1
|
Wagner M, Seifert A, Liz-Marzán LM. Towards multi-molecular surface-enhanced infrared absorption using metal plasmonics. NANOSCALE HORIZONS 2022; 7:1259-1278. [PMID: 36047407 DOI: 10.1039/d2nh00276k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface-enhanced infrared absorption (SEIRA) leads to a largely improved detection of polar molecules, compared to standard infrared absorption. The enhancement principle is based on localized surface plasmon resonances of the substrate, which match the frequency of molecular vibrations in the analyte of interest. Therefore, in practical terms, the SEIRA sensor needs to be tailored to each specific analyte. We review SEIRA sensors based on metal plasmonics for the detection of biomolecules such as DNA, proteins, and lipids. We further focus this review on chemical SEIRA sensors, with potential applications in quality control, as well as on the improvement in sensor geometry that led to the development of multiresonant SEIRA substrates as sensors for multiple analytes. Finally, we give an introduction into the integration of SEIRA sensors with surface-enhanced Raman scattering (SERS).
Collapse
Affiliation(s)
- Marita Wagner
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain.
- CIC nanoGUNE, Basque Research and Technology Alliance (BRTA), 20018 Donostia-San Sebastián, Spain
| | - Andreas Seifert
- CIC nanoGUNE, Basque Research and Technology Alliance (BRTA), 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 43009 Bilbao, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 43009 Bilbao, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
2
|
Wang P, Krasavin AV, Liu L, Jiang Y, Li Z, Guo X, Tong L, Zayats AV. Molecular Plasmonics with Metamaterials. Chem Rev 2022; 122:15031-15081. [PMID: 36194441 PMCID: PMC9562285 DOI: 10.1021/acs.chemrev.2c00333] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Molecular plasmonics, the area which deals with the interactions between surface plasmons and molecules, has received enormous interest in fundamental research and found numerous technological applications. Plasmonic metamaterials, which offer rich opportunities to control the light intensity, field polarization, and local density of electromagnetic states on subwavelength scales, provide a versatile platform to enhance and tune light-molecule interactions. A variety of applications, including spontaneous emission enhancement, optical modulation, optical sensing, and photoactuated nanochemistry, have been reported by exploiting molecular interactions with plasmonic metamaterials. In this paper, we provide a comprehensive overview of the developments of molecular plasmonics with metamaterials. After a brief introduction to the optical properties of plasmonic metamaterials and relevant fabrication approaches, we discuss light-molecule interactions in plasmonic metamaterials in both weak and strong coupling regimes. We then highlight the exploitation of molecules in metamaterials for applications ranging from emission control and optical modulation to optical sensing. The role of hot carriers generated in metamaterials for nanochemistry is also discussed. Perspectives on the future development of molecular plasmonics with metamaterials conclude the review. The use of molecules in combination with designer metamaterials provides a rich playground both to actively control metamaterials using molecular interactions and, in turn, to use metamaterials to control molecular processes.
Collapse
Affiliation(s)
- Pan Wang
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Alexey V. Krasavin
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Lufang Liu
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yunlu Jiang
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Zhiyong Li
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Xin Guo
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Limin Tong
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Anatoly V. Zayats
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| |
Collapse
|
3
|
Kaneko R, Ichikawa H, Hosaka M, Sone Y, Imura Y, Wang KH, Kawai T. Hole, Convex, and Silver Nanoparticle Patterning on Polystyrene Nanosheets by Colloidal Photolithography at Air-Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8153-8159. [PMID: 35730576 PMCID: PMC9261183 DOI: 10.1021/acs.langmuir.2c01069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Colloidal photolithography is a versatile advanced technique for fabricating periodic nanopatterned arrays, with patterns carved exclusively on photoresist films deposited on solid substrates in a typical photolithographic process. In this study, we apply colloidal photolithography to polystyrene (PS) films half-covered with poly(methyl methacrylate) (PMMA) colloids at the air-water interface and demonstrate that periodic hole structures can be carved in PS films by two processes: photodecomposing PS films with ultraviolet (UV) light and removing PMMA colloids with a fluorinated solvent. Nonspherical holes, such as C-shaped and chiral comma-shaped holes, are also fabricated by regulating the UV illumination conditions. Furthermore, in addition to holes, convex patterns on PS films are realized by combining weak UV illumination with solvent treatment. We also demonstrate that actively using the water surface as the UV illumination field enables periodic silver nanoparticle spots to be deposited on PS films simply by dissolving silver ions in the water phase.
Collapse
|
4
|
Tanaka T, Yano TA, Kato R. Nanostructure-enhanced infrared spectroscopy. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2541-2561. [PMID: 39635668 PMCID: PMC11501225 DOI: 10.1515/nanoph-2021-0661] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 12/07/2024]
Abstract
While infrared spectroscopy is a powerful technique that provides molecular information such as chemical constituents and chemical structures of analytes, it suffers from low absorption cross-section resulting in low sensitivity and poor signal-to-noise or signal-to-background ratios. Surface-enhanced infrared absorption (SEIRA) spectroscopy, which is supported by nanometer scale structures, is a promising technology to overcome these problems in conventional infrared (IR) spectroscopy and enhances IR signals using the field enhancement properties of surface plasmon resonance. Recently resonant SEIRA technique was proposed, and signal enhancement factor was significantly improved. In this review, we present an overview of the recent progresses on resonant SEIRA technologies including nanoantenna- and metamaterial-based SEIRA, and also SEIRA techniques with nanoimaging capabilities.
Collapse
Affiliation(s)
- Takuo Tanaka
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics,2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8560, Japan
| | - Taka-aki Yano
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics,2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8560, Japan
| | - Ryo Kato
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics,2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8560, Japan
| |
Collapse
|
5
|
Shape Modulation of Plasmonic Nanostructures by Unconventional Lithographic Technique. NANOMATERIALS 2022; 12:nano12030547. [PMID: 35159890 PMCID: PMC8839889 DOI: 10.3390/nano12030547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023]
Abstract
Conventional nano-sphere lithography techniques have been extended to the fabrication of highly periodic arrays of sub-wavelength nanoholes in a thin metal film. By combining the dry etching processes of self-assembled monolayers of polystyrene colloids with metal physical deposition, the complete transition from increasing size triangular nanoprism to hexagonally distributed nanoholes array onto thin metal film has been gradually explored. The investigated nano-structured materials exhibit interesting plasmonic properties which can be precisely modulated in a desired optical spectral region. An interesting approach based on optical absorbance measurements has been adopted for rapid and non-invasive inspections of the nano-sphere monolayer after the ion etching process. By enabling an indirect and accurate evaluation of colloid dimensions in a large area, this approach allows the low-cost and reproducible fabrication of plasmonic materials with specifically modulated optical properties suitable for many application in biosensing devices or Raman enhanced effects.
Collapse
|
6
|
Proniewicz E, Burnat G, Domin H, Małuch I, Makowska M, Prahl A. Application of Alanine Scanning to Determination of Amino Acids Essential for Peptide Adsorption at the Solid/Solution Interface and Binding to the Receptor: Surface-Enhanced Raman/Infrared Spectroscopy versus Bioactivity Assays. J Med Chem 2021; 64:8410-8422. [PMID: 34110823 PMCID: PMC8279479 DOI: 10.1021/acs.jmedchem.1c00397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 12/02/2022]
Abstract
The article describes the application of the alanine-scanning technique used in combination with Raman, surface-enhanced Raman, attenuated total reflection Fourier transform infrared, and surface-enhanced infrared absorption (SEIRA) spectroscopies, which allowed defining the role of individual amino acid residues in the C-terminal 6-14 fragment of the bombesin chain (BN6-14) on the path of its adsorption on the surface of Ag (AgNPs) and Au nanoparticles (AuNPs). A reliable analysis of the SEIRA spectra of these peptides was possible, thanks to a curve fitting of these spectra. By combining alanine-scanning with biological activity studies using cell lines overexpressing bombesin receptors and the intracellular inositol monophosphate assay, it was possible to determine which peptide side chains play a significant role in binding a peptide to membrane-bound G protein-coupled receptors (GPCRs). Based on the analysis of spectral profiles and bioactivity results, conclusions for the specific peptide-metal and peptide-GPCR interactions were drawn and compared.
Collapse
Affiliation(s)
- Edyta Proniewicz
- Faculty
of Foundry Engineering, AGH University of
Science and Technology, 30-059 Krakow, Poland
| | - Grzegorz Burnat
- Maj
Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland
| | - Helena Domin
- Maj
Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland
| | - Izabela Małuch
- Faculty
of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Marta Makowska
- Faculty
of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Adam Prahl
- Faculty
of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
7
|
Zucchiatti P, Birarda G, Cerea A, Semrau MS, Hubarevich A, Storici P, De Angelis F, Toma A, Vaccari L. Binding of tyrosine kinase inhibitor to epidermal growth factor receptor: surface-enhanced infrared absorption microscopy reveals subtle protein secondary structure variations. NANOSCALE 2021; 13:7667-7677. [PMID: 33928964 DOI: 10.1039/d0nr09200b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface-Enhanced Infrared Absorption (SEIRA) has been proposed as a valuable tool for protein binding studies, but its performances have been often proven on model proteins undergoing severe secondary structure rearrangements, while ligand binding only marginally involves the protein backbone in the vast majority of the biologically relevant cases. In this study we demonstrate the potential of SEIRA microscopy for highlighting the very subtle secondary structure modifications associated with the binding of Lapatinib, a tyrosine kinase inhibitor (TKI), to epidermal growth factor receptor (EGFR), a well-known driver of tumorigenesis in pathological settings such as lung, breast and brain cancers. By boosting the performances of Mid-IR plasmonic devices based on nanoantennas cross-geometry, accustoming the protein purification protocols, carefully tuning the protein anchoring methodology and optimizing the data analysis, we were able to detect EGFR secondary structure modification associated with few amino acids. A nano-patterned platform with this kind of sensitivity bridges biophysical and structural characterization methods, thus opening new possibilities in studying of proteins of biomedical interest, particularly for drug-screening purposes.
Collapse
Affiliation(s)
- Paolo Zucchiatti
- Elettra Sincrotrone Trieste SCpA, S.S. 14 Km 163.5, I-34149, Basovizza, Trieste, Italy. and Universtà degli studi di Trieste, Dipartimento di Fisica, via Valerio 2, I-34127, Trieste, Italy
| | - Giovanni Birarda
- Elettra Sincrotrone Trieste SCpA, S.S. 14 Km 163.5, I-34149, Basovizza, Trieste, Italy.
| | - Andrea Cerea
- Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Marta S Semrau
- Elettra Sincrotrone Trieste SCpA, S.S. 14 Km 163.5, I-34149, Basovizza, Trieste, Italy.
| | | | - Paola Storici
- Elettra Sincrotrone Trieste SCpA, S.S. 14 Km 163.5, I-34149, Basovizza, Trieste, Italy.
| | | | - Andrea Toma
- Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste SCpA, S.S. 14 Km 163.5, I-34149, Basovizza, Trieste, Italy.
| |
Collapse
|
8
|
Proniewicz E, Ta Ta A, Iłowska E, Prahl A. Is the Use of Surface-Enhanced Infrared Spectroscopy Justified in the Selection of Peptide Fragments That Play a Role in Substrate-Receptor Interactions? Adsorption of Amino Acids and Neurotransmitters on Colloidal Ag and Au Nanoparticles. J Phys Chem B 2021; 125:2328-2338. [PMID: 33645996 PMCID: PMC8041316 DOI: 10.1021/acs.jpcb.1c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
This paper describes
an application of attenuated total reflection
Fourier transform infrared spectroscopy (ATR-FTIR) and surface-enhanced
infrared spectroscopy (SEIRA) to characterize the selective adsorption
of four peptides present in body fluids such as neuromedin B (NMB),
bombesin (BN), neurotensin (NT), and bradykinin (BK), which are known
as markers for various human carcinomas. To perform a reliable analysis
of the SERIA spectra of these peptides, curve fitting of these spectra
in the spectral region above 1500 cm–1 and SEIRA
measurements of sulfur-containing and aromatic amino acids were performed.
On the basis of the analyses of the spectral profiles, specific conclusions
were drawn regarding specific molecule–metal interactions and
changes in the interaction during the substrate change from the surface
of silver nanoparticles (AgNPs) to gold nanoparticles (AuNPs).
Collapse
Affiliation(s)
- E Proniewicz
- Faculty of Foundry Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - A Ta Ta
- Faculty of Foundry Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - E Iłowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - A Prahl
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
9
|
Rahman AU, Geng J, Rehman SU, Iqbal MJ, Jin R. Interface-Induced Near-Infrared Response of Gold-Silica Hybrid Nanoparticles Antennas. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1996. [PMID: 33050365 PMCID: PMC7650551 DOI: 10.3390/nano10101996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
We proposed an IR absorber hybrid nanoantenna comprise of two overlapping gold nanoparticles residing over larger a silica nanoparticle. A wet chemical route was employed to prepare the hybrid structure of nanoantenna. High-resolution transmission electron microscope was used to measure the size and morphology of the nanoantenna. The Hybrid nanoantenna was excited by electron beam to investigate the optical response over a large wavelength range using Electron Energy Loss Spectroscopy. The beam of the electron was focused and we measured the electron energy loss spectra at different point of interest, which confirmed the of Low Energy Surface Plasmon Politron resonances in the IR region. The optical response of the nanoantenna was simulated numerically by employing Electric Hertzian dipole using finite element method with frequency domain solver in CST Microwave Studio. We used the Electric Hertzian dipole approach for the first time to model the Electron Energy Loss Spectroscopy experiment. The Electron Energy Loss Spectroscopy experimental results with their numerically simulated values confirmed the plasmonic resonance at the interface of the two overlapped gold nanoparticles.
Collapse
Affiliation(s)
- Atta Ur Rahman
- Electronic Engineering Department, Shanghai Jiao Tong University, Shanghai 200240, China; (A.U.R.); (S.U.R.); (R.J.)
- School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junping Geng
- Electronic Engineering Department, Shanghai Jiao Tong University, Shanghai 200240, China; (A.U.R.); (S.U.R.); (R.J.)
| | - Sami Ur Rehman
- Electronic Engineering Department, Shanghai Jiao Tong University, Shanghai 200240, China; (A.U.R.); (S.U.R.); (R.J.)
| | | | - Ronghong Jin
- Electronic Engineering Department, Shanghai Jiao Tong University, Shanghai 200240, China; (A.U.R.); (S.U.R.); (R.J.)
| |
Collapse
|
10
|
Garín M, Khoury R, Martín I, Johnson EV. Direct etching at the nanoscale through nanoparticle-directed capillary condensation. NANOSCALE 2020; 12:9240-9245. [PMID: 32307480 DOI: 10.1039/c9nr10217e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a method to locally deliver a chemical etchant at the nanoscale in the vapor phase by capillary condensation forming a meniscus at the nanoparticle/substrate interface. The process is simple, scalable and does not require functionalization of the nanoparticles. Furthermore, it does not rely on any specific chemical properties of the materials other than the solution being aqueous and the wettability properties of the surfaces involved, which should enable its application to other material and chemical combinations. In particular, in this work we demonstrate the proposed process by periodically pattering a SiO2 layer using a self-assembled monolayer of polystyrene particles exposed to HF vapors. The patterned SiO2 layer is then used as a mask to etch a pattern of inverted nanopyramids on Si. The silicon nanopatterning has been demonstrated for particles sizes ranging from 800 nm down to 100 nm, providing pyramids with a size down to 50 nm for 100 nm nanoparticles.
Collapse
Affiliation(s)
- M Garín
- Grup de recerca en Micro i Nanotecnologies, Departament d'Enginyeria Electrònica, Universitat Politècnica de Catalunya, c/Jordi Girona Pascual 1-3, Barcelona 08034, Spain
| | | | | | | |
Collapse
|
11
|
Li J, Yan Z, Li J, Wang Z, Morrison W, Xia XH. Antenna array-enhanced attenuated total reflection IR analysis in an aqueous solution. NANOSCALE 2019; 11:18543-18549. [PMID: 31596296 DOI: 10.1039/c9nr04032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) is a powerful technique that provides structural and functional information during dynamic reactions in aqueous solutions. One existing limitation is the sensitivity to extract the signals of trace-level analytes from the background water in situ and in real time. Here, we proposed a novel ATR-SEIRAS platform that integrated a large-scale triangle gold antenna array onto a conventional ATR-IR platform to increase the sensitivity of this analytical technique. A square centimeter level well-ordered gold antenna array was fabricated onto an Si prism via nanosphere lithography. The size-dependent antenna array resonance had weak correlation with the incident polarization and antenna orientation, allowing antenna array-enhanced IR detection without the requirement of a microscope. In addition, the antenna resonance shift that occurred due to analyte adsorption-induced refractive index variation could be minimized benefiting from the high refractive index of Si (3.4). As a demonstration, we dynamically monitored the adsorption of the trace levels of proteins on top of the antenna array with a real signal enhancement factor larger than 300. Our platform opens an avenue to apply antenna array-enhanced IR spectroscopy in an aqueous environment measured via commercial IR instruments, which is extremely promising for the interfacial applications that require signal enhancement.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhendong Yan
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhenlin Wang
- School of Physics, Nanjing University, Nanjing, 210093, China
| | - William Morrison
- Molecular Vista Inc., 6840 Via Del Oro, Suite 110, San Jose, CA 95119, USA
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
12
|
Li J, Li J, Xia XH. Large-Scale and Well-Ordered Assembly of Microspheres in a Small Container. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8413-8417. [PMID: 31141366 DOI: 10.1021/acs.langmuir.9b00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colloidal self-assembly monolayers (SAMs) formed by the Langmuir?Blodgett (LB) process have been widely applied in modern research. The quality of the closely packed 2D or 3D arrays would determine their performance and applications. Herein, we study the influence of the surface wettability of containers on the self-assembly process of polystyrene microspheres using LB technology. It is found that the variation of surface tension at the gas/liquid/solid phase determines the quality of the PS colloidal SAMs. By carefully controlling the surface wettability of the containers, a square centimeter level of well-ordered polystyrene (PS) microsphere SAMs in a small polyethylene (PE) container can be achieved. This method can be used to fabricate PS SAMs with different sphere sizes. In addition, the PS SAMs can be easily transferred onto silica-coated silicon and silicon wafers for further fabricating triangle antenna arrays at a square centimeter level that allows for the study the IR resonances of antennas with conventional IR instrument. The present study provides a simple approach to the fabrication of large-scale and well-ordered colloidal SAMs for further applications.
Collapse
Affiliation(s)
- Jian Li
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jin Li
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Xing-Hua Xia
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
13
|
Li Z, Zhang Z, Chen K. Indium⁻Tin⁻Oxide Nanostructures for Plasmon-Enhanced Infrared Spectroscopy: A Numerical Study. MICROMACHINES 2019; 10:mi10040241. [PMID: 30979000 PMCID: PMC6523928 DOI: 10.3390/mi10040241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 01/24/2023]
Abstract
Plasmonic nanoantennas can significantly enhance the light–matter interactions at the nanoscale, and as a result have been used in a variety of applications such as sensing molecular vibrations in the infrared range. Indium–tin–oxide (ITO) shows metallic behavior in the infrared range, and can be used for alternative plasmonic materials. In this work, we numerically studied the optical properties of hexagonal ITO nanodisk and nanohole arrays in the mid-infrared. Field enhancement up to 10 times is observed in the simulated ITO nanostructures. Furthermore, we demonstrated the sensing of the surface phonon polariton from a 2-nm thick SiO2 layer under the ITO disk arrays. Such periodic arrays can be readily fabricated by colloidal lithography and dry etching techniques; thus, the results shown here can help design efficient ITO nanostructures for plasmonic infrared applications.
Collapse
Affiliation(s)
- Zhangbo Li
- Institute of Photonics Technology, Jinan University, Guangzhou 511443, China.
| | - Zhiliang Zhang
- Institute of Photonics Technology, Jinan University, Guangzhou 511443, China.
| | - Kai Chen
- Institute of Photonics Technology, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
14
|
Fabrication of micro-patterned substrates for plasmonic sensing by piezo-dispensing of colloidal nanoparticles. Anal Bioanal Chem 2019; 411:1537-1547. [PMID: 30707266 DOI: 10.1007/s00216-019-01587-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
In this work we describe a very fast and flexible method for fabrication of plasmon-supporting substrates with micro-patterning capability, which is optimized for plasmonic sensing. We combined a wet chemistry approach to synthesize metallic nanoparticles with a piezo-dispensing system enabling deposition of nanoparticles on the substrates with micrometer precision. In this way, an arbitrary pattern consisting of 200 μm small spots containing plasmonic nanostructures can be produced. Patterns with various nanoparticles exhibiting different plasmonic properties were combined, and the surface density of the particles could be easily varied via their solution concentrations. We showed that under controlled conditions the dispensing process caused no aggregation of the particles and it enabled full transfer of the colloidal solutions onto the substrate. This is an important condition, which enables these substrates to be used for reliable plasmonic sensing based on monitoring the spectral shift of the nanoparticles. We demonstrated the functionality of such substrates by detection of small protein adsorption on the spots based on plasmon label-free sensing method.
Collapse
|
15
|
Mubarak MH, Sidek O, Abdel-Rahman MR, Mustaffa MT, Mustapa Kamal AS, Mukras SM. Nano-Antenna Coupled Infrared Detector Design. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3714. [PMID: 30384508 PMCID: PMC6264075 DOI: 10.3390/s18113714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 01/13/2023]
Abstract
Since the 1940s, infrared (IR) detection and imaging at wavelengths in the two atmospheric windows of 3 to 5 and 8 to 14 μm has been extensively researched. Through several generations, these detectors have undergone considerable developments and have found use in various applications in different fields including military, space science, medicine and engineering. For the most recently proposed generation, these detectors are required to achieve high-speed detection with spectral and polarization selectivity while operating at room temperature. Antenna coupled IR detectors appear to be the most promising candidate to achieve these requirements and has received substantial attention from research in recent years. This paper sets out to present a review of the antenna coupled IR detector family, to explore the main concepts behind the detectors as well as outline their critical and challenging design considerations. In this context, the design of both elements, the antenna and the sensor, will be presented individually followed by the challenging techniques in the impedance matching between both elements. Some hands-on fabrication techniques will then be explored. Finally, a discussion on the coupled IR detector is presented with the aim of providing some useful insights into promising future work.
Collapse
Affiliation(s)
- Mohamed H Mubarak
- School of Electrical and Electronic Engineering, Universiti Sains Malaysia, 14300 Pulau Pinang, Malaysia.
| | - Othman Sidek
- School of Electrical and Electronic Engineering, Universiti Sains Malaysia, 14300 Pulau Pinang, Malaysia.
| | | | - Mohd Tafir Mustaffa
- School of Electrical and Electronic Engineering, Universiti Sains Malaysia, 14300 Pulau Pinang, Malaysia.
| | | | - Saad M Mukras
- Mechanical Engineering Department, Qassim University, Buraydah 51452, Saudi Arabia.
| |
Collapse
|
16
|
Liang J, Guo J, Zhao Y, Zhang Y, Su T. Localized surface plasmon resonance modulation of totally encapsulated VO 2/Au/VO 2 composite structure. NANOTECHNOLOGY 2018; 29:275710. [PMID: 29667602 DOI: 10.1088/1361-6528/aabf03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We design and fabricate a totally encapsulated VO2/Au/VO2 composite structure which is aimed to improve the tunability of the localized surface plasmon resonance (LSPR) peak. In this work, the structure will ensure all the Au NPs' resonant electric field area is filled with VO2. The modulation range of the totally encapsulated structure is larger than that of the semi-coated structure. To further improve the modulation range, we also explore the VO2 thickness dependence of the structure's LSPR modulation. With the increase of the top layer VO2 thin film thickness, the modulation range becomes larger. When the thickness is about 80 nm, the absorption peak achieves a largest shift of 112 nm. FDTD solution and equivalent model of series capacitor are used to explain the phenomenon. These results will contribute to the area of metamaterial electromagnetic wave absorber and other fields.
Collapse
Affiliation(s)
- Jiran Liang
- School of Microelectronics, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Benedict S, Lumdee C, Dmitriev A, Anand S, Bhat N. Colloidal lithography nanostructured Pd/PdO x core-shell sensor for ppb level H 2S detection. NANOTECHNOLOGY 2018; 29:255502. [PMID: 29595148 DOI: 10.1088/1361-6528/aaba88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdO x ) core-shell sensor for ppb level H2S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H2S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H2S at the optimum operating temperature of 200 °C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H2S sensing characteristics. The nanostructured Pd/PdO x sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15 s and 100 s, respectively) compared to the unstructured Pd/PdO x counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdO x sensors is done using UV-vis spectroscopy and x-ray photoemission spectroscopy.
Collapse
Affiliation(s)
- Samatha Benedict
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
| | | | | | | | | |
Collapse
|
18
|
Etezadi D, Warner JB, Lashuel HA, Altug H. Real-Time In Situ Secondary Structure Analysis of Protein Monolayer with Mid-Infrared Plasmonic Nanoantennas. ACS Sens 2018; 3:1109-1117. [PMID: 29845861 PMCID: PMC6133232 DOI: 10.1021/acssensors.8b00115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Dynamic detection
of protein conformational changes at physiological
conditions on a minute amount of samples is immensely important for
understanding the structural determinants of protein function in health
and disease and to develop assays and diagnostics for protein misfolding
and protein aggregation diseases. Herein, we experimentally demonstrate
the capabilities of a mid-infrared plasmonic biosensor for real-time
and in situ protein secondary structure analysis in aqueous environment
at nanoscale. We present label-free ultrasensitive dynamic monitoring
of β-sheet to disordered conformational transitions in a monolayer
of the disease-related α-synuclein protein under varying stimulus
conditions. Our experiments show that the extracted secondary structure
signals from plasmonically enhanced amide I signatures in the protein
monolayer can be reliably and reproducibly acquired with second derivative
analysis for dynamic monitoring. Furthermore, by using a polymer layer
we show that our nanoplasmonic approach of extracting the frequency
components of vibrational signatures matches with the results attained
from gold-standard infrared transmission measurements. By facilitating
conformational analysis on small quantities of immobilized proteins
in response to external stimuli such as drugs, our plasmonic biosensor
could be used to introduce platforms for screening small molecule
modulators of protein misfolding and aggregation.
Collapse
|
19
|
Lin YS, Chen W. Perfect meta-absorber by using pod-like nanostructures with ultra-broadband, omnidirectional, and polarization-independent characteristics. Sci Rep 2018; 8:7150. [PMID: 29740125 PMCID: PMC5940756 DOI: 10.1038/s41598-018-25728-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/27/2018] [Indexed: 12/18/2022] Open
Abstract
The on-chip perfect meta-absorber (PMA) is an important optical and thermal energy component in photovoltaics, thermal emitters, and energy harvesting applications. However, most reported PMAs rely on the complicated lithography techniques, which imposed a serious cost barrier on the development of practical applications, especially in the visible to near-infrared (NIR) wavelength range and at very large scales. Importantly, it is hard to realize PMA in the UV wavelength range by using current lithography techniques. In this article, we develop an ultra-broadband PMA by using natural lithography (NL) technique. The morphology of proposed PMA is randomly distributed pod-like nanostructures composed of a nanocomposite (Au/SiO2) covered a gold layer. It can be formed easily on Si substrate to function as an ultra-broadband, omnidirectional, and polarization-independent PMA by controlling the conditions of sputtering deposition and thermal annealing treatment. We experimentally realized an on-chip ultra-broadband PMA with almost 100% absorption spanned from UV-visible to NIR wavelength ranges. This cost-effective and high-efficiency approach would release the manufacturing barrier for previously reported PMAs and therefore open an avenue to the development of effectively energy harvesting, energy recycling, and heat liberation applications.
Collapse
Affiliation(s)
- Yu-Sheng Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Wenjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
20
|
Yang X, Sun Z, Low T, Hu H, Guo X, García de Abajo FJ, Avouris P, Dai Q. Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704896. [PMID: 29572965 DOI: 10.1002/adma.201704896] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/05/2017] [Indexed: 05/19/2023]
Abstract
Surface-enhanced infrared absorption (SEIRA) has attracted increasing attention due to the potential of infrared spectroscopy in applications such as molecular trace sensing of solids, polymers, and proteins, specifically fueled by recent substantial developments in infrared plasmonic materials and engineered nanostructures. Here, the significant progress achieved in the past decades is reviewed, along with the current state of the art of SEIRA. In particular, the plasmonic properties of a variety of nanomaterials are discussed (e.g., metals, semiconductors, and graphene) along with their use in the design of efficient SEIRA configurations. To conclude, perspectives on potential applications, including single-molecule detection and in vivo bioassays, are presented.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150, Espoo, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Keller Hall 200 Union St S.E., Minneapolis, MN, 55455, USA
| | - Hai Hu
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangdong Guo
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - F Javier García de Abajo
- ICFO-The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain
- ICREA-Institució Catalana de Recerca I Estudis Avancąts, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Phaedon Avouris
- IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Qing Dai
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|