1
|
Skočková V, Raptová P, Pospíchalová K, Sovadinová I, Sychrová E, Smutná M, Hilscherová K, Babica P, Šindlerová L. Cyanobacterial harmful bloom lipopolysaccharides: pro-inflammatory effects on epithelial and immune cells in vitro. Arch Toxicol 2024; 98:481-491. [PMID: 38063875 PMCID: PMC10794361 DOI: 10.1007/s00204-023-03644-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
Cyanobacterial harmful blooms (CyanoHABs) pose a global ecological problem, and their lipopolysaccharides (LPS) are among the bioactive compounds they release. Previous studies on CyanoHAB-LPS from single cyanobacterial species have shown varying bioactivities in different in vitro cell models. In this study, we isolated LPS from 19 CyanoHAB samples collected at 18 water bodies in the Czech Republic over two consecutive seasons. The proportions of cyanobacteria, Gram-negative bacteria (G-), and other bacteria in the biomass were determined by qPCR, while the cyanobacterial genera were identified using light microscopy. In vitro models of keratinocytes (HaCaT), the intestinal epithelium (co-culture of differentiated Caco-2 cells and peripheral blood mononuclear cells - PBMC), and PBMC alone were treated with isolated LPS at concentrations of 50, 100, and 1 µg/ml, respectively. The endotoxin activities of these concentrations were within the range measured in the aquatic environment. Approximately 85-90% of the samples displayed biological activity. However, the potency of individual LPS effects and response patterns varied across the different in vitro models. Furthermore, the observed activities did not exhibit a clear correlation with the taxonomic composition of the phytoplankton community, the relative share of microbial groups in the biomass, endotoxin activity of the LPS, or LPS migration and staining pattern in SDS-PAGE. These findings suggest that the effects of CyanoHAB-LPS depend on the specific composition and abundance of various LPS structures within the complex environmental sample and their interactions with cellular receptors.
Collapse
Affiliation(s)
- V Skočková
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, 61200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - P Raptová
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, 61200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - K Pospíchalová
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, 61200, Czech Republic
| | - I Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - E Sychrová
- RECETOX, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - M Smutná
- RECETOX, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - K Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - P Babica
- RECETOX, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany of the Czech Academy of Sciences, Brno, 60200, Czech Republic
| | - L Šindlerová
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, 61200, Czech Republic.
| |
Collapse
|
2
|
Grasso G, Sommella EM, Merciai F, Abouhany R, Shinde SA, Campiglia P, Sellergren B, Crescenzi C. Enhanced selective capture of phosphomonoester lipids enabling highly sensitive detection of sphingosine 1-phosphate. Anal Bioanal Chem 2023; 415:6573-6582. [PMID: 37736841 PMCID: PMC10567913 DOI: 10.1007/s00216-023-04937-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
Sphingolipids play crucial roles in cellular membranes, myelin stability, and signalling responses to physiological cues and stress. Among them, sphingosine 1-phosphate (S1P) has been recognized as a relevant biomarker for neurodegenerative diseases, and its analogue FTY-720 has been approved by the FDA for the treatment of relapsing-remitting multiple sclerosis. Focusing on these targets, we here report three novel polymeric capture phases for the selective extraction of the natural biomarker and its analogue drug. To enhance analytical performance, we employed different synthetic approaches using a cationic monomer and a hydrophobic copolymer of styrene-DVB. Results have demonstrated high affinity of the sorbents towards S1P and fingolimod phosphate (FTY-720-P, FP). This evidence proved that lipids containing phosphate diester moiety in their structures did not constitute obstacles for the interaction of phosphate monoester lipids when loaded into an SPE cartridge. Our suggested approach offers a valuable tool for developing efficient analytical procedures.
Collapse
Affiliation(s)
- Giuliana Grasso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
- Biofilm Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 23014, Malmö, Sweden
| | - Eduardo M Sommella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Fabrizio Merciai
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Rahma Abouhany
- Biofilm Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 23014, Malmö, Sweden
| | - Sudhirkumar A Shinde
- Biofilm Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 23014, Malmö, Sweden
- School of Consciousness, Dr. Vishwanath Karad MIT World Peace University, 411038, Pune, India
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Börje Sellergren
- Biofilm Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 23014, Malmö, Sweden
| | - Carlo Crescenzi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
3
|
Huynh CM, Arribas Díez I, Thi HKL, Jensen ON, Sellergren B, Irgum K. Terminally Phosphorylated Triblock Polyethers Acting Both as Templates and Pore-Forming Agents for Surface Molecular Imprinting of Monoliths Targeting Phosphopeptides. ACS OMEGA 2023; 8:8791-8803. [PMID: 36910939 PMCID: PMC9996590 DOI: 10.1021/acsomega.3c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The novel process reported here described the manufacture of monolithic molecularly imprinted polymers (MIPs) using a terminally functionalized block copolymer as the imprinting template and pore-forming agent. The MIPs were prepared through a step-growth polymerization process using a melamine-formaldehyde precondensate in a biphasic solvent system. Despite having a relatively low imprinting factor, the use of MIP monolith in liquid chromatography demonstrated the ability to selectively target desired analytes. An MIP capillary column was able to separate monophosphorylated peptides from a tryptic digest of bovine serum albumin. Multivariate data analysis and modeling of the phosphorylated and nonphosphorylated peptide retention times revealed that the number of phosphorylations was the strongest retention contributor for peptide retention on the monolithic MIP capillary column.
Collapse
Affiliation(s)
- Chau Minh Huynh
- Department
of Chemistry, Umeå University, S-901 87 Umeå, Sweden
| | - Ignacio Arribas Díez
- Department
of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Hien Kim Le Thi
- Department
of Chemistry, Umeå University, S-901 87 Umeå, Sweden
| | - Ole N. Jensen
- Department
of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Börje Sellergren
- Faculty
of Health and Society, Department of Biomedical Science, Malmö University, S-205 06 Malmö, Sweden
| | - Knut Irgum
- Department
of Chemistry, Umeå University, S-901 87 Umeå, Sweden
| |
Collapse
|
4
|
Cyanobacterial Harmful Bloom Lipopolysaccharides Induce Pro-Inflammatory Effects in Immune and Intestinal Epithelial Cells In Vitro. Toxins (Basel) 2023; 15:toxins15030169. [PMID: 36977060 PMCID: PMC10058507 DOI: 10.3390/toxins15030169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Freshwater cyanobacterial harmful blooms (CyanoHABs) produce a variety of toxic and bioactive compounds including lipopolysaccharides (LPSs). The gastrointestinal tract can be exposed to them via contaminated water even during recreational activities. However, there is no evidence of an effect of CyanoHAB LPSs on intestinal cells. We isolated LPSs of four CyanoHABs dominated by different cyanobacterial species and LPSs of four laboratory cultures representing the respective dominant cyanobacterial genera. Two intestinal and one macrophage cell lines were used to detect in vitro pro-inflammatory activity of the LPS. All LPSs isolated from CyanoHABs and laboratory cultures induced cytokines production in at least one in vitro model, except for LPSs from the Microcystis PCC7806 culture. LPSs isolated from cyanobacteria showed unique migration patterns in SDS-PAGE that were qualitatively distinct from those of endotoxins from Gram-negative bacteria. There was no clear relationship between the biological activity of the LPS and the share of genomic DNA of Gram-negative bacteria in the respective biomass. Thus, the total share of Gram-negative bacteria, or the presence of Escherichia coli-like LPSs, did not explain the observed pro-inflammatory activities. The pro-inflammatory properties of environmental mixtures of LPSs from CyanoHABs indicate their human health hazards, and further attention should be given to their assessment and monitoring.
Collapse
|
5
|
Chongruchiroj S, Pratuangdejkul J, Sripha K, Prutthiwanasan B. Computational modeling and synthesis of lecithin molecularly imprinted polymer for endotoxin removal. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Morphological Assessment and Biomarkers of Low-Grade, Chronic Intestinal Inflammation in Production Animals. Animals (Basel) 2022; 12:ani12213036. [PMID: 36359160 PMCID: PMC9654368 DOI: 10.3390/ani12213036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Production animals are continuously exposed to environmental and dietary factors that might induce a state of low-grade, chronic intestinal inflammation. This condition compromises the productive performance and well-fare of these animals, requiring studies to understand what causes it and to develop control strategies. An intestinal inflammatory process is generally associated with alterations in the structure and functionality of its wall, resulting in the release of cellular components into the blood and/or feces. These components can act as biomarkers, i.e., they are measured to identify and quantify an inflammatory process without requiring invasive methods. In this review we discuss the mechanisms of low-grade inflammation, its effects on animal production and sustainability, and the identification of biomarkers that could provide early diagnosis of this process and support studies of useful interventional strategies. Abstract The complex interaction between the intestinal mucosa, the gut microbiota, and the diet balances the host physiological homeostasis and is fundamental for the maximal genetic potential of production animals. However, factors such as chemical and physical characteristics of the diet and/or environmental stressors can continuously affect this balance, potentially inducing a state of chronic low-grade inflammation in the gut, where inflammatory parameters are present and demanding energy, but not in enough intensity to provoke clinical manifestations. It’s vital to expand the understanding of inflammation dynamics and of how they compromise the function activity and microscopic morphology of the intestinal mucosa. These morphometric alterations are associated with the release of structural and functional cellular components into the feces and the blood stream creating measurable biomarkers to track this condition. Moreover, the identification of novel, immunometabolic biomarkers can provide dynamic and predictors of low-grade chronic inflammation, but also provide indicators of successful nutritional or feed additive intervention strategies. The objective of this paper is to review the mechanisms of low-grade inflammation, its effects on animal production and sustainability, and the biomarkers that could provide early diagnosis of this process and support studies of useful interventional strategies.
Collapse
|
7
|
Kimoto H, Suzuki Y, Ebisawa Y, Iiyama M, Hashimoto T, Hayashita T. Simple and Rapid Endotoxin Recognition Using a Dipicolylamine-Modified Fluorescent Probe with Picomolar-Order Sensitivity. ACS OMEGA 2022; 7:25891-25897. [PMID: 35910126 PMCID: PMC9330845 DOI: 10.1021/acsomega.2c02935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Endotoxin is a lipopolysaccharide (LPS) that is found in the outer membrane of the cell wall of Gram-negative bacteria. Due to its high toxicity, the allowable endotoxin limit for water for injection is set at a very low value. Conventional methods for endotoxin detection are time-consuming and expensive and have low reproducibility. A previous study has shown that dipicolylamine (dpa)-modified pyrene-based probes exhibit fluorescence enhancement in response to LPS; however, the application of such probes to the sensing of LPS is not discussed. Against this backdrop, we have developed a simple and rapid endotoxin detection method using a dpa-modified pyrenyl probe having a zinc(II) center (Zn-dpa-C4Py). When LPS was added into Zn-dpa-C4Py solution, excimer emission of the pyrene moiety emerged at 470 nm. This probe can detect picomolar concentrations of LPS (limit of detection = 41 pM). The high sensitivity of the probe is ascribed to the electrostatic and hydrophobic interactions between the probe and LPS, which result in the dimer formation of the pyrene moieties. We also found that Zn-dpa-C4Py has the highest selectivity for LPS compared with other phosphate derivatives, which is probably caused by the co-aggregation of the probe with LPS. We propose that Zn-dpa-C4Py is a promising chemical sensor for the detection of endotoxin in medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Hiroshi Kimoto
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
- Technical
Development Division, Nomura Micro Science
Co., Ltd., 2-4-37 Okada, Atsugi, Kanagawa 243-0021, Japan
| | - Yota Suzuki
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Yu Ebisawa
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Masamitsu Iiyama
- Technical
Development Division, Nomura Micro Science
Co., Ltd., 2-4-37 Okada, Atsugi, Kanagawa 243-0021, Japan
| | - Takeshi Hashimoto
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Takashi Hayashita
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| |
Collapse
|
8
|
Yuksel N, Tektas S. Molecularly imprinted polymers: preparation, characterisation, and application in drug delivery systems. J Microencapsul 2022; 39:176-196. [PMID: 35319325 DOI: 10.1080/02652048.2022.2055185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Molecular imprinting technology defines the creation of molecularly imprinted polymer (MIP) molecules in which template molecules can place in a key-lock relationship through shape, diameter, and functional groups. Although molecular imprinting technology has been employed in different fields, its applications in drug delivery systems (DDSs) have gained momentum recently. The high loading efficiency, high stability, and controlled drug release are the primary advantages of MIPs. Here, the main components, preparation methods, and characterisation tests of MIPs are summarised, and their applications in DDSs administered by different routes are evaluated in detail. The review offers a perspective on molecular imprinting technology and applications of MIPs in drug delivery by surveying the literature approximately 1998-2021 together with the outlined prospects.
Collapse
Affiliation(s)
- Nilufer Yuksel
- Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| | - Sevgi Tektas
- Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| |
Collapse
|
9
|
Tse Sum Bui B, Auroy T, Haupt K. Fighting Antibiotic‐Resistant Bacteria: Promising Strategies Orchestrated by Molecularly Imprinted Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202106493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bernadette Tse Sum Bui
- CNRS Laboratory for Enzyme and Cell Engineering Université de Technologie de Compiègne Rue du Docteur Schweitzer, CS 60319 60203 Compiègne Cedex France
| | - Tiffany Auroy
- CNRS Laboratory for Enzyme and Cell Engineering Université de Technologie de Compiègne Rue du Docteur Schweitzer, CS 60319 60203 Compiègne Cedex France
| | - Karsten Haupt
- CNRS Laboratory for Enzyme and Cell Engineering Université de Technologie de Compiègne Rue du Docteur Schweitzer, CS 60319 60203 Compiègne Cedex France
| |
Collapse
|
10
|
Shinde S, Mansour M, Mavliutova L, Incel A, Wierzbicka C, Abdel-Shafy HI, Sellergren B. Oxoanion Imprinting Combining Cationic and Urea Binding Groups: A Potent Glyphosate Adsorber. ACS OMEGA 2022; 7:587-598. [PMID: 35036726 PMCID: PMC8757333 DOI: 10.1021/acsomega.1c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The use of polymerizable hosts in anion imprinting has led to powerful receptors with high oxyanion affinity and specificity in both aqueous and non-aqueous environments. As demonstrated in previous reports, a carefully tuned combination of orthogonally interacting binding groups, for example, positively charged and neutral hydrogen bonding monomers, allows receptors to be constructed for use in either organic or aqueous environments, in spite of the polymer being prepared in non-competitive solvent systems. We here report on a detailed experimental design of phenylphosphonic and benzoic acid-imprinted polymer libraries prepared using either urea- or thiourea-based host monomers in the presence or absence of cationic comonomers for charge-assisted anion recognition. A comparison of hydrophobic and hydrophilic crosslinking monomers allowed optimum conditions to be identified for oxyanion binding in non-aqueous, fully aqueous, or high-salt media. This showed that recognition improved with the water content for thiourea-based molecularly imprinted polymers (MIPs) based on hydrophobic EGDMA with an opposite behavior shown by the polymers prepared using the more hydrophilic crosslinker PETA. While the affinity of thiourea-based MIPs increased with the water content, the opposite was observed for the oxourea counterparts. Binding to the latter could however be enhanced by raising the pH or by the introduction of cationic amine- or Na+-complexing crown ether-based comonomers. Use of high-salt media as expected suppressed the amine-based charge assistance, whereas it enhanced the effect of the crown ether function. Use of the optimized receptors for removing the ubiquitous pesticide glyphosate from urine finally demonstrated their practical utility.
Collapse
Affiliation(s)
- Sudhirkumar Shinde
- Biofilms
Research Center for Biointerfaces, Department of Biomedical Sciences,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
- School
of Consciousness, Dr. Vishwanath Karad MIT
World Peace University, Kothrud, 411038 Pune, India
| | - Mona Mansour
- Biofilms
Research Center for Biointerfaces, Department of Biomedical Sciences,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
| | - Liliia Mavliutova
- Biofilms
Research Center for Biointerfaces, Department of Biomedical Sciences,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
| | - Anil Incel
- Biofilms
Research Center for Biointerfaces, Department of Biomedical Sciences,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
| | - Celina Wierzbicka
- Biofilms
Research Center for Biointerfaces, Department of Biomedical Sciences,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
| | - Hussein I. Abdel-Shafy
- Water
Research & Pollution Control Department, National Research Centre, Dokki, 11727 Cairo, Egypt
| | - Börje Sellergren
- Biofilms
Research Center for Biointerfaces, Department of Biomedical Sciences,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
| |
Collapse
|
11
|
Tse Sum Bui B, Auroy T, Haupt K. Fighting Antibiotic-Resistant Bacteria : Promising Strategies Orchestrated by Molecularly Imprinted Polymers. Angew Chem Int Ed Engl 2021; 61:e202106493. [PMID: 34779567 DOI: 10.1002/anie.202106493] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 11/09/2022]
Abstract
Infections caused by antibiotic-resistant bacteria are difficult and sometimes impossible to treat, making them one of the major public health problems of our time. We highlight how one unique material , molecularly imprinted polymers (MIPs), can orchestrate several strategies to fight this major societal issue. MIPs are tailor-made biomimetic supramolecular receptors that recognize and bind target molecules with a high affinity and selectivity, comparable to those of antibodies. While research on MIPs for combatting cancer has been constantly flourishing, comprehensive work on their involvement in combatting resistant superbugs has been rather scarce. This review aims at filling this gap. We will describe what are the causes of bacterial resistance and at which level MIPs can deploy their weapons. MIPs' targets can be biofilm constituents, quorum sensing messengers, bacterial surface proteins and antibiotic-deactivating enzymes, among others. We will conclude on the current challenges and future developments in this field.
Collapse
Affiliation(s)
- Bernadette Tse Sum Bui
- BUTC: Universite de Technologie de Compiegne Bibliotheques de l'Universite de Technologie de Compiegne, GEC, Rue du Docteur Schweitzer, 60203, Compiègne, FRANCE
| | - Tiffany Auroy
- Universite de Technologie de Compiegne, CNRS Laboratory for Enzyme and Cell Engineering, FRANCE
| | - Karsten Haupt
- Universite de Technologie de Compiegne, CNRS Laboratory for Enzyme and Cell Engineering, FRANCE
| |
Collapse
|
12
|
Mavliutova L, Munoz Aldeguer B, Wiklander J, Wierzbicka C, Huynh CM, Nicholls IA, Irgum K, Sellergren B. Discrimination between sialic acid linkage modes using sialyllactose-imprinted polymers. RSC Adv 2021; 11:22409-22418. [PMID: 35480790 PMCID: PMC9034230 DOI: 10.1039/d1ra02274a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Glycosylation plays an important role in various pathological processes such as cancer. One key alteration in the glycosylation pattern correlated with cancer progression is an increased level as well as changes in the type of sialylation. Developing molecularly-imprinted polymers (MIPs) with high affinity for sialic acid able to distinguish different glycoforms such as sialic acid linkages is an important task which can help in early cancer diagnosis. Sialyllactose with α2,6′ vs. α2,3′ sialic acid linkage served as a model trisaccharide template. Boronate chemistry was employed in combination with a library of imidazolium-based monomers targeting the carboxylate group of sialic acid. The influence of counterions of the cationic monomers and template on their interactions was investigated by means of 1H NMR titration studies. The highest affinities were afforded using a combination of Br− and Na+ counterions of the monomers and template, respectively. The boronate ester formation was confirmed by MS and 1H/11B NMR, indicating 1 : 2 stoichiometries between sialyllactoses and boronic acid monomer. Polymers were synthesized in the form of microparticles using boronate and imidazolium monomers. This combinatorial approach afforded MIPs selective for the sialic acid linkages and compatible with an aqueous environment. The molecular recognition properties with respect to saccharide templates and glycosylated targets were reported. 2,6′- and 2,3′-sialyllactose imprinted polymers (MIPs) capable of discriminating between two modes of sialic acid linkages in glycans are reported.![]()
Collapse
Affiliation(s)
- Liliia Mavliutova
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University SE-20506 Malmö Sweden
| | - Bruna Munoz Aldeguer
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University SE-20506 Malmö Sweden
| | - Jesper Wiklander
- Bioorganic and Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University 391 82 Kalmar Sweden
| | - Celina Wierzbicka
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University SE-20506 Malmö Sweden
| | | | - Ian A Nicholls
- Bioorganic and Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University 391 82 Kalmar Sweden
| | - Knut Irgum
- Department of Chemistry, Umeå University 901 87 Umeå Sweden
| | - Börje Sellergren
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University SE-20506 Malmö Sweden
| |
Collapse
|
13
|
Prakash P, Singh HR, Jha SK. Preparation, characterization and application of curcumin based polymeric bio-composite for efficient removal of endotoxins and bacterial cells from therapeutic preparations. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:563-580. [DOI: 10.1080/09205063.2020.1851557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Pragya Prakash
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Hare Ram Singh
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Santosh Kumar Jha
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
14
|
Selective detection of phospholipids using molecularly imprinted fluorescent sensory core-shell particles. Sci Rep 2020; 10:9924. [PMID: 32555511 PMCID: PMC7303128 DOI: 10.1038/s41598-020-66802-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingo-lipid with a broad range of activities coupled to its role in G-protein coupled receptor signalling. Monitoring of both intra and extra cellular levels of this lipid is challenging due to its low abundance and lack of robust affinity assays or sensors. We here report on fluorescent sensory core-shell molecularly imprinted polymer (MIP) particles responsive to near physiologically relevant levels of S1P and the S1P receptor modulator fingolimod phosphate (FP) in spiked human serum samples. Imprinting was achieved using the tetrabutylammonium (TBA) salt of FP or phosphatidic acid (DPPA·Na) as templates in combination with a polymerizable nitrobenzoxadiazole (NBD)-urea monomer with the dual role of capturing the phospho-anion and signalling its presence. The monomers were grafted from ca 300 nm RAFT-modified silica core particles using ethyleneglycol dimethacrylate (EGDMA) as crosslinker resulting in 10–20 nm thick shells displaying selective fluorescence response to the targeted lipids S1P and DPPA in aqueous buffered media. Potential use of the sensory particles for monitoring S1P in serum was demonstrated on spiked serum samples, proving a linear range of 18–60 µM and a detection limit of 5.6 µM, a value in the same range as the plasma concentration of the biomarker.
Collapse
|
15
|
Shinde S, Incel A, Mansour M, Olsson GD, Nicholls IA, Esen C, Urraca J, Sellergren B. Urea-Based Imprinted Polymer Hosts with Switchable Anion Preference. J Am Chem Soc 2020; 142:11404-11416. [PMID: 32425049 PMCID: PMC7467678 DOI: 10.1021/jacs.0c00707] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The
design of artificial oxyanion receptors with switchable ion
preference is a challenging goal in host–guest chemistry. We
here report on molecularly imprinted polymers (MIPs) with an external
phospho-sulpho switch driven by small molecule modifiers. The polymers
were prepared by hydrogen bond-mediated imprinting of the mono- or
dianions of phenyl phosphonic acid (PPA), phenyl sulfonic acid (PSA),
and benzoic acid (BA) using N-3,5-bis-(trifluoromethyl)-phenyl-Ń-4-vinylphenyl urea (1) as the functional
host monomer. The interaction mode between the functional monomer
and the monoanions was elucidated by 1H NMR titrations
and 1H–1H NMR NOESY supported by molecular
dynamic simulation, which confirmed the presence of high-order complexes.
PPA imprinted polymers bound PPA with an equilibrium constant Keq = 1.8 × 105 M–1 in acetonitrile (0.1% 1,2,2,6,6-pentamethylpiperidine) and inorganic
HPO42– and SO42– with Keq = 2.9 × 103 M–1 and 4.5 × 103 M–1, respectively, in aqueous buffer. Moreover, the chromatographic
retentivity of phosphonate versus sulfonate was shown to be completely
switched on this polymer when changing from a basic to an acidic modifier.
Mechanistic insights into this system were obtained from kinetic investigations
and DSC-, MALDI-TOF-MS-, 1H NMR-studies of linear polymers
prepared in the presence of template. The results suggest the formation
of template induced 1–1 diad repeats in the polymer main chain
shedding unique light on the relative contributions of configurational
and conformational imprinting.
Collapse
Affiliation(s)
- Sudhirkumar Shinde
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden.,Faculty of Chemistry, Technical University of Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Anil Incel
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Mona Mansour
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Gustaf D Olsson
- Bioorganic & Biophysical Chemistry Laboratory, Linneaus University Center for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden
| | - Ian A Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linneaus University Center for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden
| | - Cem Esen
- Faculty of Chemistry, Technical University of Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Javier Urraca
- Faculty of Chemistry, Technical University of Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Börje Sellergren
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden.,Faculty of Chemistry, Technical University of Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
16
|
Jayasinghe GTM, Domínguez-González R, Bermejo-Barrera P, Moreda-Piñeiro A. Ultrasound assisted combined molecularly imprinted polymer for the selective micro-solid phase extraction and determination of aflatoxins in fish feed using liquid chromatography-tandem mass spectrometry. J Chromatogr A 2020; 1609:460431. [DOI: 10.1016/j.chroma.2019.460431] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 01/10/2023]
|
17
|
Shinde S, Mansour M, Incel A, Mavliutova L, Wierzbicka C, Sellergren B. High salt compatible oxyanion receptors by dual ion imprinting. Chem Sci 2020. [DOI: 10.1039/c9sc06508c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Imprinting of an ion-pair in presence of mutually compatible anion and cation host monomers leads to polymers showing enhanced ion uptake in competitive high ionic strength buffers.
Collapse
Affiliation(s)
- Sudhirkumar Shinde
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- 20506 Malmö
- Sweden
| | - Mona Mansour
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- 20506 Malmö
- Sweden
| | - Anil Incel
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- 20506 Malmö
- Sweden
| | - Liliia Mavliutova
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- 20506 Malmö
- Sweden
| | - Celina Wierzbicka
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- 20506 Malmö
- Sweden
| | - Börje Sellergren
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- 20506 Malmö
- Sweden
| |
Collapse
|
18
|
Liu M, Torsetnes SB, Wierzbicka C, Jensen ON, Sellergren B, Irgum K. Selective Enrichment of Phosphorylated Peptides by Monolithic Polymers Surface Imprinted with bis-Imidazolium Moieties by UV-Initiated Cryopolymerization. Anal Chem 2019; 91:10188-10196. [DOI: 10.1021/acs.analchem.9b02211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mingquan Liu
- Umeå University, Department of Chemistry, S-901 87 Umeå, Sweden
| | - Silje Bøen Torsetnes
- University of Southern Denmark, Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, Campusvej 55, DK-5230 Odense M, Denmark
| | - Celina Wierzbicka
- Malmö University, Department of Biomedical Sciences, Faculty of Health and Society, S-205 06 Malmö, Sweden
| | - Ole Nørregaard Jensen
- University of Southern Denmark, Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, Campusvej 55, DK-5230 Odense M, Denmark
| | - Börje Sellergren
- Malmö University, Department of Biomedical Sciences, Faculty of Health and Society, S-205 06 Malmö, Sweden
| | - Knut Irgum
- Umeå University, Department of Chemistry, S-901 87 Umeå, Sweden
| |
Collapse
|
19
|
Adsorption and Electrochemical Detection of Bovine Serum Albumin Imprinted Calcium Alginate Hydrogel Membrane. Polymers (Basel) 2019; 11:polym11040622. [PMID: 30960606 PMCID: PMC6524115 DOI: 10.3390/polym11040622] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/17/2019] [Accepted: 03/26/2019] [Indexed: 01/17/2023] Open
Abstract
In this paper, bovine serum albumin (BSA)-imprinted calcium alginate (CaAlg) hydrogel membrane was prepared using BSA as a template, sodium alginate (NaAlg) as a functional monomer, and CaCl2 as a cross-linker. The thickness of the CaAlg membrane was controlled by a glass rod enlaced with brass wires (the diameter was 0.1, 0.2, 0.3, 0.4, and 0.5 mm). The swelling properties of the CaAlg membranes prepared with different contents of NaAlg were researched. Circular dichroism indicated that the conformation of BSA did not change during the preparing and eluting process. The thinner the CaAlg hydrogel membrane was, the larger the adsorption capacity and the higher the imprinting efficiency of the CaAlg. The maximum adsorption capacity of molecularly imprinted polymer (MIP) and non-imprinted CaAlg hydrogel membrane (NIP) was 38.6 mg·g−1 and 9.2 mg·g−1, respectively, with an imprinting efficiency of 4.2. The MIP was loaded on the electrode to monitor the selective adsorption of BSA by voltammetry curve.
Collapse
|
20
|
Lin C, Tsai S, Tai D. Detection of oxytocin, atrial natriuretic peptide, and brain natriuretic peptide using novel imprinted polymers produced with amphiphilic monomers. J Pept Sci 2019; 25:e3150. [DOI: 10.1002/psc.3150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Chung‐Yin Lin
- Medical Imaging Research Center, Institute for Radiological ResearchChang Gung University/Chang Gung Memorial Hospital Taoyuan Taiwan
- Department of Nephrology, Division of Clinical ToxicologyChang Gung Memorial Hospital, Lin‐Kou Medical Center Taoyuan Taiwan
| | - Sheng‐Hung Tsai
- Department of ChemistryNational Dong Hwa University Hualien Taiwan
| | - Dar‐Fu Tai
- Department of ChemistryNational Dong Hwa University Hualien Taiwan
| |
Collapse
|
21
|
Ding Y, Sun Z, Shi R, Cui H, Liu Y, Mao H, Wang B, Zhu D, Yan F. Integrated Endotoxin Adsorption and Antibacterial Properties of Cationic Polyurethane Foams for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2860-2869. [PMID: 30586274 DOI: 10.1021/acsami.8b19746] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gram-negative bacteria, containing toxic proinflammatory and pyrogenic substances [endotoxin or lipopolysaccharide (LPS)], can lead to infection and associated serious diseases, such as sepsis and septic shock. Development of antimicrobial materials with intrinsically endotoxin adsorption activity can prevent the release of bacterial toxic components while killing bacteria. Herein, a series of imidazolium-type polyurethane (PU) foams with antimicrobial properties were synthesized. The content effects of cationic moieties on the antimicrobial activities against Gram-negative Escherichia coli and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus as well as the endotoxin adsorption property were investigated. The obtained PU foams show slightly higher efficiency against two Gram-negative strains than for Gram-positive one and high absorbability of LPS. A wound healing test using P. aeruginosa and its isolated LPS-treated mice as the models further demonstrated that imidazolium-type PU foams combine both antibacterial and endotoxin adsorption properties and may have a potential application as an antimicrobial wound dressing in a clinical setting.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Zhe Sun
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Rongwei Shi
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Hengqing Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai 200011 , China
| | - Yangyang Liu
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Bin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai 200011 , China
| | - Duming Zhu
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| |
Collapse
|
22
|
Santos Xavier LPD, Dias AC, Baeta BEL, de Azevedo Santos L, Ramalho TC, de Aquino SF, da Silva AC. Experimental and theoretical studies of solvent polarity influence on the preparation of molecularly imprinted polymers for the removal of estradiol from water. NEW J CHEM 2019. [DOI: 10.1039/c8nj03639j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecularly imprinted polymers synthesized by one-pot synthesis absorb β-estradiol quinoline efficiently and selectively.
Collapse
Affiliation(s)
| | - Ana Carolina Dias
- Chemistry Department
- Federal University of Ouro Preto
- Campus Morro do Cruzeiro
- Ouro Preto
- Minas Gerais
| | - Bruno Eduardo Lobo Baeta
- Chemistry Department
- Federal University of Ouro Preto
- Campus Morro do Cruzeiro
- Ouro Preto
- Minas Gerais
| | | | | | | | - Adilson Candido da Silva
- Chemistry Department
- Federal University of Ouro Preto
- Campus Morro do Cruzeiro
- Ouro Preto
- Minas Gerais
| |
Collapse
|
23
|
Rahmati E, Rafiee Z. A biocompatible high surface area ZnO-based molecularly imprinted polymer for the determination of meloxicam in water media and plasma. NEW J CHEM 2019. [DOI: 10.1039/c9nj01386e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrasound-assisted solid-phase microextraction (SPME) by a functionalized high surface area ZnO nanoparticle (NP)-based molecularly imprinted polymer (MIP) followed by UV-Vis spectrophotometry was described as a selective, economic and rapid technique which was established for the extraction and preconcentration of meloxicam (MEL) in water media and plasma.
Collapse
Affiliation(s)
- Ensiyeh Rahmati
- Chemistry Department
- Yasouj University
- Yasouj
- Islamic Republic of Iran
| | - Zahra Rafiee
- Chemistry Department
- Yasouj University
- Yasouj
- Islamic Republic of Iran
| |
Collapse
|
24
|
Molecularly imprinted affinity cryogels for the selective recognition of myoglobin in blood serum. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.126] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Love Wave Sensor for Prostate-Specific Membrane Antigen Detection Based on Hydrophilic Molecularly-Imprinted Polymer. Polymers (Basel) 2018; 10:polym10050563. [PMID: 30966597 PMCID: PMC6415384 DOI: 10.3390/polym10050563] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a biomarker for prostate cancer (PCa), and a specific and reliable detection technique of PSMA is urgently required for PCa early diagnosis. A Love wave sensor has been widely studied for real-time sensing and highly sensitive applications, but the sensing unit needs special handling for selective detection purpose. In this study, we prepared a versatile Love wave sensor functionalized with molecularly-imprinted polymers (MIP), PSMA as the template molecule. To enhance the specific template bindings of MIP in pure aqueous solutions, facile reversible addition/fragmentation chain transfer (RAFT) precipitation polymerization (RAFTPP) was used to produce surface hydrophilic polymer brushes on MIP. The presence of hydrophilic polymer brushes on MIP improved its surface hydrophilicity and significantly reduced their hydrophobic interactions with template molecules in pure aqueous media. In detection process, the acoustic delay-line is confederative to a microfluidic chip and inserted in an oscillation loop. The real-time resonance frequency of the MIP-based Love wave sensor to different concentrations of PSMA was investigated. The limit of detection (LOD) for this Love SAW sensor was 0.013 ng mL−1, which demonstrates that this sensor has outstanding performance in terms of the level of detection.
Collapse
|
26
|
Shinde S, Selvalatchmanan J, Incel A, Akhoundian M, Bendt AK, Torta F. Mesoporous polymeric microspheres with high affinity for phosphorylated biomolecules. NEW J CHEM 2018. [DOI: 10.1039/c8nj01114a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bis-imidazolium functionalized mesoporous microspheres selectively extract phosphorylated peptides/lipids from biofluids.
Collapse
Affiliation(s)
- Sudhirkumar Shinde
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- SE 205 06 Malmö
- Sweden
| | - Jayashree Selvalatchmanan
- Singapore Lipidomics Incubator (SLING)
- Life Sciences Institute
- National University of Singapore
- Singapore 117456
- Singapore
| | - Anil Incel
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- SE 205 06 Malmö
- Sweden
| | - Maedeh Akhoundian
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- SE 205 06 Malmö
- Sweden
| | - Anne K. Bendt
- Singapore Lipidomics Incubator (SLING)
- Life Sciences Institute
- National University of Singapore
- Singapore 117456
- Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING)
- Department of Biochemistry
- YLL School of Medicine
- National University of Singapore
- Singapore 11745
| |
Collapse
|
27
|
Fung FM, Su M, Feng HT, Li SFY. Extraction, separation and characterization of endotoxins in water samples using solid phase extraction and capillary electrophoresis-laser induced fluorescence. Sci Rep 2017; 7:10774. [PMID: 28883632 PMCID: PMC5589922 DOI: 10.1038/s41598-017-11232-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/21/2017] [Indexed: 02/08/2023] Open
Abstract
This study focuses on one of the key environmental threats, endotoxins, also known as lipopolysaccharides (LPS). A capillary electrophoresis method in combination with laser induced fluorescence (LIF) detection was developed for the analysis of endotoxins from 16 different bacterial strains. LPSs were derivatized with the amino-reactive fluorescent dye, fluorescein isothiocyanate (FITC), separated by capillary zone electrophoresis (CZE) under the optimized conditions with the use of 50 mM sodium tetraborate buffer (pH 9.30), and detected by LIF detector. To improve the sensitivity of CZE-LIF detection for the determination of trace amounts of endotoxins and to remove possible interference materials in environmental samples, a solid phase extraction (SPE) pre-concentration technique was applied successfully. The SPE targeted at polysaccharide moieties of LPSs and showed LPS enrichment effects too. CE migration time could also reveal the O-antigen chain lengths of LPSs. This CE method and SPE pretreatment showed linearity at 99.84%, and repeatabilities at 8.44% and 11.0% for endotoxins from E. Coli O55:B5 and E. Coli O26:B6. The limit of detection (LOD) could reach around 5 ng/mL at optimized condition. The method was applied successfully to the determination of LPS levels in tap water and wastewater, and demonstrated sensitive, reproducible and reliable results.
Collapse
Affiliation(s)
- Fun Man Fung
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
- Institute for Application of Learning Science and Educational Technology (ALSET), University Hall, Lee Kong Chian Wing UHL #05–01D, 21 Lower Kent Ridge Road, Singapore, 119077 Singapore
| | - Min Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Hua-tao Feng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore, 117411 Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore, 117411 Singapore
| |
Collapse
|