1
|
Liu F, Wen S, Liu M, Min Y, Zhang Z, Shi L, Wang K, Deng Y, Yang Z, Yang F, Ke S. Heterocycle-functional steroidal derivatives: Design, synthesis, bioevaluation and SARs of steroidal pyrazolo[1,5-a]pyrimidines as potential ALK inhibitors. Bioorg Chem 2024; 153:107847. [PMID: 39348750 DOI: 10.1016/j.bioorg.2024.107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Two series of heterocyclic steroidal pyrazolo[1,5-a]pyrimidines derived from dehydroepiandrosterone (DHEA) and epiandrosterone (EPIA) were designed and synthesized, and these compounds were screened for their potential antiproliferation activities. The preliminary bioassay indicated that some of target compounds exhibited significantly good antiproliferation activities against human melanoma cell line (A875) and human hepatocellular carcinoma (Huh-7) cell lines compared with 5-fluorouracil (5-FU), and some of which present good antiproliferative activities as potential ALK inhibitors. The detailed analysis of structure-activity relationships (SARs) based on the inhibition activities, kinase assay, and molecular docking demonstrated that the antiproliferation activities of these steroidal pyrazolo[1,5-a]pyrimidine might be affected by the β-hydroxyl group of steroidal scaffold and the N atom of pyridine heterocycle. Especially, compound 4c has certain inhibitory effects on the tyrosine protein kinases ALK, CDK2/CyclinE1, FAK, CDK5/P35, CDK9/CyclinT1, CDK5/P25, PIM2, CDK2/CyclinA2, CDK1/CyclinB1, etc., and which displayed highest inhibitory effect on the kinases of ALK with inhibition rate 40.63 % at the concentration of 10 μM, which induced cell death in A875 cells at least partly (initially), by apoptosis.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaohua Wen
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Manli Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yong Min
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhigang Zhang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liqiao Shi
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Kaimei Wang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yunxia Deng
- Guangdong Jiangmen Chinese Medicine College, Jiangmen 529000, China
| | - Ziwen Yang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fei Yang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Guangdong Jiangmen Chinese Medicine College, Jiangmen 529000, China; College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Shaoyong Ke
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
2
|
Ali A, Motaleb A, Alam MT, Pandey DK, Shafiullah. Synthesis and Pharmacological Properties of Modified A- and D-Ring in Dehydroepiandrosterone (DHEA): A Review. ACS OMEGA 2024; 9:32287-32327. [PMID: 39100307 PMCID: PMC11292635 DOI: 10.1021/acsomega.4c02808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024]
Abstract
Dehydroepiandrosterone (3β-hydroxyandrost-5-en-17-one) (DHEA) is a naturally occurring steroid hormone primarily produced in the zona reticularis of the human adrenal glands. It serves as a crucial precursor for sex hormones, such as testosterone, estradiol, and androstenedione. Recent findings indicate that DHEA serves as the primary source of sex steroids in women during both pre- and postmenopausal stages. Additionally, a decline in DHEA levels with age is linked to various hormone-deficiency symptoms. Despite the wide array of biological activities that make DHEA a valuable polycyclic natural steroid, particularly for pharmaceutical and cosmetic applications, reports suggest that oral DHEA has limited clinical effect. Thus, A- and D-ring modified DHEA are synthesized and their biological activities are carried out by different research groups and enhanced biological activity reported in the literature. Here, in this review, we have tried to cover all of the synthetic routes and biological studies of modified A- and D-ring DHEA from 2015 to mid-2022.
Collapse
Affiliation(s)
- Abad Ali
- Department
of Chemistry, Faculty of Science, Aligarh
Muslim University, Aligarh, Uttar Pradesh 202 002, India
| | - Abdul Motaleb
- Department
of Chemistry, Midnapore College (Autonomous), Vidyasagar University, Midnapore
City 721101, India
| | - Md. Tauqir Alam
- Department
of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh 202 002, India
| | - Dilip Kumar Pandey
- Okinawa
Institute of Science and Technology Graduate University, 1919-1 Tancha,
Onna, Okinawa 904-0495, Japan
| | - Shafiullah
- Department
of Chemistry, Faculty of Science, Aligarh
Muslim University, Aligarh, Uttar Pradesh 202 002, India
| |
Collapse
|
3
|
Pojtanadithee P, Isswanich K, Buaban K, Chamni S, Wilasluck P, Deetanya P, Wangkanont K, Langer T, Wolschann P, Sanachai K, Rungrotmongkol T. A combination of structure-based virtual screening and experimental strategies to identify the potency of caffeic acid ester derivatives as SARS-CoV-2 3CL pro inhibitor from an in-house database. Biophys Chem 2023; 304:107125. [PMID: 39491914 DOI: 10.1016/j.bpc.2023.107125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Drug development requires significant time and resources, and computer-aided drug discovery techniques that integrate chemical and biological spaces offer valuable tools for the process. This study focused on the field of COVID-19 therapeutics and aimed to identify new active non-covalent inhibitors for 3CLpro, a key protein target. By combining in silico and in vitro approaches, an in-house database was utilized to identify potential inhibitors. The drug-likeness criteria were considered to pre-filter 553 compounds from 12 groups of natural products. Using structure-based virtual screening, 296 compounds were identified that matched the chemical features of SARS-CoV-2 3CLpro peptidomimetic inhibitor pharmacophore models. Subsequent molecular docking resulted in 43 hits with high binding affinities. Among the hits, caffeic acid analogs showed significant interactions with the 3CLpro active site, indicating their potential as promising candidates. To further evaluate their efficacy, enzyme-based assays were conducted, revealing that two ester derivatives of caffeic acid (4k and 4l) exhibited more than a 30% reduction in 3CLpro activity. Overall, these findings suggest that the screening approach employed in this study holds promise for the discovery of novel anti-SARS-CoV-2 therapeutics. Furthermore, the methodology could be extended for optimization or retrospective evaluation to enhance molecular targeting and antiviral efficacy of potential drug candidates.
Collapse
Affiliation(s)
- Piyatida Pojtanadithee
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kulpornsorn Isswanich
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Koonchira Buaban
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patcharin Wilasluck
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapon Deetanya
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | | | - Kamonpan Sanachai
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Yang F, Liu F, Min Y, Shi L, Liu M, Wang K, Ke S, Gong Y, Yang Z. Novel Steroidal[17,16-d]pyrimidines Derived from Epiandrosterone and Androsterone: Synthesis, Characterization and Configuration-Activity Relationships. Molecules 2023; 28:molecules28062691. [PMID: 36985662 PMCID: PMC10054084 DOI: 10.3390/molecules28062691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Two series of novel steroidal[17,16-d]pyrimidines derived from natural epiandrosterone and androsterone were designed and synthesized, and these compounds were screened for their potential anticancer activities. The preliminary bioassay indicated that some of these prepared compounds exhibited significantly good cytotoxic activities against human gastric cancer (SGC-7901), lung cancer (A549), and hepatocellular liver carcinoma (HepG2) cell lines compared with 5-fluorouracil (5-FU), epiandrosterone, and androsterone. Especially the respective pairs from epiandrosterone and androsterone showed significantly different inhibitory activities, and the possible configuration-activity relationships have also been summarized and discussed based on kinase assay and molecular docking, which indicated that the inhibition activities of these steroidal[17,16-d]pyrimidines might obviously be affected by the configuration of the hydroxyl group in the part of the steroidal scaffold.
Collapse
Affiliation(s)
- Fei Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fang Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yong Min
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liqiao Shi
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Manli Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Kaimei Wang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaoyong Ke
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Correspondence: (S.K.); (Y.G.); (Z.Y.)
| | - Yan Gong
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Correspondence: (S.K.); (Y.G.); (Z.Y.)
| | - Ziwen Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Correspondence: (S.K.); (Y.G.); (Z.Y.)
| |
Collapse
|
5
|
Synthesis, In Vitro Biological Evaluation of Antiproliferative and Neuroprotective Effects and In Silico Studies of Novel 16E-Arylidene-5α,6α-epoxyepiandrosterone Derivatives. Biomedicines 2023; 11:biomedicines11030812. [PMID: 36979790 PMCID: PMC10045663 DOI: 10.3390/biomedicines11030812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
Steroids constitute an important class of pharmacologically active molecules, playing key roles in human physiology. Within this group, 16E-arylideneandrostane derivatives have been reported as potent anti-cancer agents for the treatment of leukemia, breast and prostate cancers, and brain tumors. Additionally, 5α,6α-epoxycholesterol is an oxysterol with several biological activities, including regulation of cell proliferation and cholesterol homeostasis. Interestingly, pregnenolone derivatives combining these two modifications were described as potential neuroprotective agents. In this research, novel 16E-arylidene-5α,6α-epoxyepiandrosterone derivatives were synthesized from dehydroepiandrosterone by aldol condensation with different aldehydes followed by a diastereoselective 5α,6α-epoxidation. Their cytotoxicity was evaluated on tumoral and non-tumoral cell lines by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Furthermore, the assessment of the neuroprotective activity of these derivatives was performed in a dopaminergic neuronal cell line (N27), at basal conditions, and in the presence of the neurotoxin 6-hydroxydopamine (6-OHDA). Interestingly, some of these steroids had selective cytotoxic effects in tumoral cell lines, with an IC50 of 3.47 µM for the 2,3-dichlorophenyl derivative in the breast cancer cell line (MCF-7). The effects of this functionalized epoxide on cell proliferation (Ki67 staining), cell necrosis (propidium iodide staining), as well as the analysis of the nuclear area and near neighbor distance in MCF-7 cells, were analyzed. From this set of biological studies, strong evidence of the activation of apoptosis was found. In contrast, no significant neuroprotection against 6-OHDA-induced neurotoxicity was observed for the less cytotoxic steroids in N27 cells. Lastly, molecular docking simulations were achieved to verify the potential affinity of these compounds against important targets of steroidal drugs (androgen receptor, estrogen receptor α, and 5α-reductase type 2, 17α-hydroxylase-17,20-lyase and aromatase enzymes). This in silico study predicted a strong affinity between most novel steroidal derivatives and 5α-reductase and 17α-hydroxylase-17,20-lyase enzymes.
Collapse
|
6
|
Huo H, Li G, Shi B, Li J. Recent advances on synthesis and biological activities of C-17 aza-heterocycle derived steroids. Bioorg Med Chem 2022; 69:116882. [PMID: 35749841 DOI: 10.1016/j.bmc.2022.116882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Steroids modification for improving their biological activities is one of the most efficient and fruitful methods to develop novel medicines. Steroids with aza-heterocycles attaching to the C-17 owing various biological activities have received great attentions and some of the compounds are developed successfully as drugs. In this review, the research of the syntheses and biological activities of steroids bearing various aza-heterocycles published in the last 8 years is assembled, and some important structure-activity relationships (SARs) of active compounds are presented. According to the analysis of the literatures and our experiences in this field, the potential of aza-heterocyclic steroids as medicinal drugs is proposed.
Collapse
Affiliation(s)
- Haibo Huo
- Department of Life Sciences, Changzhi University, Changzhi 046011, Shanxi, China
| | - Guixia Li
- Department of Basic Medicine, Changzhi Medical College, Changzhi, China
| | - Baojun Shi
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Li
- Department of Life Sciences, Changzhi University, Changzhi 046011, Shanxi, China; Department of Chemistry, Changzhi University, Changzhi 046011, Shanxi, China.
| |
Collapse
|
7
|
Zhou S, Huang G, Chen G. Synthesis and anti-tumor activity of marine alkaloids. Bioorg Med Chem Lett 2021; 41:128009. [DOI: 10.1016/j.bmcl.2021.128009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/20/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
|
8
|
Zampieri D, Mamolo MG. Hybridization Approach to Drug Discovery Inhibiting Mycobacterium tuberculosis-An Overview. Curr Top Med Chem 2021; 21:777-788. [PMID: 32814528 DOI: 10.2174/1568026620666200819151342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Tuberculosis is one of the top 10 causes of death worldwide and the leading cause of death from a single infectious agent, mainly due to Mycobacterium tuberculosis (MTB). Recently, clinical prognoses have worsened due to the emergence of multi-drug resistant (MDR) and extensive-drug resistant (XDR) tuberculosis, which lead to the need for new, efficient and safe drugs. Among the several strategies, polypharmacology could be considered one of the best solutions, in particular, the multitarget directed ligands strategy (MTDLs), based on the synthesis of hybrid ligands acting against two targets of the pathogen. The framework strategy comprises linking, fusing and merging approaches to develop new chemical entities. With these premises, this review aims to provide an overview of the recent hybridization approach, in medicinal chemistry, of the most recent and promising multitargeting antimycobacterial candidates.
Collapse
Affiliation(s)
- Daniele Zampieri
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1, University of Trieste, Trieste 34127, Italy
| | - Maria G Mamolo
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
9
|
Highlights on Steroidal Arylidene Derivatives as a Source of Pharmacologically Active Compounds: A Review. Molecules 2021; 26:molecules26072032. [PMID: 33918373 PMCID: PMC8038301 DOI: 10.3390/molecules26072032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Steroids constitute a unique class of chemical compounds, playing an important role in physiopathological processes, and have high pharmacological interest. Additionally, steroids have been associated with a relatively low toxicity and high bioavailability. Nowadays, multiple steroidal derivatives are clinically available for the treatment of numerous diseases. Moreover, different structural modifications on their skeleton have been explored, aiming to develop compounds with new and improved pharmacological properties. Thus, steroidal arylidene derivatives emerged as a relevant example of these modifications. This family of compounds has been mainly described as 17β-hydroxysteroid dehydrogenase type 1 and aromatase inhibitors, as well as neuroprotective and anticancer agents. Besides, due to their straightforward preparation and intrinsic chemical reactivity, steroidal arylidene derivatives are important synthetic intermediates for the preparation of other compounds, particularly bearing heterocyclic systems. In fact, starting from arylidenesteroids, it was possible to develop bioactive steroidal pyrazolines, pyrazoles, pyrimidines, pyridines, spiro-pyrrolidines, amongst others. Most of these products have also been studied as anti-inflammatory and anticancer agents, as well as 5α-reductase and aromatase inhibitors. This work aims to provide a comprehensive overview of steroidal arylidene derivatives described in the literature, highlighting their bioactivities and importance as synthetic intermediates for other pharmacologically active compounds.
Collapse
|
10
|
Bilal Tufail M, Aamir Javed M, Ikram M, Mahnashi MH, Alyami BA, Alqahtani YS, Sadiq A, Rashid U. Synthesis, pharmacological evaluation and Molecular modelling studies of pregnenolone derivatives as inhibitors of human dihydrofolate reductase. Steroids 2021; 168:108801. [PMID: 33549543 DOI: 10.1016/j.steroids.2021.108801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/03/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
In current study, we synthesized chalcone derivatives (13a-c) via base-catalyzed Claisen-Schmidt condensation reaction. We further treated diamino compounds with synthesized chalcones to produce 3,4-dihydropyrimidin-2(1H)-one (18a-c), 3,4-dihydropyrimidin-2(1H)-thione (19a-c) and 2-aminopyrimidine (20a-c) derivatives of pregnenolone by cyclization reaction. Cell viability test of synthesized steroidal chalcones and their pyrimidine and thiopyrimidine derivatives against human breast (MCF-7), human lung (A549) and human prostate (PC-3) cancer cell lines was performed using (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), assay. Compounds were further evaluated for their inhibition potential against recombinant human DHFR (rhDHFR). All compounds showed activity from low micromolar to submicromolar range. Compound 20b with IC50 value of 180 nM emerged as most potent compound against rhDHFR. Interaction of the newly synthesized pregnenolone derivatives with hDHFR and estrogen receptor alpha (ERα) were also explored via docking simulations. The overall results of hDHFR inhibition have shown that these analogues can be further optimized and developed as potent anticancer agents.
Collapse
Affiliation(s)
- Muhammad Bilal Tufail
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, KP, Pakistan
| | - Muhammad Aamir Javed
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, KP, Pakistan
| | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, KP, Pakistan
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan.
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, KP, Pakistan.
| |
Collapse
|
11
|
Zhou S, Huang G. Retracted Article: The synthesis and biological activity of marine alkaloid derivatives and analogues. RSC Adv 2020; 10:31909-31935. [PMID: 35518151 PMCID: PMC9056551 DOI: 10.1039/d0ra05856d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
The ocean is the origin of life, with a unique ecological environment, which has given birth to a wealth of marine organisms. The ocean is an important source of biological resources and tens of thousands of monomeric compounds have been separated from marine organisms using modern separation technology. Most of these monomeric compounds have some kind of biological activity that has attracted extensive attention from researchers. Marine alkaloids are a kind of compound that can be separated from marine organisms. They have complex and special chemical structures, but at the same time, they can show diversity in biological activities. The biological activities of marine alkaloids mainly manifest in the form of anti-tumor, anti-fungus, anti-viral, anti-malaria, and anti-osteoporosis properties. Many marine alkaloids have good medicinal prospects and can possibly be used as anti-tumor, anti-viral, and anti-fungal clinical drugs or as lead compounds. The limited amounts of marine alkaloids that can be obtained by separation, coupled with the high cytotoxicity and low selectivity of these lead compounds, has restricted the clinical research and industrial development of marine alkaloids. Marine alkaloid derivatives and analogues have been obtained via rational drug design and chemical synthesis, to make up for the shortcomings of marine alkaloids; this has become an urgent subject for research and development. This work systematically reviews the recent developments relating to marine alkaloid derivatives and analogues in the field of medical chemistry over the last 10 years (2010-2019). We divide marine alkaloid derivatives and analogues into five types from the point-of-view of biological activity and elaborated on these activities. We also briefly discuss the optimization process, chemical synthesis, biological activity evaluation, and structure-activity relationship (SAR) of each of these compounds. The abundant SAR data provides reasonable approaches for the design and development of new biologically active marine alkaloid derivatives and analogues.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou Hainan 571158 China
| | - Gangliang Huang
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
| |
Collapse
|
12
|
Novel d-Annulated Pentacyclic Steroids: Regioselective Synthesis and Biological Evaluation in Breast Cancer Cells. Molecules 2020; 25:molecules25153499. [PMID: 32752019 PMCID: PMC7435891 DOI: 10.3390/molecules25153499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
The acid-catalyzed cyclization of benzylidenes based on 16-dehydropregnenolone acetate (16-DPA) was studied. It was found that these compounds readily undergo regioselective interrupted Nazarov cyclization with trapping chloride ion and an efficient method of the synthesis of d-annulated pentacyclic steroids based on this reaction was proposed. The structures of the synthesized pentacyclic steroids were determined by NMR and X-ray diffraction. It was found that the reaction affords a single diastereomer, but the latter can crystallize as two conformers depending on the structure. Antiproliferative activity of synthesized compounds was evaluated against two breast cancer cell lines: MCF-7 and MDA-MB-231. All tested compounds showed relatively high antiproliferative activity. The synthetic potential of the protocol developed was illustrated by the gram-scale experiment.
Collapse
|
13
|
Kahriman N, Peker K, Serdaroğlu V, Aydın A, Usta A, Fandaklı S, Yaylı N. Novel 2-amino-4-aryl-6-pyridopyrimidines and N-alkyl derivatives: Synthesis, characterization and investigation of anticancer, antibacterial activities and DNA/BSA binding affinities. Bioorg Chem 2020; 99:103805. [DOI: 10.1016/j.bioorg.2020.103805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/27/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
|
14
|
Ke S, Zhang Z, Liu M, Fang W, Huang D, Wan Z, Zhou R, Wang K, Shi L. Synthesis and bioevaluation of novel steroidal isatin conjugates derived from epiandrosterone/androsterone. J Enzyme Inhib Med Chem 2020; 34:1607-1614. [PMID: 31474167 PMCID: PMC6735358 DOI: 10.1080/14756366.2019.1659790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Steroids are classes of natural products widely distributed in nature, which have been demonstrated to exhibit broad biological functions, and have also attracted increasing interest from bioorganic and pharmaceutical researches. In order to develop novel chemical entities as potential cytotoxic agents, a series of steroidal isatin conjugations derived from epiandrosterone and androsterone were efficiently prepared and characterized, and all these obtained compounds were screened for their potential cytotoxic activities. The preliminary bioassay indicated that most of the newly synthesized compounds exhibited good cytotoxic activities against human gastric cancer (SGC-7901), melanoma (A875), and hepatocellular liver carcinoma (HepG2) cell lines compared with 5-fluorouracil (5-FU), which might be considered as promising scaffold for further development of potential anticancer agents.
Collapse
Affiliation(s)
- Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| | - Zhigang Zhang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| | - Manli Liu
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| | - Wei Fang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| | - Daye Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| | - Zhongyi Wan
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| | - Ronghua Zhou
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| | - Kaimei Wang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| | - Liqiao Shi
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| |
Collapse
|
15
|
Kaur H, Singh L, Chibale K, Singh K. Structure elaboration of isoniazid: synthesis, in silico molecular docking and antimycobacterial activity of isoniazid–pyrimidine conjugates. Mol Divers 2019; 24:949-955. [DOI: 10.1007/s11030-019-10004-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
|
16
|
Xu T, Shi L, Zhang Y, Wang K, Yang Z, Ke S. Synthesis and biological evaluation of marine alkaloid-oriented β-carboline analogues. Eur J Med Chem 2019; 168:293-300. [DOI: 10.1016/j.ejmech.2019.02.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 11/29/2022]
|
17
|
Tandon R, Singh I, Luxami V, Tandon N, Paul K. Recent Advances and Developments ofin vitroEvaluation of Heterocyclic Moieties on Cancer Cell Lines. CHEM REC 2018; 19:362-393. [DOI: 10.1002/tcr.201800024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/06/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Runjhun Tandon
- Department of Chemistry, School of Physical SciencesLovely Professional University Phagwara- 144411 India
| | - Iqubal Singh
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala- 147001 India
| | - Vijay Luxami
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala- 147001 India
| | - Nitin Tandon
- Department of Chemistry, School of Physical SciencesLovely Professional University Phagwara- 144411 India
| | - Kamaldeep Paul
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala- 147001 India
| |
Collapse
|
18
|
Scherbakov AM, Komkov AV, Komendantova AS, Yastrebova MA, Andreeva OE, Shirinian VZ, Hajra A, Zavarzin IV, Volkova YA. Steroidal Pyrimidines and Dihydrotriazines as Novel Classes of Anticancer Agents against Hormone-Dependent Breast Cancer Cells. Front Pharmacol 2018; 8:979. [PMID: 29375380 PMCID: PMC5767602 DOI: 10.3389/fphar.2017.00979] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/21/2017] [Indexed: 12/30/2022] Open
Abstract
Most breast and prostate tumors are hormone-dependent, making it possible to use hormone therapy in patients with these tumors. The design of effective endocrine drugs that block the growth of tumors and have no severe side effects is a challenge. Thereupon, synthetic steroids are promising therapeutic drugs for the treatment of diseases such as hormone-dependent breast and prostate cancers. Here, we describe novel series of steroidal pyrimidines and dihydrotriazines with anticancer activities. A flexible approach to unknown pyrimidine and dihydrotriazine derivatives of steroids with selective control of the heterocyclization pattern is disclosed. A number of 18-nor-5α-androsta-2,13-diene[3,2-d]pyrimidine, androsta-2-ene[3,2-d]pyrimidine, Δ1, 3, 5(10)-estratrieno[16,17-d]pyrimidine, and 17-chloro-16-dihydrotriazine steroids were synthesized by condensations of amidines with β-chlorovinyl aldehydes derived from natural hormones. The synthesized compounds were screened for cytotoxicity against breast cancer cells and showed IC50 values of 7.4 μM and higher. Compounds were tested against prostate cancer cells and exhibited antiproliferative activity with IC50 values of 9.4 μM and higher comparable to that of cisplatin. Lead compound 4a displayed selectivity in ERα-positive breast cancer cells. At 10 μM concentration, this heterosteroid inhibited 50% of the E2-mediated ERα activity and led to partial ERα down-regulation. The ERα reporter assay and immunoblotting were supported by the docking study, which showed the probable binding mode of compound 4a to the estrogen receptor pocket. Thus, heterosteroid 4a proved to be a selective ERα modulator with the highest antiproliferative activity against hormone-dependent breast cancer and can be considered as a candidate for further anticancer drug development. In total, the synthesized heterosteroids may be considered as new promising classes of active anticancer agents.
Collapse
Affiliation(s)
- Alexander M Scherbakov
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Alexander V Komkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna S Komendantova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Margarita A Yastrebova
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Olga E Andreeva
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Valerii Z Shirinian
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati University, Santiniketan, India
| | - Igor V Zavarzin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yulia A Volkova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
Fan NJ, Tang JJ, Li YF, He QR, Liang S. Synthesis of 17β-N-Phenylpyrazolyl Steroidal Derivatives and Their Inhibitory Effect on Cell Proliferation. HETEROCYCLES 2017. [DOI: 10.3987/com-17-13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|