1
|
Seynaeve M, Mantini D, de Beukelaar TT. Electrophysiological Approaches to Understanding Brain-Muscle Interactions During Gait: A Systematic Review. Bioengineering (Basel) 2025; 12:471. [PMID: 40428090 PMCID: PMC12108685 DOI: 10.3390/bioengineering12050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 05/29/2025] Open
Abstract
This study systematically reviews the role of the cortex in gait control by analyzing connectivity between electroencephalography (EEG) and electromyography (EMG) signals, i.e., neuromuscular connectivity (NMC) during walking. We aim to answer the following questions: (i) Is there significant NMC during gait in a healthy population? (ii) Is NMC modulated by gait task specifications (e.g., speed, surface, and additional task demands)? (iii) Is NMC altered in the elderly or a population affected by a neuromuscular or neurologic disorder? Following PRISMA guidelines, a systematic search of seven scientific databases was conducted up to September 2023. Out of 1308 identified papers, 27 studies met the eligibility criteria. Despite large variability in methodology, significant NMC was detected in most of the studies. NMC was able to discriminate between a healthy population and a population affected by a neuromuscular or neurologic disorder. Tasks requiring higher sensorimotor control resulted in an elevated level of NMC. While NMC holds promise as a metric for advancing our comprehension of brain-muscle interactions during gait, aligning methodologies across studies is imperative. Analysis of NMC provides valuable insights for the understanding of neural control of movement and development of gait retraining programs and contributes to advancements in neurotechnology.
Collapse
Affiliation(s)
- Maura Seynaeve
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium; (M.S.); (D.M.)
- KU Leuven Institute of Sports Science, 3001 Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium; (M.S.); (D.M.)
| | - Toon T. de Beukelaar
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium; (M.S.); (D.M.)
- KU Leuven Institute of Sports Science, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Omejc N, Stankovski T, Peskar M, Kalc M, Manganotti P, Gramann K, Dzeroski S, Marusic U. Cortico-Muscular Phase Connectivity During an Isometric Knee Extension Task in People with Early Parkinson's Disease. IEEE Trans Neural Syst Rehabil Eng 2025; PP:488-501. [PMID: 40030955 DOI: 10.1109/tnsre.2025.3527578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Parkinson's disease (PD) is characterized by enhanced beta-band activity (13-30 Hz) in the motor control regions. Simultaneously, cortico-muscular (CM) connectivity in the beta-band during iso-metric contractions tends to decline with age, in various diseases, and under dual-task conditions. OBJECTIVE This study aimed to characterize electroencephalograph (EEG) and electromyograph (EMG) power spectra during a motor task, assess CM phase connectivity, and explore how these measures are modulated by an additional cognitive task. Specifically, we focused on the beta-band to explore the relationship between heightened beta amplitude and reduced beta CM connectivity. METHODOLOGY Early-stage people with PD and age-matched controls performed an isometric knee extension task, a cognitive task, and a combined dual task, while EEG (128ch) and EMG (2x32ch) were recorded. CM phase connectivity was assessed through phase coherence and a phase dynamics model. RESULTS The EEG power spectrum revealed no cohort differences in the beta-band. EMG also showed no differences up to 80 Hz. However, the combined EEG-EMG analysis uncovered reduced beta phase coherence in people with early PD during the motor task. CM phase coherence exhibited distinct scalp topography and frequency ranges compared to the EEG power spectrum, suggesting different mechanisms for pathological beta increase and CM connectivity. Additionally, phase dynamics modelling indicated stronger directional coupling from the cortex to the active muscle and less prominent phase coupling across people with PD. Despite high inter-individual variability, these metrics may prove useful for personalized assessments, particularly in people with heightened CM connectivity.
Collapse
|
3
|
da Silva Costa AA, Moraes R, den Otter R, Gennaro F, Bakker L, Rocha Dos Santos PC, Hortobágyi T. Corticomuscular and intermuscular coherence as a function of age and walking balance difficulty. Neurobiol Aging 2024; 141:85-101. [PMID: 38850592 DOI: 10.1016/j.neurobiolaging.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 06/10/2024]
Abstract
We determined beta-band intermuscular (IMC) and corticomuscular coherence (CMC) as a function of age and walking balance difficulty. Younger (n=14, 23y) and older individuals (n=19, 71y) walked 13 m overground, on a 6-cm-wide ribbon overground, and on a 6-cm-wide (5-cm-high) beam. Walking distance as a proxy for walking balance and speed were computed. CMC was estimated between electroencephalographic signal at Cz electrode and surface electromyographic signals of seven leg muscles, while IMC was calculated in four pairs of leg muscles, during stance and swing gait phases. With increasing difficulty, walking balance decreased in old individuals and speed decreased gradually independent of age. Beam walking increased IMC, while age increased IMC in proximal muscle pairs, and decreased IMC in distal muscle pairs. Age and difficulty increased CMC independent of gait phases. Concluding, CMC and IMC increased with walking balance difficulty and age, except for distal muscle pairs, which had lower IMC with age. These findings suggest an age-related increase in corticospinal involvement in the neural control of walking balance. DATA AVAILABILITY: The datasets used in this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Andréia Abud da Silva Costa
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil; Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands.
| | - Renato Moraes
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil
| | - Rob den Otter
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands
| | - Federico Gennaro
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lisanne Bakker
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands
| | - Paulo Cezar Rocha Dos Santos
- Department of Computer Science & Applied Mathematics, Weizmann Institute of Science, Israel; The Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Israel; IDOR/Pioneer Science Initiative, Rio de Janeiro, RJ, Brazil
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands; Department of Kinesiology, Hungarian University of Sports Science, Budapest 1123, Hungary; Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
| |
Collapse
|
4
|
Peng J, Zikereya T, Shao Z, Shi K. The neuromechanical of Beta-band corticomuscular coupling within the human motor system. Front Neurosci 2024; 18:1441002. [PMID: 39211436 PMCID: PMC11358111 DOI: 10.3389/fnins.2024.1441002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Beta-band activity in the sensorimotor cortex is considered a potential biomarker for evaluating motor functions. The intricate connection between the brain and muscle (corticomuscular coherence), especially in beta band, was found to be modulated by multiple motor demands. This coherence also showed abnormality in motion-related disorders. However, although there has been a substantial accumulation of experimental evidence, the neural mechanisms underlie corticomuscular coupling in beta band are not yet fully clear, and some are still a matter of controversy. In this review, we summarized the findings on the impact of Beta-band corticomuscular coherence to multiple conditions (sports, exercise training, injury recovery, human functional restoration, neurodegenerative diseases, age-related changes, cognitive functions, pain and fatigue, and clinical applications), and pointed out several future directions for the scientific questions currently unsolved. In conclusion, an in-depth study of Beta-band corticomuscular coupling not only elucidates the neural mechanisms of motor control but also offers new insights and methodologies for the diagnosis and treatment of motor rehabilitation and related disorders. Understanding these mechanisms can lead to personalized neuromodulation strategies and real-time neurofeedback systems, optimizing interventions based on individual neurophysiological profiles. This personalized approach has the potential to significantly improve therapeutic outcomes and athletic performance by addressing the unique needs of each individual.
Collapse
Affiliation(s)
| | | | | | - Kaixuan Shi
- Physical Education Department, China University of Geosciences Beijing, Beijing, China
| |
Collapse
|
5
|
Zuo Y, Ye J, Cai W, Guo B, Chen X, Lin L, Jin S, Zheng H, Fang A, Qian X, Abdelrahman Z, Wang Z, Zhang Z, Chen Z, Yu B, Gu X, Wang X. Controlled delivery of a neurotransmitter-agonist conjugate for functional recovery after severe spinal cord injury. NATURE NANOTECHNOLOGY 2023; 18:1230-1240. [PMID: 37308588 DOI: 10.1038/s41565-023-01416-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/04/2023] [Indexed: 06/14/2023]
Abstract
Despite considerable unmet medical needs, effective pharmacological treatments that promote functional recovery after spinal cord injury remain limited. Although multiple pathological events are implicated in spinal cord injuries, the development of a microinvasive pharmacological approach that simultaneously targets the different mechanisms involved in spinal cord injury remains a formidable challenge. Here we report the development of a microinvasive nanodrug delivery system that consists of amphiphilic copolymers responsive to reactive oxygen species and an encapsulated neurotransmitter-conjugated KCC2 agonist. Upon intravenous administration, the nanodrugs enter the injured spinal cord due to a disruption in the blood-spinal cord barrier and disassembly due to damage-triggered reactive oxygen species. The nanodrugs exhibit dual functions in the injured spinal cord: scavenging accumulated reactive oxygen species in the lesion, thereby protecting spared tissues, and facilitating the integration of spared circuits into the host spinal cord through targeted modulation of inhibitory neurons. This microinvasive treatment leads to notable functional recovery in rats with contusive spinal cord injury.
Collapse
Affiliation(s)
- Yanming Zuo
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Jingjia Ye
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Wanxiong Cai
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Binjie Guo
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xiangfeng Chen
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Lingmin Lin
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Shuang Jin
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Hanyu Zheng
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Ao Fang
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xingran Qian
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zeinab Abdelrahman
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zhiping Wang
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zhipeng Zhang
- School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, P. R. China
| | - Zuobin Chen
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P. R. China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P. R. China
| | - Xuhua Wang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China.
| |
Collapse
|
6
|
Glories D, Duclay J. Recurrent inhibition contribution to corticomuscular coherence modulation between contraction types. Scand J Med Sci Sports 2023; 33:597-608. [PMID: 36609914 DOI: 10.1111/sms.14309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/14/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Recent findings provided evidence that spinal regulatory mechanisms were involved in corticomuscular coherence (CMC) modulation between contraction types. Although their relative contributions could not be precisely identified, it was suggested that recurrent inhibition (RI) could modulate CMC by regulating the synchronization of spinal motoneuron activity. To confirm this hypothesis, concurrent modulations of RI and CMC for the soleus (SOL) were compared during submaximal isometric, shortening and lengthening plantar flexions. Submaximal contraction intensity was set at 50% of the maximal SOL EMG activity. CMC was computed in the time-frequency domain between the Cz EEG electrode signal and the nonrectified SOL EMG signal. The RI was quantified through the paired Hoffmann (H) reflex technique by comparing the modulations of the test and conditioning H-reflexes (H' and H1 , respectively). Both beta-band CMC and the ratio between H' and H1 amplitudes were significantly lower in SOL during lengthening compared with isometric and shortening contractions. Furthermore, we observed a negative linear correlation between the RI and beta-band CMC. Finally, a higher RI increase during lengthening contractions compared to either isometric or shortening ones was correlated with a larger decrease in CMC. Collectively, these novel findings provide robust evidence that the RI acts as a neural "filter" that contributes to the modulation of corticomuscular interactions between contraction types, possibly by disrupting the oscillatory muscle activation.
Collapse
Affiliation(s)
- Dorian Glories
- Toulouse NeuroImaging Center, Université de Toulouse, Toulouse, France
| | - Julien Duclay
- Toulouse NeuroImaging Center, Université de Toulouse, Toulouse, France
| |
Collapse
|
7
|
Glories D, Soulhol M, Amarantini D, Duclay J. Combined effect of contraction type and intensity on corticomuscular coherence during isokinetic plantar flexions. Eur J Appl Physiol 2023; 123:609-621. [PMID: 36352055 DOI: 10.1007/s00421-022-05087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
During isometric contractions, corticomuscular coherence (CMC) may be modulated along with the contraction intensity. Furthermore, CMC may also vary between contraction types due to the contribution of spinal inhibitory mechanisms. However, the interaction between the effect of the contraction intensity and of the contraction type on CMC remains hitherto unknown. Therefore, CMC and spinal excitability modulations were compared during submaximal isometric, shortening and lengthening contractions of plantar flexor muscles at 25, 50, and 70% of the maximal soleus (SOL) EMG activity. CMC was computed in the time-frequency domain between the Cz EEG electrode signal and the SOL or medial gastrocnemius (MG) EMG signals. The results indicated that beta-band CMC was decreased in the SOL only between 25 and 50-70% contractions for both isometric and anisometric contractions, but remained similar for all contraction intensities in the MG. Spinal excitability was similar for all contraction intensities in both muscles. Meanwhile a divergence of the EEG and the EMG signals mean frequency was observed only in the SOL and only between 25 and 50-70% contractions, independently from the contraction type. Collectively, these findings confirm an effect of the contraction intensity on beta-band CMC, although it was only measured in the SOL, between low-level and high-level contraction intensities. Furthermore, the current findings provide new evidence that the observed modulations of beta-band CMC with the contraction intensity does not depend on the contraction type or on spinal excitability variations.
Collapse
Affiliation(s)
- Dorian Glories
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, 118 Route de Narbonne, 3062, Toulouse Cedex 9, France
| | - Mathias Soulhol
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, 118 Route de Narbonne, 3062, Toulouse Cedex 9, France
| | - David Amarantini
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, 118 Route de Narbonne, 3062, Toulouse Cedex 9, France
| | - Julien Duclay
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, 118 Route de Narbonne, 3062, Toulouse Cedex 9, France.
| |
Collapse
|
8
|
Parr JVV, Uiga L, Marshall B, Wood G. Soccer heading immediately alters brain function and brain-muscle communication. Front Hum Neurosci 2023; 17:1145700. [PMID: 37151902 PMCID: PMC10157247 DOI: 10.3389/fnhum.2023.1145700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction There is growing evidence of a link between repetitive soccer heading and the increased incidence of neurodegenerative disease. Even a short bout of soccer heading has been shown to impair cognitive performance and disrupt movement control. However, a greater understanding of the mechanisms behind these immediate impairments is needed. The current study attempted to identify how a short bout of soccer heading alters brain function and brain-muscle communication during a movement task. Methods Sixty soccer players were exposed to either an acute bout (i.e., 20 balls thrown underarm) of soccer heading (n = 30) or a control condition where participants (n = 30) headed soccer balls in virtual reality (VR). Before and after heading, we measured cognitive performance on the King-Devick test, as well as electromyography (EMG), electroencephalography (EEG) and brain-muscle communication (i.e., corticomuscular coherence; CMC) during a force precision task. Results Following the heading protocol, the VR group improved their cognitive performance whereas the Heading group showed no change. Both groups displayed more precise force contractions at post-test. However, the VR group displayed elevated frontal theta activity and global increases in alpha and beta activity during the contraction task, whereas the Heading group did not. Contrary to our expectations, the Heading group displayed elevated CMC, whereas the VR group showed no change. Discussion Our findings indicate a short bout of soccer heading may impair cognitive function and disrupt the organization of efficient neural processes that typically accompany motor skill proficiency. Soccer heading also induced corticomuscular hyperconnectivity, which could represent compensatory brain-muscle communication and an inefficient allocation of increased task-related neuromuscular resources. These initial findings offer insights to the mechanisms behind the impairments experienced after a short bout of repetitive soccer heading.
Collapse
Affiliation(s)
- Johnny V. V. Parr
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
- *Correspondence: Johnny V. V. Parr,
| | - Liis Uiga
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ben Marshall
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Greg Wood
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
9
|
Cisotto G, Capuzzo M, Guglielmi AV, Zanella A. Feature stability and setup minimization for EEG-EMG-enabled monitoring systems. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING 2022; 2022:103. [PMID: 36320592 PMCID: PMC9612609 DOI: 10.1186/s13634-022-00939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Delivering health care at home emerged as a key advancement to reduce healthcare costs and infection risks, as during the SARS-Cov2 pandemic. In particular, in motor training applications, wearable and portable devices can be employed for movement recognition and monitoring of the associated brain signals. This is one of the contexts where it is essential to minimize the monitoring setup and the amount of data to collect, process, and share. In this paper, we address this challenge for a monitoring system that includes high-dimensional EEG and EMG data for the classification of a specific type of hand movement. We fuse EEG and EMG into the magnitude squared coherence (MSC) signal, from which we extracted features using different algorithms (one from the authors) to solve binary classification problems. Finally, we propose a mapping-and-aggregation strategy to increase the interpretability of the machine learning results. The proposed approach provides very low mis-classification errors ( < 0.1 ), with very few and stable MSC features ( < 10 % of the initial set of available features). Furthermore, we identified a common pattern across algorithms and classification problems, i.e., the activation of the centro-parietal brain areas and arm's muscles in 8-80 Hz frequency band, in line with previous literature. Thus, this study represents a step forward to the minimization of a reliable EEG-EMG setup to enable gesture recognition.
Collapse
Affiliation(s)
- Giulia Cisotto
- Department of Information Engineering, University of Padova, Via Gradenigo, 6, 35121 Padova, Italy
- Inter-University Consortium for Telecommunications (CNIT), Padova, Italy
- Department of Informatics, Systems and Communications, University of Milano-Bicocca, Viale Sarca, 336, 20126 Milano, Italy
| | - Martina Capuzzo
- Department of Information Engineering, University of Padova, Via Gradenigo, 6, 35121 Padova, Italy
- Human Inspired Technologies Research Center, University of Padova, Via Luzzatti, 4, 35121 Padova, Italy
| | - Anna Valeria Guglielmi
- Department of Information Engineering, University of Padova, Via Gradenigo, 6, 35121 Padova, Italy
| | - Andrea Zanella
- Department of Information Engineering, University of Padova, Via Gradenigo, 6, 35121 Padova, Italy
- Inter-University Consortium for Telecommunications (CNIT), Padova, Italy
- Human Inspired Technologies Research Center, University of Padova, Via Luzzatti, 4, 35121 Padova, Italy
| |
Collapse
|
10
|
Brambilla C, Pirovano I, Mira RM, Rizzo G, Scano A, Mastropietro A. Combined Use of EMG and EEG Techniques for Neuromotor Assessment in Rehabilitative Applications: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:7014. [PMID: 34770320 PMCID: PMC8588321 DOI: 10.3390/s21217014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Electroencephalography (EEG) and electromyography (EMG) are widespread and well-known quantitative techniques used for gathering biological signals at cortical and muscular levels, respectively. Indeed, they provide relevant insights for increasing knowledge in different domains, such as physical and cognitive, and research fields, including neuromotor rehabilitation. So far, EEG and EMG techniques have been independently exploited to guide or assess the outcome of the rehabilitation, preferring one technique over the other according to the aim of the investigation. More recently, the combination of EEG and EMG started to be considered as a potential breakthrough approach to improve rehabilitation effectiveness. However, since it is a relatively recent research field, we observed that no comprehensive reviews available nor standard procedures and setups for simultaneous acquisitions and processing have been identified. Consequently, this paper presents a systematic review of EEG and EMG applications specifically aimed at evaluating and assessing neuromotor performance, focusing on cortico-muscular interactions in the rehabilitation field. A total of 213 articles were identified from scientific databases, and, following rigorous scrutiny, 55 were analyzed in detail in this review. Most of the applications are focused on the study of stroke patients, and the rehabilitation target is usually on the upper or lower limbs. Regarding the methodological approaches used to acquire and process data, our results show that a simultaneous EEG and EMG acquisition is quite common in the field, but it is mostly performed with EMG as a support technique for more specific EEG approaches. Non-specific processing methods such as EEG-EMG coherence are used to provide combined EEG/EMG signal analysis, but rarely both signals are analyzed using state-of-the-art techniques that are gold-standard in each of the two domains. Future directions may be oriented toward multi-domain approaches able to exploit the full potential of combined EEG and EMG, for example targeting a wider range of pathologies and implementing more structured clinical trials to confirm the results of the current pilot studies.
Collapse
Affiliation(s)
- Cristina Brambilla
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy; (C.B.); (R.M.M.); (A.S.)
| | - Ileana Pirovano
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (A.M.)
| | - Robert Mihai Mira
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy; (C.B.); (R.M.M.); (A.S.)
| | - Giovanna Rizzo
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (A.M.)
| | - Alessandro Scano
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy; (C.B.); (R.M.M.); (A.S.)
| | - Alfonso Mastropietro
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (A.M.)
| |
Collapse
|
11
|
Bao SC, Chen C, Yuan K, Yang Y, Tong RKY. Disrupted cortico-peripheral interactions in motor disorders. Clin Neurophysiol 2021; 132:3136-3151. [PMID: 34749233 DOI: 10.1016/j.clinph.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022]
Abstract
Motor disorders may arise from neurological damage or diseases at different levels of the hierarchical motor control system and side-loops. Altered cortico-peripheral interactions might be essential characteristics indicating motor dysfunctions. By integrating cortical and peripheral responses, top-down and bottom-up cortico-peripheral coupling measures could provide new insights into the motor control and recovery process. This review first discusses the neural bases of cortico-peripheral interactions, and corticomuscular coupling and corticokinematic coupling measures are addressed. Subsequently, methodological efforts are summarized to enhance the modeling reliability of neural coupling measures, both linear and nonlinear approaches are introduced. The latest progress, limitations, and future directions are discussed. Finally, we emphasize clinical applications of cortico-peripheral interactions in different motor disorders, including stroke, neurodegenerative diseases, tremor, and other motor-related disorders. The modified interaction patterns and potential changes following rehabilitation interventions are illustrated. Altered coupling strength, modified coupling directionality, and reorganized cortico-peripheral activation patterns are pivotal attributes after motor dysfunction. More robust coupling estimation methodologies and combination with other neurophysiological modalities might more efficiently shed light on motor control and recovery mechanisms. Future studies with large sample sizes might be necessary to determine the reliabilities of cortico-peripheral interaction measures in clinical practice.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Cheng Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Yuan Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, OK, USA; Laureate Institute for Brain Research, Tulsa, OK, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
12
|
Suzuki R, Ushiyama J. Context-Dependent Modulation of Corticomuscular Coherence in a Series of Motor Initiation and Maintenance of Voluntary Contractions. Cereb Cortex Commun 2021; 1:tgaa074. [PMID: 34296134 PMCID: PMC8152874 DOI: 10.1093/texcom/tgaa074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
For our precise motor control, we should consider "motor context," which involves the flow from feedforward to feedback control. The present study focused on corticomuscular coherence (CMC) to physiologically evaluate how the sensorimotor integration is modulated in a series of movements depending on the motor context. We evaluated CMC between electroencephalograms over the sensorimotor cortex and rectified electromyograms from the tibialis anterior muscle during intermittent contractions with 2 contraction intensities in 4 experiments. Although sustained contractions with weak-to-moderate intensities led to no difference in CMC between intensities, intermittent ballistic-and-hold contractions with 2 intensities (10% and 15% or 25% of the maximal voluntary contraction, MVC) presented in a randomized order resulted in greater magnitude of CMC for the weaker intensity. Moreover, the relative amount of initial error was larger for trials with 10% of MVC, which indicated that initial motor output was inaccurate during weaker contractions. However, this significant difference in CMC vanished in the absence of trial randomization or the application of intermittent ramp-and-hold contractions with slower torque developments. Overall, CMC appears to be modulated context-dependently and is especially enhanced when active sensorimotor integration is required in feedback control periods because of the complexity and inaccuracy of preceding motor control.
Collapse
Affiliation(s)
- Rina Suzuki
- Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Junichi Ushiyama
- Faculty of Environment and Information Studies, Keio University, Fujisawa 252-0882, Japan
| |
Collapse
|
13
|
Glories D, Soulhol M, Amarantini D, Duclay J. Specific modulation of corticomuscular coherence during submaximal voluntary isometric, shortening and lengthening contractions. Sci Rep 2021; 11:6322. [PMID: 33737659 PMCID: PMC7973785 DOI: 10.1038/s41598-021-85851-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
During voluntary contractions, corticomuscular coherence (CMC) is thought to reflect a mutual interaction between cortical and muscle oscillatory activities, respectively measured by electroencephalography (EEG) and electromyography (EMG). However, it remains unclear whether CMC modulation would depend on the contribution of neural mechanisms acting at the spinal level. To this purpose, modulations of CMC were compared during submaximal isometric, shortening and lengthening contractions of the soleus (SOL) and the medial gastrocnemius (MG) with a concurrent analysis of changes in spinal excitability that may be reduced during lengthening contractions. Submaximal contractions intensity was set at 50% of the maximal SOL EMG activity. CMC was computed in the time-frequency domain between the Cz EEG electrode signal and the unrectified SOL or MG EMG signal. Spinal excitability was quantified through normalized Hoffmann (H) reflex amplitude. The results indicate that beta-band CMC and normalized H-reflex were significantly lower in SOL during lengthening compared with isometric contractions, but were similar in MG for all three muscle contraction types. Collectively, these results highlight an effect of contraction type on beta-band CMC, although it may differ between agonist synergist muscles. These novel findings also provide new evidence that beta-band CMC modulation may involve spinal regulatory mechanisms.
Collapse
Affiliation(s)
- Dorian Glories
- grid.15781.3a0000 0001 0723 035XToNIC, Université de Toulouse, Inserm, UPS, Toulouse, France ,grid.15781.3a0000 0001 0723 035XFaculty of Sport Science, University Paul Sabatier, Toulouse, France
| | - Mathias Soulhol
- grid.15781.3a0000 0001 0723 035XToNIC, Université de Toulouse, Inserm, UPS, Toulouse, France ,grid.15781.3a0000 0001 0723 035XFaculty of Sport Science, University Paul Sabatier, Toulouse, France
| | - David Amarantini
- grid.15781.3a0000 0001 0723 035XToNIC, Université de Toulouse, Inserm, UPS, Toulouse, France ,grid.15781.3a0000 0001 0723 035XFaculty of Sport Science, University Paul Sabatier, Toulouse, France
| | - Julien Duclay
- grid.15781.3a0000 0001 0723 035XToNIC, Université de Toulouse, Inserm, UPS, Toulouse, France ,grid.15781.3a0000 0001 0723 035XFaculty of Sport Science, University Paul Sabatier, Toulouse, France
| |
Collapse
|
14
|
Dos Santos PCR, Lamoth CJC, Barbieri FA, Zijdewind I, Gobbi LTB, Hortobágyi T. Age-specific modulation of intermuscular beta coherence during gait before and after experimentally induced fatigue. Sci Rep 2020; 10:15854. [PMID: 32985547 PMCID: PMC7522269 DOI: 10.1038/s41598-020-72839-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
We examined the effects of age on intermuscular beta-band (15-35 Hz) coherence during treadmill walking before and after experimentally induced fatigue. Older (n = 12) and younger (n = 12) adults walked on a treadmill at 1.2 m/s for 3 min before and after repetitive sit-to-stand, rSTS, to induce muscle fatigability. We measured stride outcomes and coherence from 100 steps in the dominant leg for the synergistic (biceps femoris (BF)-semitendinosus, rectus femoris (RF)-vastus lateralis (VL), gastrocnemius lateralis (GL)-Soleus (SL), tibialis anterior (TA)-peroneus longus (PL)) and for the antagonistic (RF-BF and TA-GL) muscle pairs at late swing and early stance. Older vs. younger adults had 43-62% lower GL-SL, RF-VL coherence in swing and TA-PL and RF-VL coherence in stance. After rSTS, RF-BF coherence in late swing decreased by ~ 20% and TA-PL increased by 16% independent of age (p = 0.02). Also, GL-SL coherence decreased by ~ 23% and increased by ~ 23% in younger and older, respectively. Age affects the oscillatory coupling between synergistic muscle pairs, delivered presumably via corticospinal tracts, during treadmill walking. Muscle fatigability elicits age-specific changes in the common fluctuations in muscle activity, which could be interpreted as a compensation for muscle fatigability to maintain gait performance.
Collapse
Affiliation(s)
- Paulo Cezar Rocha Dos Santos
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- Posture and Gait Studies Laboratory (LEPLO), Institute of Biosciences, Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil.
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Claudine J C Lamoth
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fabio Augusto Barbieri
- Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Graduate Program in Movement Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - Inge Zijdewind
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lilian Teresa Bucken Gobbi
- Posture and Gait Studies Laboratory (LEPLO), Institute of Biosciences, Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Marin-Pardo O, Laine CM, Rennie M, Ito KL, Finley J, Liew SL. A Virtual Reality Muscle-Computer Interface for Neurorehabilitation in Chronic Stroke: A Pilot Study. SENSORS 2020; 20:s20133754. [PMID: 32635550 PMCID: PMC7374440 DOI: 10.3390/s20133754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
Severe impairment of limb movement after stroke can be challenging to address in the chronic stage of stroke (e.g., greater than 6 months post stroke). Recent evidence suggests that physical therapy can still promote meaningful recovery after this stage, but the required high amount of therapy is difficult to deliver within the scope of standard clinical practice. Digital gaming technologies are now being combined with brain–computer interfaces to motivate engaging and frequent exercise and promote neural recovery. However, the complexity and expense of acquiring brain signals has held back widespread utilization of these rehabilitation systems. Furthermore, for people that have residual muscle activity, electromyography (EMG) might be a simpler and equally effective alternative. In this pilot study, we evaluate the feasibility and efficacy of an EMG-based variant of our REINVENT virtual reality (VR) neurofeedback rehabilitation system to increase volitional muscle activity while reducing unintended co-contractions. We recruited four participants in the chronic stage of stroke recovery, all with severely restricted active wrist movement. They completed seven 1-hour training sessions during which our head-mounted VR system reinforced activation of the wrist extensor muscles without flexor activation. Before and after training, participants underwent a battery of clinical and neuromuscular assessments. We found that training improved scores on standardized clinical assessments, equivalent to those previously reported for brain–computer interfaces. Additionally, training may have induced changes in corticospinal communication, as indexed by an increase in 12–30 Hz corticomuscular coherence and by an improved ability to maintain a constant level of wrist muscle activity. Our data support the feasibility of using muscle–computer interfaces in severe chronic stroke, as well as their potential to promote functional recovery and trigger neural plasticity.
Collapse
Affiliation(s)
- Octavio Marin-Pardo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (O.M.-P.); (J.F.)
| | - Christopher M. Laine
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90089, USA; (C.M.L.); (M.R.); (K.L.I.)
| | - Miranda Rennie
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90089, USA; (C.M.L.); (M.R.); (K.L.I.)
| | - Kaori L. Ito
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90089, USA; (C.M.L.); (M.R.); (K.L.I.)
| | - James Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (O.M.-P.); (J.F.)
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90089, USA
| | - Sook-Lei Liew
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (O.M.-P.); (J.F.)
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90089, USA; (C.M.L.); (M.R.); (K.L.I.)
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|
16
|
McManus L, Flood MW, Lowery MM. Beta-band motor unit coherence and nonlinear surface EMG features of the first dorsal interosseous muscle vary with force. J Neurophysiol 2019; 122:1147-1162. [PMID: 31365308 DOI: 10.1152/jn.00228.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor unit firing times are weakly coupled across a range of frequencies during voluntary contractions. Coherent activity within the beta-band (15-35 Hz) has been linked to oscillatory cortical processes, providing evidence of functional connectivity between the motoneuron pool and motor cortex. The aim of this study was to investigate whether beta-band motor unit coherence is altered with increasing abduction force in the first dorsal interosseous muscle. Coherence between motor unit firing times, extracted from decomposed surface electromyography (EMG) signals, was investigated in 17 subjects at 10, 20, 30, and 40% of maximum voluntary contraction. Corresponding changes in nonlinear surface EMG features (specifically sample entropy and determinism, which are sensitive to motor unit synchronization) were also examined. A reduction in beta-band and alpha-band coherence was observed as force increased [F(3, 151) = 32, P < 0.001 and F(3, 151) = 27, P < 0.001, respectively], accompanied by corresponding changes in nonlinear surface EMG features. A significant relationship between the nonlinear features and motor unit coherence was also detected (r = -0.43 ± 0.1 and r = 0.45 ± 0.1 for sample entropy and determinism, respectively; both P < 0.001). The reduction in beta-band coherence suggests a change in the relative contribution of correlated and uncorrelated presynaptic inputs to the motoneuron pool, and/or a decrease in the responsiveness of the motoneuron pool to synchronous inputs at higher forces. The study highlights the importance of considering muscle activation when investigating changes in motor unit coherence or nonlinear EMG features and examines other factors that can influence coherence estimation.NEW & NOTEWORTHY Intramuscular alpha- and beta-band coherence decreased as muscle contraction force increased. Beta-band coherence was higher in groups of high-threshold motor units than in simultaneously active lower threshold units. Alterations in motor unit coherence with increases or decreases in force and with the onset of fatigue were accompanied by corresponding changes in surface electromyography sample entropy and determinism. Mixed-model analysis indicated mean firing rate and number of motor units also influenced the coherence estimate.
Collapse
Affiliation(s)
- Lara McManus
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Matthew W Flood
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Madeleine M Lowery
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
17
|
Pitkänen M, Yazawa S, Airaksinen K, Lioumis P, Nurminen J, Pekkonen E, Mäkelä JP. Localization of Sensorimotor Cortex Using Navigated Transcranial Magnetic Stimulation and Magnetoencephalography. Brain Topogr 2019; 32:873-881. [PMID: 31093863 PMCID: PMC6707977 DOI: 10.1007/s10548-019-00716-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
The mapping of the sensorimotor cortex gives information about the cortical motor and sensory functions. Typical mapping methods are navigated transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG). The differences between these mapping methods are, however, not fully known. TMS center of gravities (CoGs), MEG somatosensory evoked fields (SEFs), corticomuscular coherence (CMC), and corticokinematic coherence (CKC) were mapped in ten healthy adults. TMS mapping was performed for first dorsal interosseous (FDI) and extensor carpi radialis (ECR) muscles. SEFs were induced by tactile stimulation of the index finger. CMC and CKC were determined as the coherence between MEG signals and the electromyography or accelerometer signals, respectively, during voluntary muscle activity. CMC was mapped during the activation of FDI and ECR muscles separately, whereas CKC was measured during the waving of the index finger at a rate of 3–4 Hz. The maximum CMC was found at beta frequency range, whereas maximum CKC was found at the movement frequency. The mean Euclidean distances between different localizations were within 20 mm. The smallest distance was found between TMS FDI and TMS ECR CoGs and longest between CMC FDI and CMC ECR sites. TMS-inferred localizations (CoGs) were less variable across participants than MEG-inferred localizations (CMC, CKC). On average, SEF locations were 8 mm lateral to the TMS CoGs (p < 0.01). No differences between hemispheres were found. Based on the results, TMS appears to be more viable than MEG in locating motor cortical areas.
Collapse
Affiliation(s)
- Minna Pitkänen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland. .,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland. .,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland.
| | - Shogo Yazawa
- Department of Systems Neuroscience, Sapporo Medical University, Sapporo, Japan
| | - Katja Airaksinen
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Department of Neurology, Helsinki University Hospital, Helsinki, Finland.,Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jussi Nurminen
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland.,Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Jyrki P Mäkelä
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Liu J, Sheng Y, Liu H. Corticomuscular Coherence and Its Applications: A Review. Front Hum Neurosci 2019; 13:100. [PMID: 30949041 PMCID: PMC6435838 DOI: 10.3389/fnhum.2019.00100] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
Corticomuscular coherence (CMC) is an index utilized to indicate coherence between brain motor cortex and associated body muscles, conventionally. As an index of functional connections between the cortex and muscles, CMC research is the focus of neurophysiology in recent years. Although CMC has been extensively studied in healthy subjects and sports disorders, the purpose of its applications is still ambiguous, and the magnitude of CMC varies among individuals. Here, we aim to investigate factors that modulate the variation of CMC amplitude and compare significant CMC between these factors to find a well-developed research prospect. In the present review, we discuss the mechanism of CMC and propose a general definition of CMC. Factors affecting CMC are also summarized as follows: experimental design, band frequencies and force levels, age correlation, and difference between healthy controls and patients. In addition, we provide a detailed overview of the current CMC applications for various motor disorders. Further recognition of the factors affecting CMC amplitude can clarify the physiological mechanism and is beneficial to the implementation of CMC clinical methods.
Collapse
Affiliation(s)
- Jinbiao Liu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yixuan Sheng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Honghai Liu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Jensen P, Frisk R, Spedden ME, Geertsen SS, Bouyer LJ, Halliday DM, Nielsen JB. Using Corticomuscular and Intermuscular Coherence to Assess Cortical Contribution to Ankle Plantar Flexor Activity During Gait. J Mot Behav 2019; 51:668-680. [PMID: 30657030 DOI: 10.1080/00222895.2018.1563762] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study used coherence and directionality analyses to explore whether the motor cortex contributes to plantar flexor muscle activity during the stance phase and push-off phase during gait. Subjects walked on a treadmill, while EEG over the leg motorcortex area and EMG from the medial gastrocnemius and soleus muscles was recorded. Corticomuscular and intermuscular coherence were calculated from pair-wise recordings. Significant EEG-EMG and EMG-EMG coherence in the beta and gamma frequency bands was found throughout the stance phase with the largest coherence towards push-off. Analysis of directionality revealed that EEG activity preceded EMG activity throughout the stance phase until the time of push-off. These findings suggest that the motor cortex contributes to ankle plantar flexor muscle activity and forward propulsion during gait.
Collapse
Affiliation(s)
- Peter Jensen
- Department of Nutrition Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Rasmus Frisk
- Elsass Institute , Charlottenlund, Denmark .,Department of Neuroscience, University of Copenhagen , Copenhagen , Denmark
| | | | - Svend Sparre Geertsen
- Department of Nutrition Exercise and Sports, University of Copenhagen , Copenhagen , Denmark .,Department of Neuroscience, University of Copenhagen , Copenhagen , Denmark
| | - Laurent J Bouyer
- CIRRIS-Department of Rehabilitation, Universite Laval , Quebec City , Canada
| | - David M Halliday
- Department of Electronic Engineering, University of York , York, UK
| | - Jens Bo Nielsen
- Elsass Institute , Charlottenlund, Denmark .,Department of Neuroscience, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
20
|
Oscillatory Corticospinal Activity during Static Contraction of Ankle Muscles Is Reduced in Healthy Old versus Young Adults. Neural Plast 2018; 2018:3432649. [PMID: 29853842 PMCID: PMC5944232 DOI: 10.1155/2018/3432649] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/26/2018] [Indexed: 11/18/2022] Open
Abstract
Aging is accompanied by impaired motor function, but age-related changes in neural networks responsible for generating movement are not well understood. We aimed to investigate the functional oscillatory coupling between activity in the sensorimotor cortex and ankle muscles during static contraction. Fifteen young (20–26 yr) and fifteen older (65–73 yr) subjects were instructed to match a target force by performing static ankle dorsi- or plantar flexion, while electroencephalographic (EEG) activity was recorded from the cortex and electromyographic (EMG) activity was recorded from dorsi- (proximal and distal anterior tibia) and plantar (soleus and medial gastrocnemius) flexor muscles. EEG-EMG and EMG-EMG beta band (15–35 Hz) coherence was analyzed as an index of corticospinal activity. Our results demonstrated that beta cortico-, intra-, and intermuscular coherence was reduced in old versus young subjects during static contractions. Old subjects demonstrated significantly greater error than young subjects while matching target forces, but force precision was not related to beta coherence. We interpret this as an age-related decrease in effective oscillatory corticospinal activity during steady-state motor output. Additionally, our data indicate a potential effect of alpha coherence and tremor on performance. These results may be instrumental in developing new interventions to strengthen sensorimotor control in elderly subjects.
Collapse
|
21
|
Nojima I, Watanabe T, Saito K, Tanabe S, Kanazawa H. Modulation of EMG-EMG Coherence in a Choice Stepping Task. Front Hum Neurosci 2018; 12:50. [PMID: 29487515 PMCID: PMC5816746 DOI: 10.3389/fnhum.2018.00050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
The voluntary step execution task is a popular measure for identifying fall risks among elderly individuals in the community setting because most falls have been reported to occur during movement. However, the neurophysiological functions during this movement are not entirely understood. Here, we used electromyography (EMG) to explore the relationship between EMG-EMG coherence, which reflects common oscillatory drive to motoneurons, and motor performance associated with stepping tasks: simple reaction time (SRT) and choice reaction time (CRT) tasks. Ten healthy elderly adults participated in the study. Participants took a single step forward in response to a visual imperative stimulus. EMG-EMG coherence was analyzed for 1000 ms before the presentation of the stimulus (stationary standing position) from proximal and distal tibialis anterior (TA) and soleus (SOL) muscles. The main result showed that all paired EMG-EMG coherences in the alpha and beta frequency bands were greater in the SRT than the CRT task. This finding suggests that the common oscillatory drive to the motoneurons during the SRT task occurred prior to taking a step, whereas the lower value of corticospinal activity during the CRT task prior to taking a step may indicate an involvement of inhibitory activity, which is consistent with observations from our previous study (Watanabe et al., 2016). Furthermore, the beta band coherence in intramuscular TA tended to positively correlate with the number of performance errors that are associated with fall risks in the CRT task, suggesting that a reduction in the inhibitory activity may result in a decrease of stepping performance. These findings could advance the understanding of the neurophysiological features of postural adjustments in elderly individuals.
Collapse
Affiliation(s)
- Ippei Nojima
- Department of Physical Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsunori Watanabe
- Department of Physical Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kotaro Saito
- Department of Physical Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Hoshinori Kanazawa
- Japan Society for the Promotion of Science, Tokyo, Japan.,Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Jensen P, Jensen NJ, Terkildsen CU, Choi JT, Nielsen JB, Geertsen SS. Increased central common drive to ankle plantar flexor and dorsiflexor muscles during visually guided gait. Physiol Rep 2018; 6:e13598. [PMID: 29405634 PMCID: PMC5800295 DOI: 10.14814/phy2.13598] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/07/2018] [Indexed: 11/24/2022] Open
Abstract
When we walk in a challenging environment, we use visual information to modify our gait and place our feet carefully on the ground. Here, we explored how central common drive to ankle muscles changes in relation to visually guided foot placement. Sixteen healthy adults aged 23 ± 5 years participated in the study. Electromyography (EMG) from the Soleus (Sol), medial Gastrocnemius (MG), and the distal and proximal ends of the Tibialis anterior (TA) muscles and electroencephalography (EEG) from Cz were recorded while subjects walked on a motorized treadmill. A visually guided walking task, where subjects received visual feedback of their foot placement on a screen in real-time and were required to place their feet within narrow preset target areas, was compared to normal walking. There was a significant increase in the central common drive estimated by TA-TA and Sol-MG EMG-EMG coherence in beta and gamma frequencies during the visually guided walking compared to normal walking. EEG-TA EMG coherence also increased, but the group average did not reach statistical significance. The results indicate that the corticospinal tract is involved in modifying gait when visually guided placement of the foot is required. These findings are important for our basic understanding of the central control of human bipedal gait and for the design of rehabilitation interventions for gait function following central motor lesions.
Collapse
Affiliation(s)
- Peter Jensen
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | | | | | - Julia T. Choi
- Department of KinesiologyUniversity of MassachusettsAmherstMassachusetts
| | - Jens Bo Nielsen
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
- Elsass InstituteCharlottenlundDenmark
| | - Svend Sparre Geertsen
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|