1
|
Balint E, Unk I. For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases. Int J Mol Sci 2023; 25:363. [PMID: 38203535 PMCID: PMC10779026 DOI: 10.3390/ijms25010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
DNA polymerases constitute a versatile group of enzymes that not only perform the essential task of genome duplication but also participate in various genome maintenance pathways, such as base and nucleotide excision repair, non-homologous end-joining, homologous recombination, and translesion synthesis. Polymerases catalyze DNA synthesis via the stepwise addition of deoxynucleoside monophosphates to the 3' primer end in a partially double-stranded DNA. They require divalent metal cations coordinated by active site residues of the polymerase. Mg2+ is considered the likely physiological activator because of its high cellular concentration and ability to activate DNA polymerases universally. Mn2+ can also activate the known DNA polymerases, but in most cases, it causes a significant decrease in fidelity and/or processivity. Hence, Mn2+ has been considered mutagenic and irrelevant during normal cellular function. Intriguingly, a growing body of evidence indicates that Mn2+ can positively influence some DNA polymerases by conferring translesion synthesis activity or altering the substrate specificity. Here, we review the relevant literature focusing on the impact of Mn2+ on the biochemical activity of a selected set of polymerases, namely, Polβ, Polλ, and Polµ, of the X family, as well as Polι and Polη of the Y family of polymerases, where congruous data implicate the physiological relevance of Mn2+ in the cellular function of these enzymes.
Collapse
Affiliation(s)
| | - Ildiko Unk
- Institute of Genetics, HUN-REN Biological Research Centre Szeged, H-6726 Szeged, Hungary;
| |
Collapse
|
2
|
Yoon JH, Basu D, Choudhury JR, Prakash S, Prakash L. DNA polymerase λ promotes error-free replication through Watson-Crick impairing N1-methyl-deoxyadenosine adduct in conjunction with DNA polymerase ζ. J Biol Chem 2021; 297:100868. [PMID: 34119520 PMCID: PMC8260881 DOI: 10.1016/j.jbc.2021.100868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 11/26/2022] Open
Abstract
In a previous study, we showed that replication through the N1-methyl-deoxyadenosine (1-MeA) adduct in human cells is mediated via three different Polι/Polθ, Polη, and Polζ-dependent pathways. Based on biochemical studies with these Pols, in the Polι/Polθ pathway, we inferred a role for Polι in the insertion of a nucleotide (nt) opposite 1-MeA and of Polθ in extension of synthesis from the inserted nt; in the Polη pathway, we inferred that this Pol alone would replicate through 1-MeA; in the Polζ pathway, however, the Pol required for inserting an nt opposite 1-MeA had remained unidentified. In this study, we provide biochemical and genetic evidence for a role for Polλ in inserting the correct nt T opposite 1-MeA, from which Polζ would extend synthesis. The high proficiency of purified Polλ for inserting a T opposite 1-MeA implicates a role for Polλ—which normally uses W-C base pairing for DNA synthesis—in accommodating 1-MeA in a syn confirmation and forming a Hoogsteen base pair with T. The potential of Polλ to replicate through DNA lesions by Hoogsteen base pairing adds another novel aspect to Polλ’s role in translesion synthesis in addition to its role as a scaffolding component of Polζ. We discuss how the action mechanisms of Polλ and Polζ could be restrained to inserting a T opposite 1-MeA and extending synthesis thereafter, respectively.
Collapse
Affiliation(s)
- Jung-Hoon Yoon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Debashree Basu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jayati Roy Choudhury
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
3
|
Zhang H. Mechanisms of mutagenesis induced by DNA lesions: multiple factors affect mutations in translesion DNA synthesis. Crit Rev Biochem Mol Biol 2020; 55:219-251. [PMID: 32448001 DOI: 10.1080/10409238.2020.1768205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Environmental mutagens lead to mutagenesis. However, the mechanisms are very complicated and not fully understood. Environmental mutagens produce various DNA lesions, including base-damaged or sugar-modified DNA lesions, as well as epigenetically modified DNA. DNA polymerases produce mutation spectra in translesion DNA synthesis (TLS) through misincorporation of incorrect nucleotides, frameshift deletions, blockage of DNA replication, imbalance of leading- and lagging-strand DNA synthesis, and genome instability. Motif or subunit in DNA polymerases further affects the mutations in TLS. Moreover, protein interactions and accessory proteins in DNA replisome also alter mutations in TLS, demonstrated by several representative DNA replisomes. Finally, in cells, multiple DNA polymerases or cellular proteins collaborate in TLS and reduce in vivo mutagenesis. Summaries and perspectives were listed. This review shows mechanisms of mutagenesis induced by DNA lesions and the effects of multiple factors on mutations in TLS in vitro and in vivo.
Collapse
Affiliation(s)
- Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Zhang S, Li B, Du K, Liang T, Dai M, Huang W, Zhang H, Ling Y, Zhang H. Epigenetically modified N6-methyladenine inhibits DNA replication by human DNA polymerase iota. Biochimie 2020; 168:134-143. [DOI: 10.1016/j.biochi.2019.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
|
5
|
McIntyre J. Polymerase iota - an odd sibling among Y family polymerases. DNA Repair (Amst) 2019; 86:102753. [PMID: 31805501 DOI: 10.1016/j.dnarep.2019.102753] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
It has been two decades since the discovery of the most mutagenic human DNA polymerase, polymerase iota (Polι). Since then, the biochemical activity of this translesion synthesis (TLS) enzyme has been extensively explored, mostly through in vitro experiments, with some insight into its cellular activity. Polι is one of four members of the Y-family of polymerases, which are the best characterized DNA damage-tolerant polymerases involved in TLS. Polι shares some common Y-family features, including low catalytic efficiency and processivity, high infidelity, the ability to bypass some DNA lesions, and a deficiency in 3'→5' exonucleolytic proofreading. However, Polι exhibits numerous properties unique among the Y-family enzymes. Polι has an unusual catalytic pocket structure and prefers Hoogsteen over Watson-Crick pairing, and its replication fidelity strongly depends on the template; further, it prefers Mn2+ ions rather than Mg2+ as catalytic activators. In addition to its polymerase activity, Polι possesses also 5'-deoxyribose phosphate (dRP) lyase activity, and its ability to participate in base excision repair has been shown. As a highly error-prone polymerase, its regulation is crucial and mostly involves posttranslational modifications and protein-protein interactions. The upregulation and downregulation of Polι are correlated with different types of cancer and suggestions regarding the possible function of this polymerase have emerged from studies of various cancer lines. Nonetheless, after twenty years of research, the biological function of Polι certainly remains unresolved.
Collapse
Affiliation(s)
- Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
6
|
Öztürk H, Ozkirimli E, Özgür A. A novel methodology on distributed representations of proteins using their interacting ligands. Bioinformatics 2019; 34:i295-i303. [PMID: 29949957 PMCID: PMC6022674 DOI: 10.1093/bioinformatics/bty287] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Motivation The effective representation of proteins is a crucial task that directly affects the performance of many bioinformatics problems. Related proteins usually bind to similar ligands. Chemical characteristics of ligands are known to capture the functional and mechanistic properties of proteins suggesting that a ligand-based approach can be utilized in protein representation. In this study, we propose SMILESVec, a Simplified molecular input line entry system (SMILES)-based method to represent ligands and a novel method to compute similarity of proteins by describing them based on their ligands. The proteins are defined utilizing the word-embeddings of the SMILES strings of their ligands. The performance of the proposed protein description method is evaluated in protein clustering task using TransClust and MCL algorithms. Two other protein representation methods that utilize protein sequence, Basic local alignment tool and ProtVec, and two compound fingerprint-based protein representation methods are compared. Results We showed that ligand-based protein representation, which uses only SMILES strings of the ligands that proteins bind to, performs as well as protein sequence-based representation methods in protein clustering. The results suggest that ligand-based protein description can be an alternative to the traditional sequence or structure-based representation of proteins and this novel approach can be applied to different bioinformatics problems such as prediction of new protein–ligand interactions and protein function annotation. Availability and implementation https://github.com/hkmztrk/SMILESVecProteinRepresentation Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hakime Öztürk
- Department of Computer Engineering, Bogazici University, Istanbul, Turkey
| | - Elif Ozkirimli
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| | - Arzucan Özgür
- Department of Computer Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
7
|
Stelling AL, Liu AY, Zeng W, Salinas R, Schumacher MA, Al-Hashimi HM. Infrared Spectroscopic Observation of a G-C + Hoogsteen Base Pair in the DNA:TATA-Box Binding Protein Complex Under Solution Conditions. Angew Chem Int Ed Engl 2019; 58:12010-12013. [PMID: 31268220 PMCID: PMC6719543 DOI: 10.1002/anie.201902693] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/24/2019] [Indexed: 12/22/2022]
Abstract
Hoogsteen DNA base pairs (bps) are an alternative base pairing to canonical Watson-Crick bps and are thought to play important biochemical roles. Hoogsteen bps have been reported in a handful of X-ray structures of protein-DNA complexes. However, there are several examples of Hoogsteen bps in crystal structures that form Watson-Crick bps when examined under solution conditions. Furthermore, Hoogsteen bps can sometimes be difficult to resolve in DNA:protein complexes by X-ray crystallography due to ambiguous electron density and by solution-state NMR spectroscopy due to size limitations. Here, using infrared spectroscopy, we report the first direct solution-state observation of a Hoogsteen (G-C+ ) bp in a DNA:protein complex under solution conditions with specific application to DNA-bound TATA-box binding protein. These results support a previous assignment of a G-C+ Hoogsteen bp in the complex, and indicate that Hoogsteen bps do indeed exist under solution conditions in DNA:protein complexes.
Collapse
Affiliation(s)
- Allison L. Stelling
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
| | - Amy Y. Liu
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
| | - Wenjie Zeng
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
| | - Raul Salinas
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
| | - Maria A. Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
- Department of Chemistry, Duke University, Durham, NC 27710 (USA)
| |
Collapse
|
8
|
Stelling AL, Liu AY, Zeng W, Salinas R, Schumacher MA, Al‐Hashimi HM. Infrared Spectroscopic Observation of a G–C
+
Hoogsteen Base Pair in the DNA:TATA‐Box Binding Protein Complex Under Solution Conditions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Allison L. Stelling
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
| | - Amy Y. Liu
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
| | - Wenjie Zeng
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
| | - Raul Salinas
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
| | - Maria A. Schumacher
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
| | - Hashim M. Al‐Hashimi
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
- Department of ChemistryDuke University Durham NC 27710 USA
| |
Collapse
|
9
|
Jain R, Aggarwal AK, Rechkoblit O. Eukaryotic DNA polymerases. Curr Opin Struct Biol 2018; 53:77-87. [PMID: 30005324 DOI: 10.1016/j.sbi.2018.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/19/2018] [Indexed: 01/10/2023]
Abstract
The eukaryotic DNA replication machinery is conserved from yeast to humans and requires the actions of multiple DNA polymerases. In addition to replicative DNA polymerases for duplication of the leading and lagging DNA strands, another group of specialized polymerases is required for DNA repair and/or translesion DNA synthesis (TLS). We emphasize here recent findings that accelerate our understanding of the structure and mechanisms of these remarkable enzymes. We also highlight growing evidence on the role of DNA polymerases in the origin of certain cancers, and paradoxically as emerging targets for cancer therapy.
Collapse
Affiliation(s)
- Rinku Jain
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA.
| | - Olga Rechkoblit
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| |
Collapse
|
10
|
Abstract
The number of DNA polymerases identified in each organism has mushroomed in the past two decades. Most newly found DNA polymerases specialize in translesion synthesis and DNA repair instead of replication. Although intrinsic error rates are higher for translesion and repair polymerases than for replicative polymerases, the specialized polymerases increase genome stability and reduce tumorigenesis. Reflecting the numerous types of DNA lesions and variations of broken DNA ends, translesion and repair polymerases differ in structure, mechanism, and function. Here, we review the unique and general features of polymerases specialized in lesion bypass, as well as in gap-filling and end-joining synthesis.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Yang Gao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|