1
|
Kyeong D, Kim M, Kwak M. Thermally Triggered Multilevel Diffractive Optical Elements Tailored by Shape-Memory Polymers for Temperature History Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9813-9819. [PMID: 36779629 DOI: 10.1021/acsami.2c18901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The morphological transitions induced by external stimuli in shape-memory polymers (SMPs) can be exploited with the real-time response of far-field diffraction patterns in diffractive optical elements (DOEs). In this paper, we combine the temperature characteristics of SMPs and the display characteristics of DOEs to obtain an optical temperature sensing film where the temperature information is taken as a change of far-field diffraction images. This process was achieved by imprinting the micropatterns of the DOEs on the epoxy-based SMP film, which can be programmed to hold a temporary optical image and revert to its original image upon exposure to a specific temperature. Furthermore, the specific temperature at which the image transformation occurs can be customized by varying the chain flexibility of the SMP. Based on a range of transition points, by imprinting the desired combination of SMP-DOEs on a film, a sensor that can record and inform the temperature history is demonstrated. As for the feasible application of this technique, it can be used for the compact and reliable optical temperature indicators, which can be applied in temperature-sensitive industries such as food and pharmaceuticals.
Collapse
Affiliation(s)
- Dokyung Kyeong
- Department of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Minsu Kim
- Department of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Moonkyu Kwak
- Department of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
2
|
Ramasamy C, Low HY. Triple and Quadruple Surface Pattern Memories in Nanoimprinted Polymer Blends. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2357-2367. [PMID: 36546466 DOI: 10.1021/acsami.2c17381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Trigger-responsive surfaces with multiple surface properties have wide-ranging application potential from surfaces with trigger-responsive fluid flow to cell culture to optical effects; such surfaces can be achieved through surface morphological changes. Although multiple shape-memory effects are successful in bulk polymers, there is limited programing and recovery of multiple surface memories due to the challenges in fabricating multiple surface topographies with good controllability. Here, we report the synergy between the polymer blend formulation and the thermal nanoimprinting process to achieve multiple microtopography memories. A series of immiscible blends consisting of poly(caprolactone) (PCL) and polyethylene (PE) with distinct thermal transitions governed by distinct crystallization events were augmented with improved elasticity through preferential cross-linking in the polymer blend. The effect of preferential cross-linking by dicumyl peroxide on the elastic property of the PCL/PE has been found to be nonlinearly dependent on the blend composition. This approach enabled triple and quadruple surface pattern fixity and recovery in nanoimprinted PCL/PE blends. Specifically, we demonstrated the recovery of a micropillar structure (diameter: 20 μm and height: 10 μm) from a hierarchical micrograting topography (width: 2 μm and height: 2 μm) when exposed to a thermal stimulus at 60 °C for 180 s. Furthermore, we also demonstrated the recovery of a deformed micrograting followed by a secondary recovery of the micropillar structure.
Collapse
Affiliation(s)
- Chitrakala Ramasamy
- Engineering Product Development, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Hong Yee Low
- Engineering Product Development, Singapore University of Technology and Design, Singapore487372, Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore487372, Singapore
| |
Collapse
|
3
|
Li W, Liu J, Chen L, Wei W, Qian K, Liu Y, Leng J. Application and Development of Shape Memory Micro/Nano Patterns. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105958. [PMID: 35362270 DOI: 10.1002/smll.202105958] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Shape memory polymers (SMPs) are a class of smart materials that change shape when stimulated by environmental stimuli. Different from the shape memory effect at the macro level, the introduction of micro-patterning technology into SMPs strengthens the exploration of the shape memory effect at the micro/nano level. The emergence of shape memory micro/nano patterns provides a new direction for the future development of smart polymers, and their applications in the fields of biomedicine/textile/micro-optics/adhesives show huge potential. In this review, the authors introduce the types of shape memory micro/nano patterns, summarize the preparation methods, then explore the imminent and potential applications in various fields. In the end, their shortcomings and future development direction are also proposed.
Collapse
Affiliation(s)
- Wenbing Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Junhao Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Lei Chen
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wanting Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Kun Qian
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| |
Collapse
|
4
|
Kausar A. Shape memory polystyrene-based nanocomposite: present status and future opportunities. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1840919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center For Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
5
|
Zhang F, Xia Y, Liu Y, Leng J. Nano/microstructures of shape memory polymers: from materials to applications. NANOSCALE HORIZONS 2020; 5:1155-1173. [PMID: 32567643 DOI: 10.1039/d0nh00246a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Shape memory polymers (SMPs) are macromolecules in which linear chains and crosslinking points play a key role in providing a shape memory effect. As smart polymers, SMPs have the ability to change shape, stiffness, size, and structure when exposed to external stimuli, leading to potential uses for SMPs throughout our daily lives in a diverse range of areas including the aerospace and automotive industries, robotics, biomedical engineering, smart textiles, and tactile devices. SMPs can be fabricated in many forms and sizes from the nanoscale to the macroscale, including nanofibers, nanoparticles, thin films, microfoams, and bulk devices. The introduction of nanostructure into SMPs can result in enhanced mechanical properties, unique structural color, specific surface area, and multiple functions. It is necessary to enhance the current understanding of the various nano/microstructures of SMPs and their fabrication, and to find suitable approaches for constructing SMP-based nano/microstructures for different applications. In this review, we summarize the current state of different SMP nano/microstructures, fabrication techniques, and applications, and give suggestions for their future development.
Collapse
Affiliation(s)
- Fenghua Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Enviroments, Harbin Institute of Technology (HIT), Harbin 150080, P. R. China.
| | | | | | | |
Collapse
|
6
|
Banikazemi S, Rezaei M, Rezaei P, Babaie A, Eyvazzadeh‐Kalajahi A. Preparation of electrospun shape memory polyurethane fibers in optimized electrospinning conditions via response surface methodology. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Simin Banikazemi
- Institute of Polymeric MaterialsSahand University of Technology Tabriz Iran
- Faculty of Polymer EngineeringSahand University of Technology Tabriz Iran
| | - Mostafa Rezaei
- Institute of Polymeric MaterialsSahand University of Technology Tabriz Iran
- Faculty of Polymer EngineeringSahand University of Technology Tabriz Iran
| | - Pezhman Rezaei
- Institute of Polymeric MaterialsSahand University of Technology Tabriz Iran
- Faculty of Polymer EngineeringSahand University of Technology Tabriz Iran
| | - Amin Babaie
- Institute of Polymeric MaterialsSahand University of Technology Tabriz Iran
- Faculty of Polymer EngineeringSahand University of Technology Tabriz Iran
| | - Alireza Eyvazzadeh‐Kalajahi
- Institute of Polymeric MaterialsSahand University of Technology Tabriz Iran
- Faculty of Polymer EngineeringSahand University of Technology Tabriz Iran
| |
Collapse
|
7
|
Tang P, Zheng X, Yang H, He J, Zheng Z, Yang W, Zhou S. Intrinsically Stretchable and Shape Memory Conducting Nanofiber for Programmable Flexible Electronic Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48202-48211. [PMID: 31763813 DOI: 10.1021/acsami.9b14430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, flexible and stretchable electronic films have been drawing increasing attention but are limited by the nature of elastomeric materials and the embedded structure; thus, these films cannot achieve long-term and stable electrical performance at certain deformation states in practical applications. Here, we report intrinsically stretchable and shape memory polycaprolactone/polyethylene glycol/silver nanowires films (PPAFs) based on a dual-layer network structure of nanofibers that can achieve both shape-fixable and deformation-reversible conductivity in the elongation range. We also demonstrate the resistance characteristic of PPAFs at the same/different deformation rates, which shows the unique memorable resistance and the variable conversion of a "conductive-insulation-conductive" state. Importantly, the change in sheet resistance of the PPAFs fixed at any rate of deformation could sustainably recover the initial sheet resistance even after cyclic thermal responses. Furthermore, we successfully develop the programmable conductivity of PPAFs as a monitoring, switching, and alarming device for shape memory cycles through the ingenious design of a microcircuit and simulation analysis using Proteus software. PPAFs show great potential for changeable characteristics in both shape and resistance for use in flexible electronic films.
Collapse
Affiliation(s)
- Pandeng Tang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education , Southwest Jiaotong University , Chengdu 610031 , China
| | - Xiaotong Zheng
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education , Southwest Jiaotong University , Chengdu 610031 , China
| | - Huikai Yang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education , Southwest Jiaotong University , Chengdu 610031 , China
| | - Jing He
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education , Southwest Jiaotong University , Chengdu 610031 , China
| | - Zhiwen Zheng
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education , Southwest Jiaotong University , Chengdu 610031 , China
| | - Weiqing Yang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education , Southwest Jiaotong University , Chengdu 610031 , China
| | - Shaobing Zhou
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education , Southwest Jiaotong University , Chengdu 610031 , China
| |
Collapse
|
8
|
Yang J, Zhao W, Yang Z, He W, Wang J, Ikeda T, Jiang L. Photonic Shape Memory Polymer Based on Liquid Crystalline Blue Phase Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46124-46131. [PMID: 31714736 DOI: 10.1021/acsami.9b14202] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photonic shape memory (SM) polymers based on liquid crystalline blue phase (BP) films have been fabricated by self-assembly and subsequent photopolymerization of liquid-crystal mixtures. These freestanding BP films exhibit narrow photonic band gaps and high reflectivity in the visible wavelength range. Multiple blue-shift colors are achieved by SM programming process at different mechanical pressures. The blue-shift colors can be attributed to a decrease of effective BP pitch along the viewing direction caused by the compressed deformation of the BP films, which are confirmed by a three-dimensional interometric profile. The deformed BP films can recover to their original shapes and reflecting colors by heating the polymer films to temperatures above the glass-transition temperature. Quantitative relationships between the shape change and optical response are established for understanding this SM effect. What is more, the temporary photonic patterns can be reversibly written and erased for dozens of cycles without apparent degradation, making these freestanding BP films appealing as rewritable photonic papers and optical sensors.
Collapse
Affiliation(s)
- Jiajia Yang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , China
- CAS Key Laboratory of Bio-Inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Weidong Zhao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Zhou Yang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Wanli He
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Jingxia Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Tomiki Ikeda
- CAS Key Laboratory of Bio-Inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
9
|
Gupta A, Kim BS. Shape Memory Polyurethane Biocomposites Based on Toughened Polycaprolactone Promoted by Nano-Chitosan. NANOMATERIALS 2019; 9:nano9020225. [PMID: 30736481 PMCID: PMC6410130 DOI: 10.3390/nano9020225] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 11/16/2022]
Abstract
The distinctive ability to remember their original form after partial or complete deformation makes shape memory polymers remarkable materials for several engineering and biomedical applications. In the present work, the development of a polycaprolactone based toughened shape memory polyurethane biocomposite promoted by in situ incorporation of chitosan flakes has been demonstrated. The chitosan flakes were homogeneously present in the polymer matrix in the form of nanoflakes, as confirmed by the electron microscopic analysis and probably developed a crosslinked node that promoted toughness (a > 500% elongation at break) and led to a ~130% increment in ultimate tensile strength, as analyzed using a universal testing machine. During a tensile pull, X-ray analysis revealed the development of crystallites, which resulted from a stress induced crystallization process that may retain the shape and melting of the crystallites stimulating shape recovery (with a ~100% shape recovery ratio), even after permanent deformation. The biodegradable polyurethane biocomposite also demonstrates relatively high thermal stability (Tmax at ~360 °C). The prepared material possesses a unique shape memory behavior, even after permanent deformation up to a > 500% strain, which may have great potential in several biomedical applications.
Collapse
Affiliation(s)
- Arvind Gupta
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
10
|
Gao H, Li J, Xie F, Liu Y, Leng J. A novel low colored and transparent shape memory copolyimide and its durability in space thermal cycling environments. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Li P, Han Y, Wang W, Chen X, Jin P, Liu S. Self-Erasable Nanocone Antireflection Films Based on the Shape Memory Effect of Polyvinyl Alcohol (PVA) Polymers. Polymers (Basel) 2018; 10:E756. [PMID: 30960681 PMCID: PMC6403550 DOI: 10.3390/polym10070756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 01/21/2023] Open
Abstract
Arrays of nanostructure that are capable of broadband antireflection and light trapping properties are implemented in photovoltaic and photonic devices. However, most of the existing antireflection films have been hindered by a complicated fabricated method and structurally rigid. Here, we report a simple preparation method for self-erasable nanocone antireflection films using the surface replication method. Arrays of nanocone with sub-100 nm surface features could be replicated easily on the shape memory polyvinyl alcohol (PVA) film, and are erased by thermal stimulation. The reflectivity of self-erasable antireflection film can be switched from the 4.5% to 0.6% averaged over the visible spectral range by controlling the temperature below or above 80 °C. Theoretical simulations have been demonstrated. The unique smart film is expected to be used to further extend the application of smart optical windows and digital screens.
Collapse
Affiliation(s)
- Peng Li
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China.
- Acoustic Science and Technology Laboratory, College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Yu Han
- Research Center of Ultra-Precision Optoelectronic Instrumentation, Harbin Institute of Technology, Harbin 150080, China.
| | - Wenxin Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Xinlong Chen
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China.
| | - Peng Jin
- Research Center of Ultra-Precision Optoelectronic Instrumentation, Harbin Institute of Technology, Harbin 150080, China.
| | - Shengchun Liu
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China.
- Acoustic Science and Technology Laboratory, College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|