaging 2019; 52:54-69. [PMID: 31456318 DOI: 10.1002/jmri.26907] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, the advent and development of genomic assessment methods and computational approaches have raised the hopes for identifying therapeutic targets that may aid in the treatment of glioblastoma. However, the targeted therapies have barely been successful in their effort to cure glioblastoma patients, leaving them with a grim prognosis. Glioblastoma exhibits high heterogeneity, both spatially and temporally. The existence of different genetic subpopulations in glioblastoma allows this tumor to adapt itself to environmental forces. Therefore, patients with glioblastoma respond poorly to the prescribed therapies, as treatments are directed towards the whole tumor and not to the specific genetic subregions. Genomic alterations within the tumor develop distinct radiographic phenotypes. In this regard, MRI plays a key role in characterizing molecular signatures of glioblastoma, based on regional variations and phenotypic presentation of the tumor. Radiogenomics has emerged as a (relatively) new field of research to explore the connections between genetic alterations and imaging features. Radiogenomics offers numerous advantages, including noninvasive and global assessment of the tumor and its response to therapies. In this review, we summarize the potential role of radiogenomic techniques to stratify patients according to their specific tumor characteristics with the goal of designing patient-specific therapies. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;52:54-69.
Collapse
Affiliation(s)
- Anahita Fathi Kazerooni
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hamidreza Saligheh Rad
- Quantitative MR Imaging and Spectroscopy Group (QMISG), Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Lin H, Xu Y, Chen L, Na P, Li W. Multiparametric and multiregional diffusion features help predict molecule information, grade and survival in lower-grade gliomas: a feasibility study. Br J Radiol 2019; 92:20190324. [PMID: 31386559 DOI: 10.1259/bjr.20190324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE This study was to investigate the relationship of diffusion features with molecule information, and then predict grade and survival in lower-grade gliomas. METHODS 65 patients with primary lower-grade gliomas (WHO Grade II & III) who underwent conventional MRI and diffusion tensor imaging were retrospectively studied. The tumor region was automatically segmented into contrast-enhancing tumor, non-enhancing tumor, edematous and necrotic volumes. Diffusion features, including fractional anisotropy (FA), axial diffusivity, radial diffusivity and apparent diffusion coefficient (ADC), were extracted from each volume using histogram analysis. To estimate molecule biomarkers and predict clinical characteristics of grade and survival, support vector machine, generalized linear model, logistic regression and Cox regression were performed on the related features. RESULTS The diffusion features in non-enhancing tumor volume showed differences between isocitrate dehydrogenase mutant and wild-type gliomas. And the mean accuracy of support vector machine classifiers was 0.79. Ki-67 labeling index was correlated with these features, which were combined to significantly estimate Ki-67 expression level (r = 0.657, p < 0.001). These features also showed differences between Grade II and III gliomas. A combination of them for grade classification resulted in an area under the curve of 0.914 (0.857-0.971). Mean FA and fifth percentile of ADC were independently associated with overall survival, with lower FA and higher ADC showing better survival outcome. CONCLUSION In lower-grade gliomas, multiparametric and multiregional diffusion features could help predict molecule information, histological grade and survival. ADVANCES IN KNOWLEDGE The multi parametric diffusion features in non-enhancing tumor were associated with molecule information, grade and survival in lower-grade gliomas.
Collapse
Affiliation(s)
- Hai Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yanwen Xu
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Lei Chen
- Shenzhen University School of Medicine, Shenzhen, Guangdong, China.,Department of Neurosurgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Peng Na
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Weiping Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Shenzhen University School of Medicine, Shenzhen, Guangdong, China.,Department of Neurosurgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Panayides AS, Pattichis MS, Leandrou S, Pitris C, Constantinidou A, Pattichis CS. Radiogenomics for Precision Medicine With a Big Data Analytics Perspective. IEEE J Biomed Health Inform 2018; 23:2063-2079. [PMID: 30596591 DOI: 10.1109/jbhi.2018.2879381] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Precision medicine promises better healthcare delivery by improving clinical practice. Using evidence-based substratification of patients, the objective is to achieve better prognosis, diagnosis, and treatment that will transform existing clinical pathways toward optimizing care for the specific needs of each patient. The wealth of today's healthcare data, often characterized as big data, provides invaluable resources toward new knowledge discovery that has the potential to advance precision medicine. The latter requires interdisciplinary efforts that will capitalize the information, know-how, and medical data of newly formed groups fusing different backgrounds and expertise. The objective of this paper is to provide insights with respect to the state-of-the-art research in precision medicine. More specifically, our goal is to highlight the fundamental challenges in emerging fields of radiomics and radiogenomics by reviewing the case studies of Cancer and Alzheimer's disease, describe the computational challenges from a big data analytics perspective, and discuss standardization and open data initiatives that will facilitate the adoption of precision medicine methods and practices.
Collapse
|
16
|
Hu Y, Pan J, Xin Y, Mi X, Wang J, Gao Q, Luo H. Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. Front Aging Neurosci 2018; 10:259. [PMID: 30210331 PMCID: PMC6119720 DOI: 10.3389/fnagi.2018.00259] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/08/2018] [Indexed: 11/13/2022] Open
Abstract
Human neurons function over an entire lifetime, yet the molecular mechanisms which perform their functions and protecting against neurodegenerative disease during aging are still elusive. Here, we conducted a systematic study on the human brain aging by using the weighted gene correlation network analysis (WGCNA) method to identify meaningful modules or representative biomarkers for human brain aging. Significantly, 19 distinct gene modules were detected based on the dataset GSE53890; among them, six modules related to the feature of brain aging were highly preserved in diverse independent datasets. Interestingly, network feature analysis confirmed that the blue modules demonstrated a remarkably correlation with human brain aging progress. Besides, the top hub genes including PPP3CB, CAMSAP1, ACTR3B, and GNG3 were identified and characterized by high connectivity, module membership, or gene significance in the blue module. Furthermore, these genes were validated in mice of different ages. Mechanically, the potential regulators of blue module were investigated. These findings highlight an important role of the blue module and its affiliated genes in the control of normal brain aging, which may lead to potential therapeutic interventions for brain aging by targeting the hub genes.
Collapse
Affiliation(s)
- Yang Hu
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China.,Department of Pathology and Pathophysiology, School of Medicine, Jinan University, Guangzhou, China.,Institute of Brain Sciences, Jinan University, Guangzhou, China
| | - Junping Pan
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Yirong Xin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiangnan Mi
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiahui Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Qin Gao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Huanmin Luo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China.,Institute of Brain Sciences, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Diamandis E, Gabriel CPS, Würtemberger U, Guggenberger K, Urbach H, Staszewski O, Lassmann S, Schnell O, Grauvogel J, Mader I, Heiland DH. MR-spectroscopic imaging of glial tumors in the spotlight of the 2016 WHO classification. J Neurooncol 2018; 139:431-440. [PMID: 29704080 DOI: 10.1007/s11060-018-2881-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/25/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND The purpose of this study is to map spatial metabolite differences across three molecular subgroups of glial tumors, defined by the IDH1/2 mutation and 1p19q-co-deletion, using magnetic resonance spectroscopy. This work reports a new MR spectroscopy based classification algorithm by applying a radiomics analytics pipeline. MATERIALS 65 patients received anatomical and chemical shift imaging (5 × 5 × 20 mm voxel size). Tumor regions were segmented and registered to corresponding spectroscopic voxels. Spectroscopic features were computed (n = 860) in a radiomic approach and selected by a classification algorithm. Finally, a random forest machine-learning model was trained to predict the molecular subtypes. RESULTS A cluster analysis identified three robust spectroscopic clusters based on the mean silhouette widths. Molecular subgroups were significantly associated with the computed spectroscopic clusters (Fisher's Exact test p < 0.01). A machine-learning model was trained and validated by public available MRS data (n = 19). The analysis showed an accuracy rate in the Random Forest model by 93.8%. CONCLUSIONS MR spectroscopy is a robust tool for predicting the molecular subtype in gliomas and adds important diagnostic information to the preoperative diagnostic work-up of glial tumor patients. MR-spectroscopy could improve radiological diagnostics in the future and potentially influence clinical and surgical decisions to improve individual tumor treatment.
Collapse
Affiliation(s)
- Elie Diamandis
- Department of Neuroradiology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carl Phillip Simon Gabriel
- Department of Neuroradiology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Urs Würtemberger
- Department of Neuroradiology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Konstanze Guggenberger
- Department of Neuroradiology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ori Staszewski
- Institute of Neuropathology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Silke Lassmann
- Institute for Pathology, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center - University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Grauvogel
- Department of Neurosurgery, Medical Center - University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Irina Mader
- Department of Neuroradiology, Medical Center - University of Freiburg, Freiburg, Germany
- Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schön Klinik, Vogtareuth, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
18
|
Diffusion kurtosis imaging evaluating epithelial-mesenchymal transition in colorectal carcinoma xenografts model: a preliminary study. Sci Rep 2017; 7:11424. [PMID: 28900220 PMCID: PMC5595886 DOI: 10.1038/s41598-017-11808-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/29/2017] [Indexed: 01/27/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays an important role in aggravating invasiveness and metastatic behavior of colorectal cancer (CRC). Identification of EMT is important for structuring treatment strategy, but has not yet been studied by using noninvasive imaging modality. Diffusion kurtosis imaging (DKI) is an advanced diffusion weighted model that could reflect tissue microstructural changes in vivo. In this study, EMT was induced in CRC cells (HCT116) by overexpressing Snail1 gene. We aimed to investigate the value of DKI in identifying EMT in CRC and decipher the correlations between DKI-derived parameters and EMT biomarker E-cadherin and cell proliferative index Ki-67 expression. Our results revealed that HCT116/Snail1 cells presented changes consistent with EMT resulting in significant increase in migration and invasion capacities. DKI could identify CRC with EMT, in which the DKI-derived parameter diffusivity was significantly lower, and kurtosis was significantly higher than those in the CRC/Control. Diffusivity was negatively and kurtosis was positively correlated with Ki-67 expression, whereas diffusivity was positively and kurtosis was negatively correlated with E-cadherin expression. Therefore, our study concluded that DKI can identify EMT in CRC xenograft tumors. EMT-contained CRC tumors with high Ki-67 and low E-cadherin expression were vulnerable to have lower diffusivity and higher kurtosis coefficients.
Collapse
|