1
|
Abdeljelil N, Chatti A, Gillan D, Van Houdt R. Antimicrobial applications of inorganic radiosensitizers and their potential in biofilm control. World J Microbiol Biotechnol 2025; 41:130. [PMID: 40208389 DOI: 10.1007/s11274-025-04338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
Biofilms are structured microbial communities embedded in a self-produced extracellular matrix. This lifestyle provides significant protection against environmental stressors such as desiccation, chemical treatments and even ionizing radiation. Radiation, while a well-established antibacterial strategy, can be less effective in biofilms. Biofilm superior resilience is due to several advantages such as the shielding provided by the matrix, the metabolic heterogeneity and adaptive stress responses of biofilm-associated cells. To address this challenge, researchers are increasingly employing combination strategies in antibiofilm treatment. Radiosensitizers, compounds originally developed to enhance the efficacy of radiation therapy in cancer treatment, have also garnered attention for their potential in antimicrobial applications. These compounds act by amplifying the effects of radiation, often through mechanisms such as increased oxidative stress or inhibition of DNA repair pathways. However, research on radiosensitizers in bacterial systems has focused on planktonic cultures, with limited studies exploring their effects on biofilms. Given the complexity and unique characteristics of biofilms, their response to radiosensitization remains poorly understood and requires further investigation. The use of radiosensitizers in conjunction with radiation presents a promising approach to overcome the inherent resilience of biofilms. By enhancing the susceptibility of biofilm-associated bacteria to radiation and simultaneously disrupting their protective structures, such approaches could lead to more effective and comprehensive solutions. Understanding the nuanced responses of biofilms to these combined treatments is essential for advancing both medical and environmental applications and addressing the challenge of biofilm persistence.
Collapse
Affiliation(s)
- Nissem Abdeljelil
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Mons University, Mons, Belgium.
- Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium.
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia.
| | - Abdelwaheb Chatti
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - David Gillan
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Mons University, Mons, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| |
Collapse
|
2
|
Nuez-Martínez M, Queralt-Martín M, Muñoz-Juan A, Aguilella VM, Laromaine A, Teixidor F, Viñas C, Pinto CG, Pinheiro T, Guerreiro JF, Mendes F, Roma-Rodrigues C, Baptista PV, Fernandes AR, Valic S, Marques F. Boron clusters (ferrabisdicarbollides) shaping the future as radiosensitizers for multimodal (chemo/radio/PBFR) therapy of glioblastoma. J Mater Chem B 2022; 10:9794-9815. [PMID: 36373493 DOI: 10.1039/d2tb01818g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, and is highly resistant to conventional radiotherapy and chemotherapy. Therefore, the development of multidrug resistance and tumor recurrence are frequent. Given the poor survival with the current treatments, new therapeutic strategies are urgently needed. Radiotherapy (RT) is a common cancer treatment modality for GBM. However, there is still a need to improve RT efficiency, while reducing the severe side effects. Radiosensitizers can enhance the killing effect on tumor cells with less side effects on healthy tissues. Herein, we present our pioneering study on the highly stable and amphiphilic metallacarboranes, ferrabis(dicarbollides) ([o-FESAN]- and [8,8'-I2-o-FESAN]-), as potential radiosensitizers for GBM radiotherapy. We propose radiation methodologies that utilize secondary radiation emissions from iodine and iron, using ferrabis(dicarbollides) as iodine/iron donors, aiming to achieve a greater therapeutic effect than that of a conventional radiotherapy. As a proof-of-concept, we show that using 2D and 3D models of U87 cells, the cellular viability and survival were reduced using this treatment approach. We also tested for the first time the proton boron fusion reaction (PBFR) with ferrabis(dicarbollides), taking advantage of their high boron (11B) content. The results from the cellular damage response obtained suggest that proton boron fusion radiation therapy, when combined with boron-rich compounds, is a promising modality to fight against resistant tumors. Although these results are encouraging, more developments are needed to further explore ferrabis(dicarbollides) as radiosensitizers towards a positive impact on the therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Miquel Nuez-Martínez
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071 Castelló, Spain
| | - Amanda Muñoz-Juan
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Vicente M Aguilella
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071 Castelló, Spain
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Catarina G Pinto
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - Teresa Pinheiro
- iBB - Instituto de Bioengenharia e Biociências, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Joana F Guerreiro
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - Catarina Roma-Rodrigues
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Srecko Valic
- Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| |
Collapse
|
3
|
Liu L, Li W, Feng X, Guo C, Zhang H, Wei H, Yang B. Energy Transfer Assisted Fast X-ray Detection in Direct/Indirect Hybrid Perovskite Wafer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103735. [PMID: 35319817 PMCID: PMC9130882 DOI: 10.1002/advs.202103735] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/05/2022] [Indexed: 05/28/2023]
Abstract
Metal halide perovskite scintillators encounter unprecedented opportunities in indirect ionizing radiation detection due to their high quantum yields. However, the long scintillation lifetime of microseconds upon irradiation, known as the afterglow phenomenon, obviously limits their fast development. Here, a new type of hybrid X-ray detector wafer combining direct methylamine lead iodide (MAPbI3 ) semiconductor and indirect zero-dimensional cesium copper iodide (Cs3 Cu2 I5 ) scintillator through low-cost fast tableting processes is reported. Due to the fast energy transfer from Cs3 Cu2 I5 to MAPbI3 , the device response time to X-rays is dramatically reduced by nearly 30 times to 36.6 ns, which enables fast X-ray detection capability by a large area detector arrays within 1 s. Moreover, Cs3 Cu2 I5 exists at the grain boundaries of MAPbI3 crystals, and blocks the paths of mobile ions of perovskite, leading to the lowest detectable dose rate of hybrid X-ray detector is thus reduced by 1.5 times compared with control MAPbI3 direct-type semiconductor, and 10 times compared with the Cs3 Cu2 I5 indirect-type scintillator. The direct/indirect hybrid wafer also exhibits improved operation stability at ambient conditions without any encapsulation. This new kind of hybrid X-ray detectors provides strong competitiveness by combining the advantages of both direct perovskite semiconductors and indirect perovskite scintillators for next-generation products.
Collapse
Affiliation(s)
- Lulu Liu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Weijun Li
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Xiaopeng Feng
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Chunjie Guo
- Department of RadiologyThe First Hospital of Jilin UniversityChangchun130061P. R. China
| | - Huimao Zhang
- Department of RadiologyThe First Hospital of Jilin UniversityChangchun130061P. R. China
| | - Haotong Wei
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
- Optical Functional Theranostics Joint Laboratory of Medicine and ChemistryThe First Hospital of Jilin UniversityChangchun130012P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
- Optical Functional Theranostics Joint Laboratory of Medicine and ChemistryThe First Hospital of Jilin UniversityChangchun130012P. R. China
| |
Collapse
|
4
|
Cline BL, Jiang W, Lee C, Cao Z, Yang X, Zhan S, Chong H, Zhang T, Han Z, Wu X, Yao L, Wang H, Zhang W, Li Z, Xie J. Potassium Iodide Nanoparticles Enhance Radiotherapy against Breast Cancer by Exploiting the Sodium-Iodide Symporter. ACS NANO 2021; 15:17401-17411. [PMID: 34694109 PMCID: PMC9035482 DOI: 10.1021/acsnano.1c01435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Iodine has shown promise in enhancing radiotherapy. However, conventional iodine compounds show fast clearance and low retention inside cancer cells, limiting their application as a radiosensitizer. Herein, we synthesize poly(maleic anhydride-alt-1-octadecene) coated KI nanoparticles (PMAO-KI NPs) and evaluate their potential for enhancing radiotherapy. Owing to the polymer coating, the KI core of PMAO-KI NPs is not instantly dissolved in aqueous solutions but slowly degraded, allowing for controlled release of iodide (I-). I- is transported into cells via the sodium iodide symporter (NIS), which is upregulated in breast cancer cells. Our results show that PMAO-KI NPs can enhance radiation-induced production of reactive oxygen species such as hydroxyl radicals. When tested in vitro with MCF-7 cells, PMAO-KI NPs promote radiation-induced DNA double-strand breaks and lipid peroxidation, causing a drop in cancer cell viability and reproductivity. When tested in MCF-7 bearing mice, PMAO-KI NPs show significant radiosensitizing effects, leading to complete tumor eradication in 80% of the treated animals without inducing additional toxicity. Overall, our strategy exploits electrolyte nanoparticles to deliver iodide into cancer cells through NIS, thus promoting radiotherapy against breast cancer.
Collapse
Affiliation(s)
- Benjamin L. Cline
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Wen Jiang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Chaebin Lee
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zhengwei Cao
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Xueyuan Yang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Shuyue Zhan
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Harrison Chong
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Tao Zhang
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhaoguo Han
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xuedan Wu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Yao
- Science Education, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Hui Wang
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zibo Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Dumitras DC, Petrus M, Bratu AM, Popa C. Applications of Near Infrared Photoacoustic Spectroscopy for Analysis of Human Respiration: A Review. Molecules 2020; 25:E1728. [PMID: 32283766 PMCID: PMC7180475 DOI: 10.3390/molecules25071728] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
In this review, applications of near-infrared photoacoustic spectroscopy are presented as an opportunity to evaluate human respiration because the measurement of breath is fast, intact and simple to implement. Recently, analytical methods for measuring biomarkers in exhaled air have been extensively developed. With laser-based photoacoustic spectroscopy, volatile organic compounds can be identified with high sensitivity, at a high rate, and with very good selectivity. The literature review has shown the applicability of near-infrared photoacoustic spectroscopy to one of the problems of the real world, i.e., human health. In addition, the review will consider and explore different breath sampling methods for human respiration analysis.
Collapse
Affiliation(s)
- Dan C. Dumitras
- University “Politehnica” of Bucharest, Physics Department, Faculty of Applied Sciences, University “Politehnica” of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Mioara Petrus
- National Institute for Laser, Plasma and Radiation Physics, Laser Department, 409 Atomistilor St., PO Box MG 36, 077125 Magurele, Romania; (M.P.); (A.-M.B.); (C.P.)
| | - Ana-Maria Bratu
- National Institute for Laser, Plasma and Radiation Physics, Laser Department, 409 Atomistilor St., PO Box MG 36, 077125 Magurele, Romania; (M.P.); (A.-M.B.); (C.P.)
| | - Cristina Popa
- National Institute for Laser, Plasma and Radiation Physics, Laser Department, 409 Atomistilor St., PO Box MG 36, 077125 Magurele, Romania; (M.P.); (A.-M.B.); (C.P.)
| |
Collapse
|
6
|
Nie YH, Liu XD, Huang R, Xie DF, Yin WJ, Guan H, Yu ZJ, Zhou PK. Analysis of mRNA Expression Patterns in Peripheral Blood Cells of 3 Patients With Cancer After the First Fraction of 2 Gy Irradiation: An Integrated Case Report and Systematic Review. Dose Response 2019; 17:1559325819833474. [PMID: 30833875 PMCID: PMC6393837 DOI: 10.1177/1559325819833474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 11/15/2022] Open
Abstract
Background Radiation therapy induces acute and chronic radiological toxicity, in particular hematological toxicity (HT). This study aimed to explore the mechanistic clue and potential predictors at the messenger RNA (mRNA) level. Materials and Methods Peripheral blood was collected from 3 patients with cervical cancer (CC), nasopharynx cancer (NC), and tongue cancer (TC) after the first 2 Gy fraction of radiotherapy (RT). High-throughput sequencing was used to assess mRNA profiles. Results Eleven genes, such as ALAS2(5-aminolevulinate synthase), SLC4A1(solute carrier family 4 member 1), HBG2(hemoglobin subunit gamma 2), TNFAIP3 (TNF α-induced protein 3), PER1 (period circadian clock 1), CCDC136 (coiled-coil domain containing 136), C9orf84 (chromosome 9 open reading frame 84), IL1B (interleukin 1β), FOSB (FosB protooncogene), NR4A2 (nuclear receptor subfamily 4), PARP15 (polymerase family member 15), had overlapping expression changes in all 3 cancers of which 3 (ALAS2, FOSB, and HBG2) are suggested as potential predictors for the early diagnosis of HT after RT. Conclusions ALAS2, FOSB, and HBG2 may be useful predictors of HT in patients after RT. Eleven overlapping expression mRNAs among 3 cancers might be potential predictors for early diagnosis of radiation toxicity in patients.
Collapse
Affiliation(s)
- Yue-Hua Nie
- Department of Tumor Radiotherapy, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xiao-Dan Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Central South University, Changsha, China
| | - Da-Fei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen-Jun Yin
- Department of Tumor Radiotherapy, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zi-Jian Yu
- Department of Tumor Radiotherapy, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.,Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Li BY, Luo Y, Zhao WS, Zhang L, Zhou HJ, Zou YC, Zhang T. MicroRNA‑210 negatively regulates the radiosensitivity of nasopharyngeal carcinoma cells. Mol Med Rep 2017; 16:1401-1408. [PMID: 28586064 DOI: 10.3892/mmr.2017.6694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/16/2017] [Indexed: 11/06/2022] Open
Abstract
Radiotherapy is one of the primary methods of treatment of malignant tumors, however, resistance to radiation is a major problem. The reasons for the radioresistance are still poorly understood. However, it is generally accepted that microRNAs (miRNAs or miRs) can regulate the radiosensitivity of tumors. The present study therefore aimed to identify specific miRNAs and their effects on radioresistant cells. More specifically, the aim was to investigate specific miRNAs and their effects on radioresistant tumor cells. The radioresistant tumor cells (CNE‑2R) were established using a dose gradient method, and the miRNA expression profiles of CNE‑2R cells and the parental cells (CNE‑2) were determined. The expression of miR‑210 in CNE‑2R cells was significantly higher than in CNE‑2 cells. CNE‑2R cells were transfected with LV‑hsa‑miR‑210‑inhibitor, and CNE‑2 cells were transfected with LV‑hsa‑miR‑210. The expression of miR‑210 was confirmed by reverse transcription quantitative‑polymerase chain reaction. The percentages of CNE‑2R‑miR‑210‑inhibitor and CNE‑2 cells in the G2/M phase were higher than in the CNE‑2R and CNE‑2‑miR‑210 cells, and the percentages of cells in S phase were lower than in the CNE‑2R and CNE‑2‑miR‑210 cells. Following 4 Gy of radiation, CNE‑2R‑miR‑210‑inhibitor and CNE‑2 cells, which express low levels of miR‑210, had a higher apoptosis rate than CNE‑2R and CNE‑2‑miR‑210 cells. Following 4, 8 and 12 Gy of radiation, cell viability and survival fraction of CNE‑2R‑miR‑210‑inhibitor cells were lower than those of CNE‑2R and CNE‑2‑miR‑210 cells, and similar to those of CNE‑2 cells. Together, these findings strongly suggest that miR‑210 negatively regulates the radiosensitivity of tumor cells, and may therefore have therapeutic potential for the treatment of radiation resistance.
Collapse
Affiliation(s)
- Bo-Yi Li
- Department of Oncology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yi Luo
- Department of Oncology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wen-Si Zhao
- Department of Oncology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lu Zhang
- Department of Oncology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Han-Jing Zhou
- Department of Oncology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yu-Chun Zou
- Department of Oncology, Shizhu County People's Hospital, Chongqing 409100, P.R. China
| | - Tao Zhang
- Department of Oncology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|