1
|
Shrivas A, Singh S. Tuberculosis Diagnosis and Management: Recent Advances. J Glob Infect Dis 2025; 17:3-9. [PMID: 40290202 PMCID: PMC12021348 DOI: 10.4103/jgid.jgid_112_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 04/30/2025] Open
Abstract
Accurate and rapid diagnosis is crucial for starting effective treatment for tuberculosis (TB) and mitigating the transmission. Globally, nearly one-third of all TB cases remain undetected each year and consequently these are not reported. On top of that, the emergence of drug-resistant TB poses an added challenge. In the past 15 years, several advances have been made for improved diagnosis, including liquid culture and drug susceptibility, line probe assay for drug resistance detection, and cartridge-based nucleic acid amplification tests for rapid diagnosis of TB and drug resistance detection. However, some challenges remain, despite the clear edge of these new advances over the age-old conventional methods. Despite these advances, accurate, affordable, and accessible diagnosis of TB remains a challenge, especially in rural and difficult-to-reach settings, where the most desirable test would be a point-of-care triage test. Nevertheless, several attempts are being made in this direction, and in this article, we review these research advances that can help the TB elimination from India.
Collapse
Affiliation(s)
- Arti Shrivas
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Sarman Singh
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
- Department of Microbiology and Directorate of Medical Research, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission’s Research Foundation, Puducherry, India
| |
Collapse
|
2
|
Singh S. End Tuberculosis: Challenges and Opportunities. Tuberc Res Treat 2024; 2024:2307742. [PMID: 39262632 PMCID: PMC11390216 DOI: 10.1155/2024/2307742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024] Open
Affiliation(s)
- Sarman Singh
- All India Institute of Medical Sciences, Bhopal, India
- Aarupadai Veedu Medical College, Pondicherry, India
| |
Collapse
|
3
|
Habjan E, Lepioshkin A, Charitou V, Egorova A, Kazakova E, Ho VQ, Bitter W, Makarov V, Speer A. Modulating mycobacterial envelope integrity for antibiotic synergy with benzothiazoles. Life Sci Alliance 2024; 7:e202302509. [PMID: 38744470 PMCID: PMC11094368 DOI: 10.26508/lsa.202302509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Developing effective tuberculosis drugs is hindered by mycobacteria's intrinsic antibiotic resistance because of their impermeable cell envelope. Using benzothiazole compounds, we aimed to increase mycobacterial cell envelope permeability and weaken the defenses of Mycobacterium marinum, serving as a model for Mycobacterium tuberculosis Initial hit, BT-08, significantly boosted ethidium bromide uptake, indicating enhanced membrane permeability. It also demonstrated efficacy in the M. marinum-zebrafish embryo infection model and M. tuberculosis-infected macrophages. Notably, BT-08 synergized with established antibiotics, including vancomycin and rifampicin. Subsequent medicinal chemistry optimization led to BT-37, a non-toxic and more potent derivative, also enhancing ethidium bromide uptake and maintaining synergy with rifampicin in infected zebrafish embryos. Mutants of M. marinum resistant to BT-37 revealed that MMAR_0407 (Rv0164) is the molecular target and that this target plays a role in the observed synergy and permeability. This study introduces novel compounds targeting a new mycobacterial vulnerability and highlights their cooperative and synergistic interactions with existing antibiotics.
Collapse
Affiliation(s)
- Eva Habjan
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location VU Medical Center, Amsterdam, Netherlands
| | - Alexander Lepioshkin
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | - Vicky Charitou
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location VU Medical Center, Amsterdam, Netherlands
| | - Anna Egorova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | - Elena Kazakova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | - Vien Qt Ho
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location VU Medical Center, Amsterdam, Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location VU Medical Center, Amsterdam, Netherlands
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | - Alexander Speer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location VU Medical Center, Amsterdam, Netherlands
| |
Collapse
|
4
|
Schemenauer D, Pool EH, Raynor SN, Ruiz GP, Goehring LM, Koelper AJ, Wilson MA, Durand AJ, Kourtoglou EC, Larsen EM, Lavis LD, Esteb JJ, Hoops GC, Johnson RJ. Sequence and Structural Motifs Controlling the Broad Substrate Specificity of the Mycobacterial Hormone-Sensitive Lipase LipN. ACS OMEGA 2023; 8:13252-13264. [PMID: 37065048 PMCID: PMC10099132 DOI: 10.1021/acsomega.3c00534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Mycobacterium tuberculosis has a complex life cycle transitioning between active and dormant growth states depending on environmental conditions. LipN (Rv2970c) is a conserved mycobacterial serine hydrolase with regulated catalytic activity at the interface between active and dormant growth conditions. LipN also catalyzes the xenobiotic degradation of a tertiary ester substrate and contains multiple conserved motifs connected with the ability to catalyze the hydrolysis of difficult tertiary ester substrates. Herein, we expanded a library of fluorogenic ester substrates to include more tertiary and constrained esters and screened 33 fluorogenic substrates for activation by LipN, identifying its unique substrate signature. LipN preferred short, unbranched ester substrates, but had its second highest activity against a heteroaromatic five-membered oxazole ester. Oxazole esters are present in multiple mycobacterial serine hydrolase inhibitors but have not been tested widely as ester substrates. Combined structural modeling, kinetic measurements, and substitutional analysis of LipN showcased a fairly rigid binding pocket preorganized for catalysis of short ester substrates. Substitution of diverse amino acids across the binding pocket significantly impacted the folded stability and catalytic activity of LipN with two conserved motifs (HGGGW and GDSAG) playing interconnected, multidimensional roles in regulating its substrate specificity. Together this detailed substrate specificity profile of LipN illustrates the complex interplay between structure and function in mycobacterial hormone-sensitive lipase homologues and indicates oxazole esters as promising inhibitor and substrate scaffolds for mycobacterial hydrolases.
Collapse
Affiliation(s)
- Daniel
E. Schemenauer
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Emily H. Pool
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Stephanie N. Raynor
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Gabriela P. Ruiz
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Leah M. Goehring
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Andrew J. Koelper
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Madeleine A. Wilson
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Anthony J. Durand
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Elexi C. Kourtoglou
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Erik M. Larsen
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Luke D. Lavis
- Howard
Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147, United States
| | - John J. Esteb
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Geoffrey C. Hoops
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - R. Jeremy Johnson
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| |
Collapse
|
5
|
Garlant HN, Ellappan K, Hewitt M, Perumal P, Pekeleke S, Wand N, Southern J, Kumar SV, Belgode H, Abubakar I, Sinha S, Vasan S, Joseph NM, Kempsell KE. Evaluation of Host Protein Biomarkers by ELISA From Whole Lysed Peripheral Blood for Development of Diagnostic Tests for Active Tuberculosis. Front Immunol 2022; 13:854327. [PMID: 35720382 PMCID: PMC9205408 DOI: 10.3389/fimmu.2022.854327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis (TB) remains a significant global health crisis and the number one cause of death for an infectious disease. The health consequences in high-burden countries are significant. Barriers to TB control and eradication are in part caused by difficulties in diagnosis. Improvements in diagnosis are required for organisations like the World Health Organisation (WHO) to meet their ambitious target of reducing the incidence of TB by 50% by the year 2025, which has become hard to reach due to the COVID-19 pandemic. Development of new tests for TB are key priorities of the WHO, as defined in their 2014 report for target product profiles (TPPs). Rapid triage and biomarker-based confirmatory tests would greatly enhance the diagnostic capability for identifying and diagnosing TB-infected individuals. Protein-based test methods e.g. lateral flow devices (LFDs) have a significant advantage over other technologies with regard to assay turnaround time (minutes as opposed to hours) field-ability, ease of use by relatively untrained staff and without the need for supporting laboratory infrastructure. Here we evaluate the diagnostic performance of nine biomarkers from our previously published biomarker qPCR validation study; CALCOCO2, CD274, CD52, GBP1, IFIT3, IFITM3, SAMD9L, SNX10 and TMEM49, as protein targets assayed by ELISA. This preliminary evaluation study was conducted to quantify the level of biomarker protein expression across latent, extra-pulmonary or pulmonary TB groups and negative controls, collected across the UK and India, in whole lysed blood samples (WLB). We also investigated associative correlations between the biomarkers and assessed their suitability for ongoing diagnostic test development, using receiver operating characteristic/area under the curve (ROC) analyses, singly and in panel combinations. The top performing single biomarkers for pulmonary TB versus controls were CALCOCO2, SAMD9L, GBP1, IFITM3, IFIT3 and SNX10. TMEM49 was also significantly differentially expressed but downregulated in TB groups. CD52 expression was not highly differentially expressed across most of the groups but may provide additional patient stratification information and some limited use for incipient latent TB infection. These show therefore great potential for diagnostic test development either in minimal configuration panels for rapid triage or more complex formulations to capture the diversity of disease presentations.
Collapse
Affiliation(s)
- Harriet N. Garlant
- Science Group: Research and Evaluation, UK Health Security Agency, Salisbury, United Kingdom
| | - Kalaiarasan Ellappan
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Matthew Hewitt
- Science Group: Research and Evaluation, UK Health Security Agency, Salisbury, United Kingdom
| | - Prem Perumal
- Science Group: Research and Evaluation, UK Health Security Agency, Salisbury, United Kingdom
| | - Simon Pekeleke
- Science Group: Research and Evaluation, UK Health Security Agency, Salisbury, United Kingdom
| | - Nadina Wand
- Science Group: Research and Evaluation, UK Health Security Agency, Salisbury, United Kingdom
| | - Jo Southern
- School of Life & Medical Sciences, Mortimer Market Centre, University College London, London, United Kingdom
| | - Saka Vinod Kumar
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Harish Belgode
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Ibrahim Abubakar
- School of Life & Medical Sciences, Mortimer Market Centre, University College London, London, United Kingdom
| | - Sanjeev Sinha
- Department of Medicine, All India Institute for Medical Sciences, New Delhi, India
| | - Seshadri Vasan
- Department of Health Sciences, University of York, York, United Kingdom
| | - Noyal Mariya Joseph
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Karen E. Kempsell
- Science Group: Research and Evaluation, UK Health Security Agency, Salisbury, United Kingdom
- *Correspondence: Karen E. Kempsell,
| |
Collapse
|
6
|
Yaqoob C, Shahid S, Khaliq A, un Nisa Z, Khan IH, Akhtar MW. Designing Fusion Molecules from Antigens of Mycobacterium tuberculosis to Enhance Serodiagnostic Sensitivity in Latent TB Infection and Active TB State. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Multidrug resistant tuberculosis - Diagnostic challenges and its conquering by nanotechnology approach - An overview. Chem Biol Interact 2021; 337:109397. [PMID: 33508305 DOI: 10.1016/j.cbi.2021.109397] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/27/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Abstract
One of the leading killer diseases that target the parenchymal tissues of lungs is Tuberculosis. Although antimycobacterial drugs are available, there are increased incidences of drug resistance encountered in Mycobacterium sp. They have been categorized into MDR (Multidrug resistant) and XDR (Extensively drug-resistant) strains exhibiting resistance toward successive treatment regimen. This situation threatens the futuristic containment of TB with the dearth of anti-TB drugs. Nanotechnology, the emerging multidisciplinary science has presented an excellent opportunity for timely and accurate diagnosis and discrimination of Mycobacteria via its unique physio-chemical and optical characteristics. The delayed and misdiagnosis of TB and lack of sensitive diagnostic method(s) has seen a paradigm shift toward nanoparticulate system for improved diagnosis, drug delivery and reduced treatment frequency. This review article highlights the evolution of tuberculosis and its transformation to multidrug resistant strain. Further, the conventional methods for diagnosing TB and the challenges encountered in their analytical performance have been highlighted and the strategies to overcome those challenges have been briefly discussed. Smart approaches encompassing metal nanoparticles, Quantum Dots (QDs) and Field Effect Transistors (FET) based biosensor for accurate diagnosis have been critically reviewed. A decade long state-of-the-art knowledge on TB nanodiagnostics, fabrication concepts and performance characteristics has been reviewed.
Collapse
|
8
|
Ahmad R, Xie L, Pyle M, Suarez MF, Broger T, Steinberg D, Ame SM, Lucero MG, Szucs MJ, MacMullan M, Berven FS, Dutta A, Sanvictores DM, Tallo VL, Bencher R, Eisinger DP, Dhingra U, Deb S, Ali SM, Mehta S, Fawzi WW, Riley ID, Sazawal S, Premji Z, Black R, Murray CJL, Rodriguez B, Carr SA, Walt DR, Gillette MA. A rapid triage test for active pulmonary tuberculosis in adult patients with persistent cough. Sci Transl Med 2020; 11:11/515/eaaw8287. [PMID: 31645455 DOI: 10.1126/scitranslmed.aaw8287] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023]
Abstract
Improved tuberculosis (TB) prevention and control depend critically on the development of a simple, readily accessible rapid triage test to stratify TB risk. We hypothesized that a blood protein-based host response signature for active TB (ATB) could distinguish it from other TB-like disease (OTD) in adult patients with persistent cough, thereby providing a foundation for a point-of-care (POC) triage test for ATB. Three adult cohorts consisting of ATB suspects were recruited. A bead-based immunoassay and machine learning algorithms identified a panel of four host blood proteins, interleukin-6 (IL-6), IL-8, IL-18, and vascular endothelial growth factor (VEGF), that distinguished ATB from OTD. An ultrasensitive POC-amenable single-molecule array (Simoa) panel was configured, and the ATB diagnostic algorithm underwent blind validation in an independent, multinational cohort in which ATB was distinguished from OTD with receiver operator characteristic-area under the curve (ROC-AUC) of 0.80 [95% confidence interval (CI), 0.75 to 0.85], 80% sensitivity (95% CI, 73 to 85%), and 65% specificity (95% CI, 57 to 71%). When host antibodies against TB antigen Ag85B were added to the panel, performance improved to 86% sensitivity and 69% specificity. A blood-based host response panel consisting of four proteins and antibodies to one TB antigen can help to differentiate ATB from other causes of persistent cough in patients with and without HIV infection from Africa, Asia, and South America. Performance characteristics approach World Health Organization (WHO) target product profile accuracy requirements and may provide the foundation for an urgently needed blood-based POC TB triage test.
Collapse
Affiliation(s)
- Rushdy Ahmad
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA.
| | - Liangxia Xie
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.,Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | - Margaret Pyle
- University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA
| | - Marta F Suarez
- Daktari Diagnostics, 85 Bolton Street, Cambridge, MA 02140, USA
| | - Tobias Broger
- Foundation for Innovative New Diagnostics, 9 Chemin des Mines, 1202 Geneva, Switzerland
| | - Dan Steinberg
- Salford Systems, 9685 Via Excelencia, Suite 208, San Diego, CA 92126, USA
| | - Shaali M Ame
- Public Health Laboratory-Ivo de Carneri, Wawi, Chake Chake, Pemba 5501021, Tanzania
| | - Marilla G Lucero
- Research Institute for Tropical Medicine, 9002 Research Drive, Filinvest Corporate City, Alabang, Muntinlupa City, 1781, Metro Manila, Philippines
| | - Matthew J Szucs
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Melanie MacMullan
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Frode S Berven
- Proteomics Unit, Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Arup Dutta
- Center for Public Health Kinetics, 214A Vinobapuri, Lajpat Nagar-II, New Delhi 110024, India
| | - Diozele M Sanvictores
- Research Institute for Tropical Medicine, 9002 Research Drive, Filinvest Corporate City, Alabang, Muntinlupa City, 1781, Metro Manila, Philippines
| | - Veronica L Tallo
- Research Institute for Tropical Medicine, 9002 Research Drive, Filinvest Corporate City, Alabang, Muntinlupa City, 1781, Metro Manila, Philippines
| | | | | | - Usha Dhingra
- Center for Public Health Kinetics, 214A Vinobapuri, Lajpat Nagar-II, New Delhi 110024, India
| | - Saikat Deb
- Center for Public Health Kinetics, 214A Vinobapuri, Lajpat Nagar-II, New Delhi 110024, India
| | - Said M Ali
- Public Health Laboratory-Ivo de Carneri, Wawi, Chake Chake, Pemba 5501021, Tanzania
| | - Saurabh Mehta
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, 314 Savage Hall, Ithaca, NY 14850, USA
| | - Wafaie W Fawzi
- Department of Global Health and Population, Harvard School of Public Health, 665 Huntington Avenue, Building 1, Room 1102, Boston, MA 02115, USA
| | - Ian D Riley
- The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sunil Sazawal
- Center for Public Health Kinetics, 214A Vinobapuri, Lajpat Nagar-II, New Delhi 110024, India
| | - Zul Premji
- Department of Parasitology and Entomology, Muhimbili University of Health and Allied Sciences, United Nations Road, Dar es Salaam 0702172, Tanzania
| | - Robert Black
- Institute for International Programs, Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Christopher J L Murray
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Avenue, Suite 600, Seattle, WA 98121, USA
| | - Bill Rodriguez
- Draper Richards Kaplan Foundation, 535 Boylston Street, Boston, MA 02116, USA
| | - Steven A Carr
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - David R Walt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA. .,Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.,Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | - Michael A Gillette
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA. .,Massachusetts General Hospital Division of Pulmonary and Critical Care Medicine, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
9
|
Sámano-Sánchez H, Gibson TJ. Mimicry of Short Linear Motifs by Bacterial Pathogens: A Drugging Opportunity. Trends Biochem Sci 2020; 45:526-544. [PMID: 32413327 DOI: 10.1016/j.tibs.2020.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Bacterial pathogens have developed complex strategies to successfully survive and proliferate within their hosts. Throughout the infection cycle, direct interaction with host cells occurs. Many bacteria have been found to secrete proteins, such as effectors and toxins, directly into the host cell with the potential to interfere with cell regulatory processes, either enzymatically or through protein-protein interactions (PPIs). Short linear motifs (SLiMs) are abundant peptide modules in cell signaling proteins. Here, we cover the reported examples of eukaryotic-like SLiM mimicry being used by pathogenic bacteria to hijack host cell machinery and discuss how drugs targeting SLiM-regulated cell signaling networks are being evaluated for interference with bacterial infections. This emerging anti-infective opportunity may become an essential contributor to antibiotic replacement strategies.
Collapse
Affiliation(s)
- Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
10
|
Bisht D, Sharma D, Sharma D, Singh R, Gupta VK. Recent insights into Mycobacterium tuberculosis through proteomics and implications for the clinic. Expert Rev Proteomics 2019; 16:443-456. [PMID: 31032653 DOI: 10.1080/14789450.2019.1608185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/12/2019] [Indexed: 01/25/2023]
Abstract
This review aimed at providing an update on the application of proteomics-based approaches to gain recent insights of Mycobacterium tuberculosis (M.tb) and its relevance to clinic. Proteomics and bioinformatics approaches helped in the identification and characterization of novel proteins. Studying M.tb, causative agent of tuberculosis (TB), at the proteomic level can contribute to the identification of proteins which can be considered as potential targets for developed drugs and can help us in better understanding the pathogen physiology. Areas covered: In this review we have presented a comprehensive literature pertaining to role of proteomics in understanding M.tb. We have also focused on how the development and advancement in technology in the field of proteomics has augmented the research and played a pivotal role in answering many unexplored questions. Lastly, the application of proteomics to clinic has also been discussed. Expert commentary: We envisage that proteomics has gained remarkable momentum over the years. Proteomics can play an important role in the discovery of biomarkers for TB and other diseases. Also, it can aid in development of effective vaccines and simple, rapid and cost-effective test for the diagnosis of TB which is crucial for the management and control of the disease.
Collapse
Affiliation(s)
- Deepa Bisht
- a Department of Biochemistry , National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR) , Agra , India
| | - Devesh Sharma
- a Department of Biochemistry , National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR) , Agra , India
| | - Divakar Sharma
- b Medical Microbiology and Molecular Biology Laboratory , Interdisciplinary Biotechnology Unit, Aligarh Muslim University , Aligarh , India
| | - Rananjay Singh
- a Department of Biochemistry , National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR) , Agra , India
| | - Vivek Kumar Gupta
- a Department of Biochemistry , National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR) , Agra , India
| |
Collapse
|
11
|
Exploration of some new secretory proteins to be employed for companion diagnosis of Mycobacterium tuberculosis. Immunol Lett 2019; 209:67-74. [PMID: 30898660 DOI: 10.1016/j.imlet.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 01/09/2023]
Abstract
Tuberculosis (TB) is a highly infectious disease and its early and precise diagnosis is essential to reduce morbidity and mortality of patients. Since the routine diagnostic tests (like Monteux, AFB smear microscopy, chest X-Ray) do not give infallible results, additional tests are always recommended. Therefore to address the concerns about non-specificity of the present battery of diagnostic tests, we have attempted to analyze some unique secretory antigens which could be able to identify the stage specific infection of MTB. In this study, we have used recombinant proteins CFP-10, ESAT-6, Ag85 A, Ag85B, Ag85C, PE3, PE4 and Mycp1 to eliminate heterogeneity and cross reactivity in clinical diagnosis. Amplified genes were cloned and over-expressed in Escherichia coli BL21 (DE3). The recombinantly purified proteins were used as antigens against 158 sera samples of TB patients. Secretory proteins showed better response than the PPD control. Among all the used antigens PE3 and PE4 proteins showed better reactivity levels among all the groups of TB patients. The secretions of CFP-10 and ESAT-6 were also higher as compared to other secretory proteins like Ag85 A, Ag85B, Ag85C and MycP1.The clinical use of these newly identified secretory antigens could be of significant value for the confirmatory, rapid, simple and low-cost diagnosis of TB patients.
Collapse
|
12
|
Zheng S, Zhou Y, Fleming J, Zhou Y, Zhang M, Li S, Li H, Sun B, Liu W, Bi L. Structural and genetic analysis of START superfamily protein MSMEG_0129 from Mycobacterium smegmatis. FEBS Lett 2018. [PMID: 29512898 DOI: 10.1002/1873-3468.13024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mycobacterium tuberculosis is a notorious pathogen that continues to threaten human health. Rv0164, an antigen of both T- and B cells conserved across mycobacteria, and MSMEG_0129, its close homolog in Mycobacterium smegmatis, are predicted members of the START domain superfamily, but their molecular function is unknown. Here, gene knockout studies demonstrate MSMEG_0129 is essential for bacterial growth, suggesting Rv0164 may be a potential drug target. The MSMEG_0129 crystal structure determined at 1.95 Å reveals a fold similar to that in polyketide aromatase/cyclases ZhuI and TcmN from Streptomyces sp. Structural comparisons and docking simulations, however, infer that MSMEG_0129 and Rv0164 are unlikely to catalyze polyketide aromatization/cyclization, but probably play an irreplaceable role during mycobacterial growth, for example, in lipid transfer during cell envelope synthesis.
Collapse
Affiliation(s)
- Shuping Zheng
- School of Stomatology and Medicine, Foshan University, China.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhou
- School of Stomatology and Medicine, Foshan University, China.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Joy Fleming
- School of Stomatology and Medicine, Foshan University, China.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yafeng Zhou
- School of Stomatology and Medicine, Foshan University, China
| | - Mengting Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | | | - Wei Liu
- Institute of Immunology, The Third Military Medical University, Chongqing, China
| | - Lijun Bi
- School of Stomatology and Medicine, Foshan University, China.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan, China
| |
Collapse
|
13
|
Tan HW, Xu YM, Wu DD, Lau ATY. Recent insights into human bronchial proteomics - how are we progressing and what is next? Expert Rev Proteomics 2018; 15:113-130. [PMID: 29260600 DOI: 10.1080/14789450.2017.1417847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human respiratory system is highly prone to diseases and complications. Many lung diseases, including lung cancer (LC), tuberculosis (TB), and chronic obstructive pulmonary disease (COPD) have been among the most common causes of death worldwide. Cystic fibrosis (CF), the most common genetic disease in Caucasians, has adverse impacts on the lungs. Bronchial proteomics plays a significant role in understanding the underlying mechanisms and pathogenicity of lung diseases and provides insights for biomarker and therapeutic target discoveries. Areas covered: We overview the recent achievements and discoveries in human bronchial proteomics by outlining how some of the different proteomic techniques/strategies are developed and applied in LC, TB, COPD, and CF. Also, the future roles of bronchial proteomics in predictive proteomics and precision medicine are discussed. Expert commentary: Much progress has been made in bronchial proteomics. Owing to the advances in proteomics, we now have better ability to isolate proteins from desired cellular compartments, greater protein separation methods, more powerful protein detection technologies, and more sophisticated bioinformatic techniques. These all contributed to our further understanding of lung diseases and for biomarker and therapeutic target discoveries.
Collapse
Affiliation(s)
- Heng Wee Tan
- a Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics , Shantou University Medical College , Shantou , People's Republic of China
| | - Yan-Ming Xu
- a Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics , Shantou University Medical College , Shantou , People's Republic of China
| | - Dan-Dan Wu
- a Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics , Shantou University Medical College , Shantou , People's Republic of China
| | - Andy T Y Lau
- a Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics , Shantou University Medical College , Shantou , People's Republic of China
| |
Collapse
|
14
|
Gavya SL, Arora N, Ghosh SS. Retention of functional characteristics of glutathione-S-transferase and lactate dehydrogenase-A in fusion protein. Prep Biochem Biotechnol 2018; 48:128-135. [PMID: 29194006 DOI: 10.1080/10826068.2017.1405022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A paradigm shift toward fusion proteins to render multiple functionalities and applications on a single platform has been incurred in enzyme based diagnosis. Herein, we report development and systematic characterizations of glutathione-S-transferase (GST) and human lactate dehydrogenase A (hLDHA) in a fusion protein (GST-hLDHA) to achieve functional activities of GST and hLDHA simultaneously. The GST-pGEX-4T-2 vector system was used for cloning and purification of hLDHA, utilizing the affinity based interaction between GST and GSH in column chromatography. Bacterially purified protein was subjected to the Western blot analysis and structural analysis by circular dichroism spectroscopy, which revealed intact structural framework of the fusion construct. Kinetic characterization of the fusion GST-hLDHA protein toward GSH and NADH, suggested retention of functional activities of GST and hLDHA in fused protein as indicated by the kinetic parameters km and kcat/km. Further analysis of effect of temperature and pH on GST-hLDHA activity revealed maximum activity around human physiological conditions (37°C and pH 8). Preservation of the structural and functional characteristics of the fusion enzyme paves the way for potential application for the detection of NADH and GSH in conjunction as biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- S Lalitha Gavya
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam , India
| | - Neha Arora
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam , India
| | - Siddhartha Sankar Ghosh
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam , India.,b Centre for Nanotechnology , Indian Institute of Technology Guwahati , Guwahati , Assam , India
| |
Collapse
|
15
|
Ghiraldi-Lopes LD, Campanerut-Sá PAZ, Meneguello JE, Seixas FAV, Lopes-Ortiz MA, Scodro RBL, Pires CTA, da Silva RZ, Siqueira VLD, Nakamura CV, Cardoso RF. Proteomic profile of Mycobacterium tuberculosis after eupomatenoid-5 induction reveals potential drug targets. Future Microbiol 2017; 12:867-879. [DOI: 10.2217/fmb-2017-0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: We investigated a proteome profile, protein–protein interaction and morphological changes of Mycobacterium tuberculosis after different times of eupomatenoid-5 (EUP-5) induction to evaluate the cellular response to the drug-induced damages. Methods: The bacillus was induced to sub-minimal inhibitory concentration of EUP-5 at 12 h, 24 h and 48 h. The proteins were separated by 2D gel electrophoresis, identified by LC/MS-MS. Scanning electron microscopy and Search Tool for the Retrieval of Interacting Genes/Proteins analyses were performed. Results: EUP-5 impacts mainly in M. tuberculosis proteins of intermediary metabolism and interactome suggests a multisite disturbance that contributes to bacilli death. Scanning electron microscopy revealed the loss of bacillary form. Conclusion: Some of the differentially expressed proteins have the potential to be drug targets such as citrate synthase (Rv0896), phosphoglycerate kinase (Rv1437), ketol-acid reductoisomerase (Rv3001c) and ATP synthase alpha chain (Rv1308).
Collapse
Affiliation(s)
- Luciana D Ghiraldi-Lopes
- Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Paula AZ Campanerut-Sá
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Jean E Meneguello
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Flávio AV Seixas
- Department of Biochemistry, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Mariana A Lopes-Ortiz
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Uningá University Center, Rod PR 317, 6114, 87035-510, Maringá, Paraná, Brazil
| | - Regiane BL Scodro
- Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Claudia TA Pires
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Rosi Z da Silva
- State University of Ponta Grossa, Avenida General Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Paraná, Brazil
| | - Vera LD Siqueira
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Celso V Nakamura
- Postgraduate Program in Pharmaceutical Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Rosilene F Cardoso
- Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| |
Collapse
|