Saha A, Sanyal K, Rawat N, Deb SB, Saxena MK, Tomar BS. Selective Micellar Extraction of Ultratrace Levels of Uranium in Aqueous Samples by Task Specific Ionic Liquid Followed by Its Detection Employing Total Reflection X-ray Fluorescence Spectrometry.
Anal Chem 2017;
89:10422-10430. [PMID:
28868888 DOI:
10.1021/acs.analchem.7b02427]
[Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A task specific ionic liquid (TSIL) bearing phosphoramidate group, viz., N-propyl(diphenylphosphoramidate)trimethylammonium bis(trifluoromethanesulfonyl)imide, was synthesized and characterized by 1H NMR, 13C NMR, 31P NMR, and IR spectroscopies, elemental (C H N S) analysis, and electrospray ionization mass spectrometry (ESI-MS). Using this TSIL a cloud point extraction (CPE) or micelle mediated extraction procedure was developed for preconcentration of uranium (U) in environmental aqueous samples. Total reflection X-ray fluorescence spectrometry was utilized to determine the concentration of U in the preconcentrated samples. In order to understand the mechanism of the CPE procedure, complexation study of the TSIL with U was carried out by isothermal calorimetric titration, liquid-liquid extraction, 31P NMR and IR spectroscopies, and ESI-MS. The developed analytical technique resulted in quantitative extraction efficiency of 99.0 ± 0.5% and a preconcentration factor of 99 for U. The linear dynamic range and method detection limit of the procedure were found to be 0.1-1000 ng mL-1 and 0.02 ng mL-1, respectively. The CPE procedure was found to tolerate a higher concentration of commonly available interfering cations and anions, especially the lanthanides. The developed analytical method was validated by determining the concentration of U in a certified reference material, viz., NIST SRM 1640a natural water, which was found to be in good agreement at a 95% confidence limit with the certified value. The method was successfully applied to the U determination in three natural water samples with ≤4% relative standard deviation (1σ).
Collapse