1
|
Yılmaz D, Gürses A, Kalecik S, Maman A, Şahin E, Güneş K. Removal of 177Lu from radioactive wastewater using Montmorillonite clay. Appl Radiat Isot 2024; 211:111417. [PMID: 38925036 DOI: 10.1016/j.apradiso.2024.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/17/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Because radioactive 177Lu has a wide range of possible applications in radiopharmaceuticals, its removal from medical wastewater is particularly important. Montmorillonite clay was employed as an adsorbent in this study. Radioactive solutions were prepared with dilutions of the solution containing 177Lu at various concentrations, in which it was present as Lu3+. ULEGe detector in gamma spectrometer was used to measure 177Lu gamma rays emitted from the radioactive aqueous solutions. The results obtained showed that it is possible to remove 177Lu with a high yield of approximately 90% and it is effective in a period of 90 min under acidic conditions. From the findings, it can be argued that Montmorillonite clay, as an abundant and sustainable adsorbent, may also be suitable for the disposal of different radioactive medical wastes such as 131I and 99mTc, and also the technique based on gamma ray spectroscopy can be used for fast and practical measurements of radioactive material amounts.
Collapse
Affiliation(s)
- Demet Yılmaz
- Ataturk University, Faculty of Science, Department of Physics, Erzurum, Turkey.
| | - Ahmet Gürses
- Ataturk University, K.K. Education Faculty, Department of Chemistry Education, Erzurum, Turkey
| | - Sedanur Kalecik
- Ataturk University, Faculty of Science, Department of Physics, Erzurum, Turkey
| | - Adem Maman
- Ataturk University, Medical Faculty, Department of Nuclear Medicine, Erzurum, Turkey
| | - Elif Şahin
- Ataturk University, K.K. Education Faculty, Department of Chemistry Education, Erzurum, Turkey
| | - Kübra Güneş
- Ataturk University, K.K. Education Faculty, Department of Chemistry Education, Erzurum, Turkey
| |
Collapse
|
2
|
Peng H, Li F, Qin Y, Shi S, Ma G, Fan X, Li Y, Ma L, Liu N. Branched-Chain-Induced Host-Guest Assembly in Covalent-Organic Frameworks for Efficient Separation of No-Carrier-Added 177Lu. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9343-9354. [PMID: 38346235 DOI: 10.1021/acsami.3c19054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
No-carrier-added (NCA) 177Lu is one of the most interesting nuclides for endoradiotherapy. With the dramatically rapid development of radiopharmaceutical and nuclear medicine, there is a sharp increase in the radionuclide supply of NCA 177Lu, which has formed a great challenge to current radiochemical separation constituted on classical materials. Hence, it is of vital importance to design and prepare new functional materials able of recovering 177Lu from an irradiated target with excellent efficacy. In this work, we proposed to apply noncovalent interactions to regulate the porous properties of covalent organic frameworks (COFs) by tuning the branched chain, rendering related covalent hosts different encapsulation abilities toward a flexible guest, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (P507). More interestingly, we found that the noncovalent interaction has a great effect on the host-guest complexes, which can achieve efficient NCA 177Lu separation with high recovery (95.97%). A systematic mechanism combined with experimental and theoretical investigations has confirmed that the noncovalent interactions between COFs and P507 play a preeminent role in adjusting the macroscopic properties of the host-guest complexes. This work not only uncovers that noncovalent interactions can affect the basic properties of covalent organic bonded materials but also provides a strategy for the design and preparation of other new moieties with specific functionalities.
Collapse
Affiliation(s)
- Haiyue Peng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Yilin Qin
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Shilong Shi
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Guoquan Ma
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Xisheng Fan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Yang Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Sichuan University, Chengdu 610064, P. R. China
| | - Lijian Ma
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Sichuan University, Chengdu 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
3
|
Kurakina ES, Wharton L, Khushvaktov J, Magomedbekov EP, Radchenko V, Filosofov D. Separation of 44mSc/ 44gSc Nuclear Isomers Based on After-Effects. Inorg Chem 2023; 62:20646-20654. [PMID: 37625137 DOI: 10.1021/acs.inorgchem.3c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
44gSc presents a particular interest for application in nuclear medicine for positron emission tomography (PET) due to its favorable nuclear decay properties (t1/2 = 3.97 h, Emax = 1.47 MeV, branching ratio 94.3% β+). Its nuclear isomer 44mSc (t1/2 = 58.61 h) decays by isomeric transition (IT) into 44gSc, accompanied by ≈12% of conversion electron emission, which can cause a partial release of the daughter 44gSc from the chelate complex. A 13 MeV cyclotron at TRIUMF was used to produce both 44mSc and 44gSc via the natCa(p,n)44m,gSc reaction. A 44mSc/44gSc generator was designed by using a Strata C-18E cartridge. After several tested systems, a successful separation method was developed using DOTATOC as a chelator, a Strata C-18E cartridge as a generator column, and an elution solution of 0.1 M NH4-α-HIB. The yield of the generator with the daughter 44gSc release was equal to 9.8 ± 1.0% (or ≈80% per portion of conversion). This result shows the important role of after-effects in the design of radionuclide generators. Nuclear cross-section calculations were applied using the TALYS code to allow for the determination of the most promising alternative routes for 44mSc production, which will enable the development of a full-scale 44mSc/44gSc radionuclide generator based on after-effects.
Collapse
Affiliation(s)
- Elena Sergeevna Kurakina
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
- Department of High-Energy Chemistry and Radioecology, D. Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russian Federation
| | - Luke Wharton
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jurabek Khushvaktov
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| | - Eldar Parpachevich Magomedbekov
- Department of High-Energy Chemistry and Radioecology, D. Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russian Federation
| | - Valery Radchenko
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Dmitry Filosofov
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| |
Collapse
|
4
|
Ritawidya R, Wongso H, Effendi N, Pujiyanto A, Lestari W, Setiawan H, Humani TS. Lutetium-177-Labeled Prostate-Specific Membrane Antigen-617 for Molecular Imaging and Targeted Radioligand Therapy of Prostate Cancer. Adv Pharm Bull 2023; 13:701-711. [PMID: 38022814 PMCID: PMC10676551 DOI: 10.34172/apb.2023.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/04/2023] [Accepted: 04/24/2023] [Indexed: 12/01/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) represents a promising target for PSMA-overexpressing diseases, especially prostate cancer-a common type of cancer among men worldwide. In response to the challenges in tackling prostate cancers, several promising PSMA inhibitors from a variety of molecular scaffolds (e.g., phosphorous-, thiol-, and urea-based molecules) have been developed. In addition, PSMA inhibitors bearing macrocyclic chelators have attracted interest due to their favorable pharmacokinetic properties. Recently, conjugating a small PSMA molecule inhibitor-bearing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator, as exemplified by [177Lu]Lu-PSMA-617 could serve as a molecular imaging probe and targeted radioligand therapy (TRT) of metastatic castration resistant prostate cancer (mCRPC). Hence, studies related to mCRPC have drawn global attention. In this review, the recent development of PSMA ligand-617-labeled with 177Lu for the management of mCRPC is presented. Its molecular mechanism of action, safety, efficacy, and future direction are also described.
Collapse
Affiliation(s)
- Rien Ritawidya
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Nurmaya Effendi
- Faculty of Pharmacy, University of Muslim Indonesia, Kampus II UMI, Jl. Urip Sumoharjo No.225, Panaikang, Panakkukang, Kota, Makassar, Sulawesi Selatan 90231
| | - Anung Pujiyanto
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
| | - Wening Lestari
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
| | - Herlan Setiawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
| | - Titis Sekar Humani
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
| |
Collapse
|
5
|
Nichols AL. Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β + emitters and therapeutic radioisotopes. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Recommended half-lives and specific well-defined emission energies and absolute emission probabilities are important input parameters that should be well-defined to assist in ensuring the diagnostic and therapeutic efficacy of individual radionuclides when applied in the field of nuclear medicine. Bearing in mind the nature of these requirements, approximately one hundred radionuclides have been considered and re-assessed as to whether their decay data are either adequately quantified, or require further in-depth measurements to improve their existing status and merit full re-evaluations of their decay schemes. The primary aim of such a review is to provide sufficient information on the existing and future requirements for such atomic and nuclear data.
Collapse
Affiliation(s)
- Alan L. Nichols
- Department of Physics , University of Surrey , Guildford , GU2 7XH , UK
- Manipal Academy of Higher Education, Manipal, Karnataka 576104 , India
| |
Collapse
|
6
|
Vi C, Mandarano G, Shigdar S. Diagnostics and Therapeutics in Targeting HER2 Breast Cancer: A Novel Approach. Int J Mol Sci 2021; 22:6163. [PMID: 34200484 PMCID: PMC8201268 DOI: 10.3390/ijms22116163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 01/02/2023] Open
Abstract
Breast cancer is one of the most commonly occurring cancers in women globally and is the primary cause of cancer mortality in females. BC is highly heterogeneous with various phenotypic expressions. The overexpression of HER2 is responsible for 15-30% of all invasive BC and is strongly associated with malignant behaviours, poor prognosis and decline in overall survival. Molecular imaging offers advantages over conventional imaging modalities, as it provides more sensitive and specific detection of tumours, as these techniques measure the biological and physiological processes at the cellular level to visualise the disease. Early detection and diagnosis of BC is crucial to improving clinical outcomes and prognosis. While HER2-specific antibodies and nanobodies may improve the sensitivity and specificity of molecular imaging, the radioisotope conjugation process may interfere with and may compromise their binding functionalities. Aptamers are single-stranded oligonucleotides capable of targeting biomarkers with remarkable binding specificity and affinity. Aptamers can be functionalised with radioisotopes without compromising target specificity. The attachment of different radioisotopes can determine the aptamer's functionality in the treatment of HER2(+) BC. Several HER2 aptamers and investigations of them have been described and evaluated in this paper. We also provide recommendations for future studies with HER2 aptamers to target HER2(+) BC.
Collapse
Affiliation(s)
- Chris Vi
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (C.V.); (G.M.)
| | - Giovanni Mandarano
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (C.V.); (G.M.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (C.V.); (G.M.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
7
|
Bhardwaj R, Wolterbeek HT, Denkova AG, Serra-Crespo P. Solid phase extraction-based separation of the nuclear isomers 177mLu and 177Lu. Appl Radiat Isot 2020; 164:109264. [DOI: 10.1016/j.apradiso.2020.109264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/21/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
|
8
|
Bhardwaj R, Wolterbeek HT, Denkova AG, Serra-Crespo P. Modelling of the 177mLu/ 177Lu radionuclide generator. Appl Radiat Isot 2020; 166:109261. [PMID: 32961525 DOI: 10.1016/j.apradiso.2020.109261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/24/2020] [Accepted: 06/01/2020] [Indexed: 10/23/2022]
Abstract
In order to determine the potential of 177mLu/177Lu radionuclide generator in 177Lu production it is important to establish the technical needs that can lead to a clinically acceptable 177Lu product quality. In this work, a model that includes all the processes and the parameters affecting the performance of the 177mLu/177Lu radionuclide generator has been developed. The model has been based on the use of a ligand to complex 177mLu ions, followed by the separation of the freed 177Lu ions. The dissociation kinetics of the Lu-ligand complex has been found to be the most crucial aspect governing the specific activity and 177mLu content of the produced 177Lu. The dissociation rate constants lower than 1*10-11 s-1 would be required to lead to onsite 177Lu production with specific activity close to theoretical maximum of 4.1 TBq 177Lu/mg Lu and with 177mLu content of less than 0.01%. Lastly, the calculations suggest that more than one patient dose per week can be supplied for a period of up to 7 months on starting with the 177mLu produced using 3 g Lu2O3 target with 60% 176Lu enrichment. The requirements of the starting 177mLu activity production needs to be adapted depending on the required patient doses, and the technical specifications of the involved 177mLu-177Lu separation process.
Collapse
Affiliation(s)
- Rupali Bhardwaj
- Applied Radiation and Isotopes, Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, the Netherlands; Catalysis Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Hubert T Wolterbeek
- Applied Radiation and Isotopes, Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, the Netherlands
| | - Antonia G Denkova
- Applied Radiation and Isotopes, Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, the Netherlands
| | - Pablo Serra-Crespo
- Applied Radiation and Isotopes, Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, the Netherlands.
| |
Collapse
|
9
|
Estimation of 47Sc and 177Lu production rates from their natural targets in Kyoto University Research Reactor. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07156-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Gholami YH, Josephson L, Akam EA, Caravan P, Wilks MQ, Pan XZ, Maschmeyer R, Kolnick A, El Fakhri G, Normandin MD, Kuncic Z, Yuan H. A Chelate-Free Nano-Platform for Incorporation of Diagnostic and Therapeutic Isotopes. Int J Nanomedicine 2020; 15:31-47. [PMID: 32021163 PMCID: PMC6954846 DOI: 10.2147/ijn.s227931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Using our chelate-free, heat-induced radiolabeling (HIR) method, we show that a wide range of metals, including those with radioactive isotopologues used for diagnostic imaging and radionuclide therapy, bind to the Feraheme (FH) nanoparticle (NP), a drug approved for the treatment of iron anemia. MATERIAL AND METHODS FH NPs were heated (120°C) with nonradioactive metals, the resulting metal-FH NPs were characterized by inductively coupled plasma mass spectrometry (ICP-MS), dynamic light scattering (DLS), and r1 and r2 relaxivities obtained by nuclear magnetic relaxation spectrometry (NMRS). In addition, the HIR method was performed with [90Y]Y3+, [177Lu]Lu3+, and [64Cu]Cu2+, the latter with an HIR technique optimized for this isotope. Optimization included modifying reaction time, temperature, and vortex technique. Radiochemical yield (RCY) and purity (RCP) were measured using size exclusion chromatography (SEC) and thin-layer chromatography (TLC). RESULTS With ICP-MS, metals incorporated into FH at high efficiency were bismuth, indium, yttrium, lutetium, samarium, terbium and europium (>75% @ 120 oC). Incorporation occurred with a small (less than 20%) but statistically significant increases in size and the r2 relaxivity. An improved HIR technique (faster heating rate and improved vortexing) was developed specifically for copper and used with the HIR technique and [64Cu]Cu2+. Using SEC and TLC analyses with [90Y]Y3+, [177Lu]Lu3+ and [64Cu]Cu2+, RCYs were greater than 85% and RCPs were greater than 95% in all cases. CONCLUSION The chelate-free HIR technique for binding metals to FH NPs has been extended to a range of metals with radioisotopes used in therapeutic and diagnostic applications. Cations with f-orbital electrons, more empty d-orbitals, larger radii, and higher positive charges achieved higher values of RCY and RCP in the HIR reaction. The ability to use a simple heating step to bind a wide range of metals to the FH NP, a widely available approved drug, may allow this NP to become a platform for obtaining radiolabeled nanoparticles in many settings.
Collapse
Affiliation(s)
- Yaser H Gholami
- The University of Sydney, Faculty of Science, School of Physics, Sydney, NSW, Australia
- Bill Walsh Translational Cancer Research Laboratory, The Kolling Institute, Northern Sydney Local Health District, Sydney, Australia
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Sydney Vital Translational Cancer Research Centre, St Leonards, NSW, Australia
| | - Lee Josephson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Eman A Akam
- The Institute for Innovation in Imaging and the A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Peter Caravan
- The Institute for Innovation in Imaging and the A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Moses Q Wilks
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiang-Zuo Pan
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Bouve College of Health Sciences, CaNCURE Program, Northeastern University, Boston, MA, USA
| | - Richard Maschmeyer
- The University of Sydney, Faculty of Science, School of Physics, Sydney, NSW, Australia
| | - Aleksandra Kolnick
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Internal Medicine Residency Program, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Zdenka Kuncic
- The University of Sydney, Faculty of Science, School of Physics, Sydney, NSW, Australia
- Sydney Vital Translational Cancer Research Centre, St Leonards, NSW, Australia
- The University of Sydney Nano Institute, Sydney, NSW, Australia
| | - Hushan Yuan
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Large-scale production of lutetium-177m for the 177mLu/ 177Lu radionuclide generator. Appl Radiat Isot 2019; 156:108986. [PMID: 31786419 DOI: 10.1016/j.apradiso.2019.108986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/07/2019] [Accepted: 11/11/2019] [Indexed: 11/22/2022]
Abstract
In this work, 177mLu has been produced by irradiation of natural Lu2O3 targets at the BR2 reactor (Mol, Belgium) and the obtained data together with literature values have been used to theoretically investigate the production of 177mLu at different neutron fluxes, irradiation times and enrichment of 176Lu. The irradiation time (tmax) needed to reach the maximum 177mLu production has been found to change from 42, 12, 4 days with the increase in the thermal neutron flux from 2*1014, 8*1014, 2.5*1015 n cm-2 s-1, respectively while keeping the maximum 177mLu activity unaffected. The results of our calculations suggest that 0.11 TBq 177mLu with a specific activity of 0.3 TBq g-1 Lu can be produced in a short irradiation time of 4 days using 1g of 84.44% 176Lu enriched Lu2O3 and a thermal neutron flux of 2.5*1015 n cm-2 s-1.
Collapse
|
12
|
Baranyai Z, Tircsó G, Rösch F. The Use of the Macrocyclic Chelator DOTA in Radiochemical Separations. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zsolt Baranyai
- Bracco Research Centre Bracco Imaging spa Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Gyula Tircsó
- Department of Physical Chemistry Faculty of Science and Technology University of Debrecen Egyetem tér 1 Debrecen 4032 Hungary
| | - Frank Rösch
- Institute of Nuclear Chemistry Johannes Gutenberg‐University of Mainz Fritz‐Strassmann‐Weg 2 55128 Mainz Germany
| |
Collapse
|
13
|
Bhardwaj R, Wolterbeek HT, Denkova AG, Serra-Crespo P. Radionuclide generator-based production of therapeutic 177Lu from its long-lived isomer 177mLu. EJNMMI Radiopharm Chem 2019; 4:13. [PMID: 31659496 PMCID: PMC6629729 DOI: 10.1186/s41181-019-0064-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
Background In this work, a lutetium-177 (177Lu) production method based on the separation of nuclear isomers, 177mLu & 177Lu, is reported. The 177mLu-177Lu separation is performed by combining the use of DOTA & DOTA-labelled peptide (DOTATATE) and liquid-liquid extraction. Methods The 177mLu cations were complexed with DOTA & DOTATATE and kept at 77 K for periods of time to allow 177Lu production. The freed 177Lu ions produced via internal conversion of 177mLu were then extracted in dihexyl ether using 0.01 M di-(2-ethylhexyl) phosphoric acid (DEHPA) at room temperature. The liquid-liquid extractions were performed periodically for a period up to 35 days. Results A maximum 177Lu/177mLu activity ratio of 3500 ± 500 was achieved with [177mLu]Lu-DOTA complex, in comparison to 177Lu/177mLu activity ratios of 1086 ± 40 realized using [177mLu]Lu-DOTATATE complex. The 177Lu-177mLu separation was found to be affected by the molar ratio of lutetium and DOTA. A 177Lu/177mLu activity ratio up to 3500 ± 500 was achieved with excess DOTA in comparison to 177Lu/177mLu activity ratio 1500 ± 600 obtained when lutetium and DOTA were present in molar ratio of 1:1. Further, the 177Lu ion extraction efficiency, decreases from 95 ± 4% to 58 ± 2% in the presence of excess DOTA. Conclusion The reported method resulted in a 177Lu/ 177mLu activity ratio up to 3500 after the separation. This ratio is close to the lower end of 177Lu/177mLu activity ratios, attained currently during the direct route 177Lu production for clinical applications (i.e. 4000–10,000). This study forms the basis for further extending the liquid-liquid extraction based 177mLu-177Lu separation in order to lead to a commercial 177mLu/177Lu radionuclide generator. Electronic supplementary material The online version of this article (10.1186/s41181-019-0064-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rupali Bhardwaj
- Applied Radiation and Isotopes, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands.,Catalysis Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Hubert Th Wolterbeek
- Applied Radiation and Isotopes, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands
| | - Antonia G Denkova
- Applied Radiation and Isotopes, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands
| | - Pablo Serra-Crespo
- Applied Radiation and Isotopes, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands.
| |
Collapse
|