1
|
Schumann A, Adamatzky A, Król J, Goles E. Fungi as Turing automata with oracles. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240768. [PMID: 39493298 PMCID: PMC11528491 DOI: 10.1098/rsos.240768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 11/05/2024]
Abstract
In the article, we aim to understand the responses of living organisms, exemplified by mycelium, to external stimuli through the lens of a Turing machine with an oracle (oTM). To facilitate our exploration, we show that a variant of an oTM is a cellular automaton with an oracle, which aptly captures the intricate behaviours observed in organisms such as fungi, shedding light on their dynamic interactions with their environment. This interaction reveals forms of reflection that can be interpreted as a minimum volume of consciousness. Thus, in our study, we interpret consciousness as a mathematical phenomenon when an arithmetic function is arbitrarily modified. We call these modifications the hybridization of behaviour. oTMs are the mathematical language of this hybridization.
Collapse
Affiliation(s)
- Andrew Schumann
- Department of Cognitive Science and Mathematical Modelling, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| | - Andrew Adamatzky
- University of the West of England, Unconventional Computing Laboratory, Bristol, UK
| | - Jerzy Król
- Department of Cognitive Science and Mathematical Modelling, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| | - Eric Goles
- University of Adolfo Ibáñez, Faculty of Engineering and Science, Santiago, Chile
| |
Collapse
|
2
|
Songster LD, Bhuyan D, Christensen JR, Reck-Peterson SL. Woronin body hitchhiking on early endosomes is dispensable for septal localization in Aspergillus nidulans. Mol Biol Cell 2023; 34:br9. [PMID: 37017489 PMCID: PMC10295486 DOI: 10.1091/mbc.e23-01-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/06/2023] Open
Abstract
The proper functioning of organelles depends on their intracellular localization, mediated by motor protein-dependent transport on cytoskeletal tracks. Rather than directly associating with a motor protein, peroxisomes move by hitchhiking on motile early endosomes in the filamentous fungus Aspergillus nidulans. However, the physiological role of peroxisome hitchhiking is unclear. Peroxisome hitchhiking requires the protein PxdA, which is conserved within the fungal subphylum Pezizomycotina but absent from other fungal clades. Woronin bodies are specialized peroxisomes that are also unique to the Pezizomycotina. In these fungi, multinucleate hyphal segments are separated by incomplete cell walls called septa that possess a central pore enabling cytoplasmic exchange. Upon damage to a hyphal segment, Woronin bodies plug septal pores to prevent widespread leakage. Here, we tested whether peroxisome hitchhiking is important for Woronin body motility, distribution, and function in A. nidulans. We show that Woronin body proteins are present within all motile peroxisomes and hitchhike on PxdA-labeled early endosomes during bidirectional, long-distance movements. Loss of peroxisome hitchhiking significantly affected Woronin body distribution and motility in the cytoplasm, but Woronin body hitchhiking is ultimately dispensable for septal localization and plugging.
Collapse
Affiliation(s)
- Livia D. Songster
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Devahuti Bhuyan
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Jenna R. Christensen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Samara L. Reck-Peterson
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
3
|
Songster LD, Bhuyan D, Christensen JR, Reck-Peterson SL. Woronin bodies move dynamically and bidirectionally by hitchhiking on early endosomes in Aspergillus nidulans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524968. [PMID: 36711994 PMCID: PMC9882315 DOI: 10.1101/2023.01.20.524968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The proper functioning of organelles depends on their intracellular localization, mediated by motor protein-dependent transport on cytoskeletal tracks. Rather than directly associating with a motor protein, peroxisomes move by hitchhiking on motile early endosomes in the filamentous fungus Aspergillus nidulans . However, the cellular function of peroxisome hitchhiking is unclear. Peroxisome hitchhiking requires the protein PxdA, which is conserved within the fungal subphylum Pezizomycotina, but absent from other fungal clades. Woronin bodies are specialized peroxisomes that are also unique to the Pezizomycotina. In these fungi, multinucleate hyphal segments are separated by incomplete cell walls called septa that possess a central pore enabling cytoplasmic exchange. Upon damage to a hyphal segment, Woronin bodies plug septal pores to prevent wide-spread leakage. Here, we tested if peroxisome hitchhiking is important for Woronin body motility, distribution, and function in A. nidulans . We show that Woronin body proteins are present within all motile peroxisomes and hitchhike on PxdA-labeled early endosomes during bidirectional, long-distance movements. Loss of peroxisome hitchhiking by knocking out pxdA significantly affected Woronin body distribution and motility in the cytoplasm, but Woronin body hitchhiking is ultimately dispensable for septal localization and plugging.
Collapse
Affiliation(s)
- Livia D. Songster
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Devahuti Bhuyan
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jenna R. Christensen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samara L. Reck-Peterson
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
4
|
Arakawa S, Kanaseki T, Wagner R, Goodenough U. Ultrastructure of the foliose lichen Myelochroa leucotyliza and its solo fungal and algal (Trebouxia sp.) partners. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
5
|
Comprehensive Analysis of Aspergillus nidulans PKA Phosphorylome Identifies a Novel Mode of CreA Regulation. mBio 2019; 10:mBio.02825-18. [PMID: 31040248 PMCID: PMC6495382 DOI: 10.1128/mbio.02825-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cyclic AMP (cAMP)-dependent protein kinase A (PKA) signaling pathway is well conserved across eukaryotes, and previous work has shown that it plays an important role in regulating development, growth, and virulence in a number of fungi. PKA is activated in response to extracellular nutrients and acts to regulate metabolism and growth. While a number of components in the PKA pathway have been defined in filamentous fungi, current understanding does not provide a global perspective on PKA function. Thus, this work is significant in that it comprehensively identifies proteins and functional pathways regulated by PKA in a model filamentous fungus. This information enhances our understanding of PKA action and may provide information on how to manipulate it for specific purposes. In filamentous fungi, an important kinase responsible for adaptation to changes in available nutrients is cyclic AMP (cAMP)-dependent protein kinase (protein kinase A [PKA]). This kinase has been well characterized at a molecular level, but its systemic action and direct/indirect targets are generally not well understood in filamentous fungi. In this work, we used a pkaA deletion strain (ΔpkaA) to identify Aspergillus nidulans proteins for which phosphorylation is dependent (either directly or indirectly) on PKA. A combination of phosphoproteomic and transcriptomic analyses revealed both direct and indirect targets of PKA and provided a global perspective on its function. One of these targets was the transcription factor CreA, the main repressor responsible for carbon catabolite repression (CCR). In the ΔpkaA strain, we identified a previously unreported phosphosite in CreA, S319, which (based on motif analysis) appears to be a direct target of Stk22 kinase (AN5728). Upon replacement of CreA S319 with an alanine (i.e., phosphonull mutant), the dynamics of CreA import to the nucleus are affected. Collectively, this work provides a global overview of PKA function while also providing novel insight regarding significance of a specific PKA-mediated phosphorylation event.
Collapse
|
6
|
Steinberg G, Harmer NJ, Schuster M, Kilaru S. Woronin body-based sealing of septal pores. Fungal Genet Biol 2017; 109:53-55. [PMID: 29107012 PMCID: PMC5745230 DOI: 10.1016/j.fgb.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/03/2017] [Accepted: 10/22/2017] [Indexed: 12/01/2022]
Abstract
Upon wounding, Woronin bodies seal hyphal septa in filamentous ascomycetes. Little is known about the mechanism underpinning Woronin body translocation. Passive bulk flow of cytoplasm may move Woronin bodies into the septal pore. Mechanisms that involve Lah proteins are likely to support Woronin body based sealing. ATP is required to prevent Woronin bodies from closing pores in healthy cells.
In ascomycete fungi, hyphal cells are separated by perforate septa, which allow cell-to-cell communication. To protect against extensive wound-induced damage, septal pores are sealed by peroxisome-derived Woronin bodies (WBs). The mechanism underpinning WB movement is unknown, but cytoplasmic bulk flow may “flush” WBs into the pore. However, some studies suggest a controlled and active mechanism of WB movement. Indeed, in the wheat pathogen Zymoseptoria tritici cellular ATP prevents WBs from pore sealing in unwounded cells. Thus, cells appear to exert active control over WB closure. Here, we summarize our current understanding of WB-based pore sealing in ascomycete fungi.
Collapse
Affiliation(s)
- Gero Steinberg
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom; Donder's Chair, University of Utrecht, Department of Biology, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Nicholas J Harmer
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Martin Schuster
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Sreedhar Kilaru
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
7
|
Steinberg G, Schuster M, Hacker C, Kilaru S, Correia A. ATP prevents Woronin bodies from sealing septal pores in unwounded cells of the fungus Zymoseptoria tritici. Cell Microbiol 2017; 19. [PMID: 28671740 PMCID: PMC5656841 DOI: 10.1111/cmi.12764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Septa of filamentous ascomycetes are perforated by septal pores that allow communication between individual hyphal compartments. Upon injury, septal pores are plugged rapidly by Woronin bodies (WBs), thereby preventing extensive cytoplasmic bleeding. The mechanism by which WBs translocate into the pore is not known, but it has been suggested that wound‐induced cytoplasmic bleeding “flushes” WBs into the septal opening. Alternatively, contraction of septum‐associated tethering proteins may pull WBs into the septal pore. Here, we investigate WB dynamics in the wheat pathogen Zymoseptoria tritici. Ultrastructural studies showed that 3.4 ± 0.2 WBs reside on each side of a septum and that single WBs of 128.5 ± 3.6 nm in diameter seal the septal pore (41 ± 1.5 nm). Live cell imaging of green fluorescent ZtHex1, a major protein in WBs, and the integral plasma membrane protein ZtSso1 confirms WB translocation into the septal pore. This was associated with the occasional formation of a plasma membrane “balloon,” extruding into the dead cell, suggesting that the plasma membrane rapidly seals the wounded septal pore wound. Minor amounts of fluorescent ZtHex1‐enhanced green fluorescent protein (eGFP) appeared associated with the “ballooning” plasma membrane, indicating that cytoplasmic ZtHex1‐eGFP is recruited to the extending plasma membrane. Surprisingly, in ~15% of all cases, WBs moved from the ruptured cell into the septal pore. This translocation against the cytoplasmic flow suggests that an active mechanism drives WB plugging. Indeed, treatment of unwounded and intact cells with the respiration inhibitor carbonyl cyanide m‐chlorophenyl hydrazone induced WB translocation into the pores. Moreover, carbonyl cyanide m‐chlorophenyl hydrazone treatment recruited cytoplasmic ZtHex1‐eGFP to the lateral plasma membrane of the cells. Thus, keeping the WBs out of the septal pores, in Z. tritici, is an ATP‐dependent process.
Collapse
Affiliation(s)
- Gero Steinberg
- School of Biosciences, University of Exeter, Exeter, UK.,Department of Biology, University of Utrecht, Utrecht, The Netherlands
| | | | | | | | - Ana Correia
- Bioimaging Centre, University of Exeter, Exeter, UK
| |
Collapse
|