1
|
Wei S, Song X, Mou Y, Yang T, Wang Y, Wang H, Ren C, Song X. New insights into pathogenisis and therapies of P2X7R in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:108. [PMID: 40325043 PMCID: PMC12053563 DOI: 10.1038/s41531-025-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/27/2025] [Indexed: 05/07/2025] Open
Abstract
Parkinson's disease (PD), a prevalent neurodegenerative disorder, is linked to genetics and environment, but its mechanisms remain unclear. Emerging evidence connects purinergic signaling-particularly ATP-sensitive P2X7 receptor (P2X7R)-to PD. P2X7R expression is elevated in PD patients, and its antagonist BBG mitigates 6-OHDA-induced dopaminergic neuron death. This review discusses P2X7R's structure, neural functions, PD-related mechanisms, and therapeutic potential as a targert.
Collapse
Affiliation(s)
- Shizhuang Wei
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiaoyu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ting Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Hanrui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| |
Collapse
|
2
|
Zhu Q, He H, Long Q, Wei C, Chen J, Nong L, Li S. Lactate-Dehydrogenase-5 May Play a Key Role in the Disturbance of Brain Energy Caused by Tuberculous Meningitis. J Integr Neurosci 2025; 24:26741. [PMID: 40302261 DOI: 10.31083/jin26741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/25/2024] [Accepted: 01/21/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND The conversion of pyruvate to lactate is primarily catalyzed by lactate-dehydrogenase-5 (LDH-5), which comprises four lactate-dehydrogenase-A (LDHA) subunits. However, the mechanism of LDH-5 in tuberculous meningitis (TBM) remains elusive. METHODS Thirty-two samples of cerebrospinal fluid (CSF) were collected, including 15 from individuals without central nervous system (CNS) infectious diseases (control group) and 17 from individuals with TBM (TBM group). Based on the results of brain imaging, nine patients with TBM with meningeal enhancement were included in the meninges group. Eight patients with TBM with lesions in the brain parenchyma were included in the brain parenchyma group. The levels of adenosine triphosphatase (ATP), lactate, LDH-1, pyruvate and LDH-5 in the CSF were assessed. Subsequently, the levels of ATP, pyruvate and lactate, as well as the amplitude and frequency of action potentials (APs) in neurons overexpressing LDHA, were investigated. RESULTS Reduced levels of pyruvate and ATP and elevated levels of lactate and LDH-5 were observed in the CSF of individuals with TBM. The ATP level was decreased in the brain parenchyma group. In neurons with LDHA overexpression, the lactate level increased, while ATP and pyruvate levels, as well as the amplitude and frequency of APs, decreased. CONCLUSION Elevated levels of LDH-5 in the CNS of individuals with TBM may lead to a disturbance in brain energy and negatively affect neuronal activity.
Collapse
Affiliation(s)
- Qingdong Zhu
- Department of Tuberculosis, The Fourth People's Hospital of Nanning, 530012 Nanning, Guangxi, China
| | - Huawei He
- Department of Tuberculosis, The Fourth People's Hospital of Nanning, 530012 Nanning, Guangxi, China
| | - Qian Long
- Key Laboratory of Infectious Diseases of Nanning Municipal Health Commission, The Fourth People's Hospital of Nanning, 530012 Nanning, Guangxi, China
| | - Cailing Wei
- Infectious Disease Laboratory, The Fourth People's Hospital of Nanning, 530012 Nanning, Guangxi, China
| | - Jieling Chen
- Infectious Disease Laboratory, The Fourth People's Hospital of Nanning, 530012 Nanning, Guangxi, China
| | - Lanwei Nong
- Infectious Disease Laboratory, The Fourth People's Hospital of Nanning, 530012 Nanning, Guangxi, China
| | - Sijun Li
- Infectious Disease Laboratory, The Fourth People's Hospital of Nanning, 530012 Nanning, Guangxi, China
- Department of Internal Medicine, The Fourth People's Hospital of Nanning, 530012 Nanning, Guangxi, China
| |
Collapse
|
3
|
Gil E, Wall E, Noursadeghi M, Brown JS. Streptococcus pneumoniae meningitis and the CNS barriers. Front Cell Infect Microbiol 2023; 12:1106596. [PMID: 36683708 PMCID: PMC9845635 DOI: 10.3389/fcimb.2022.1106596] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Streptococcus pneumoniae (SPN) is a globally significant cause of meningitis, the pathophysiology of which involves damage to the brain by both bacterial virulence factors and the host inflammatory response. In most cases of SPN meningitis bacteria translocate from the blood into the central nervous system (CNS). The principal site of SPN translocation into the CNS is not known, with possible portals of entry proposed to be the cerebral or meningeal blood vessels or the choroid plexus. All require SPN to bind to and translocate across the vascular endothelial barrier, and subsequently the basement membrane and perivascular structures, including an additional epithelial barrier in the case of the blood-CSF barrier. The presence of SPN in the CNS is highly inflammatory resulting in marked neutrophilic infiltration. The secretion of toxic inflammatory mediators by activated neutrophils within the CNS damages pathogen and host alike, including the non-replicative neurons which drives morbidity and mortality. As with the translocation of SPN, the recruitment of neutrophils into the CNS in SPN meningitis necessitates the translocation of neutrophils from the circulation across the vascular barrier, a process that is tightly regulated under basal conditions - a feature of the 'immune specialization' of the CNS. The brain barriers are therefore central to SPN meningitis, both through a failure to exclude bacteria and maintain CNS sterility, and subsequently through the active recruitment and/or failure to exclude circulating leukocytes. The interactions of SPN with these barriers, barrier inflammatory responses, along with their therapeutic implications, are explored in this review.
Collapse
Affiliation(s)
- Eliza Gil
- Division of Infection and Immunity, University College London, London, United Kingdom,*Correspondence: Eliza Gil,
| | - Emma Wall
- Francis Crick Institute, London, United Kingdom,UCLH Biomedical Research Centre, London, United Kingdom
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jeremy S. Brown
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
4
|
Targeting Streptococcus pneumoniae UDP-glucose pyrophosphorylase (UGPase): in vitro validation of a putative inhibitor. Drug Target Insights 2020; 14:26-33. [PMID: 33132696 PMCID: PMC7597228 DOI: 10.33393/dti.2020.2103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Genome plasticity of Streptococcus pneumoniae is responsible for the reduced efficacy of various antibiotics and capsular polysaccharide-based vaccines. Therefore, targets independent of capsular types are sought to control the pneumococcal pathogenicity. UDP-glucose pyrophosphorylase (UGPase) is one such desired candidate being responsible for the synthesis of UDP-glucose, a sugar precursor in capsular biosynthesis and metabolic Leloir pathway. Being crucial to pneumococcal pathobiology, the effect of UGPase inhibition on virulence was evaluated in vitro. Methods: A putative inhibitor, uridine diphosphate (UDP), was evaluated for effective inhibitory concentration in S. pneumoniae and A549 cells, its efficacy and toxicity. The effect of UDP on adherence and phagocytosis was measured in human respiratory epithelial (A549 and HEp-2) and macrophage (THP1 and J774.A.1) cell lines respectively. Results: A differential effective inhibitory concentration of UDP for UGPase inhibition was observed in S. pneumoniae and A549 cells, that is, 5 and 100 µM respectively. UDP treatments lowered percent cytotoxicity in pneumococcal-infected monolayers and didn’t exert adverse effects on viabilities. S. pneumoniae adherence to host cells decreased significantly with UDP treatments. UDP induced the secretion of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, and IL-8 and increased pneumococcal phagocytosis. Conclusion: Our study shows UDP-mediated decrease in the virulence of S. pneumoniae and demonstrates UDP as an effective inhibitor of pneumococcal UGPase.
Collapse
|
5
|
Alves VS, Leite-Aguiar R, Silva JPD, Coutinho-Silva R, Savio LEB. Purinergic signaling in infectious diseases of the central nervous system. Brain Behav Immun 2020; 89:480-490. [PMID: 32717399 PMCID: PMC7378483 DOI: 10.1016/j.bbi.2020.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of infectious diseases affecting the central nervous system (CNS) has been increasing over the last several years. Among the reasons for the expansion of these diseases and the appearance of new neuropathogens are globalization, global warming, and the increased proximity between humans and wild animals due to human activities such as deforestation. Neurotropism affecting normal brain function is shared by organisms such as viruses, bacteria, fungi, and parasites. Neuroinfections caused by these agents activate immune responses, inducing neuroinflammation, excitotoxicity, and neurodegeneration. Purinergic signaling is an evolutionarily conserved signaling pathway associated with these neuropathologies. During neuroinfections, host cells release ATP as an extracellular danger signal with pro-inflammatory activities. ATP is metabolized to its derivatives by ectonucleotidases such as CD39 and CD73; ATP and its metabolites modulate neuronal and immune mechanisms through P1 and P2 purinergic receptors that are involved in pathophysiological mechanisms of neuroinfections. In this review we discuss the beneficial or deleterious effects of various components of the purinergic signaling pathway in infectious diseases that affect the CNS, including human immunodeficiency virus (HIV-1) infection, herpes simplex virus type 1 (HSV-1) infection, bacterial meningitis, sepsis, cryptococcosis, toxoplasmosis, and malaria. We also provide a description of this signaling pathway in emerging viral infections with neurological implications such as Zika and SARS-CoV-2.
Collapse
Affiliation(s)
- Vinícius Santos Alves
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raíssa Leite-Aguiar
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joyce Pereira da Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
de Diego-García L, Sebastián-Serrano Á, Bianchi C, Di Lauro C, Díaz-Hernández M. ATP Measurement in Cerebrospinal Fluid Using a Microplate Reader. Methods Mol Biol 2020; 2041:233-241. [PMID: 31646493 DOI: 10.1007/978-1-4939-9717-6_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Imbalance in extracellular ATP levels in brain tissue has been suggested as a triggering factor for several neurological disorders. Here, we describe the most sensitive and reliable technique for monitoring the ATP levels in mice cerebrospinal samples collected by cisterna magna puncture technique and quantified using a microplate reader.
Collapse
Affiliation(s)
- Laura de Diego-García
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Center, Dublin, Ireland
| | - Álvaro Sebastián-Serrano
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Carolina Bianchi
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Caterina Di Lauro
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Miguel Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain. .,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Pneumococcal meningitis is the most frequent form of bacterial meningitis in Europe and the United States. Although early antimicrobial and adjuvant therapy with dexamethasone have helped to improve disease outcome in adults, mortality and morbidity rates remain unsatisfactorily high, emphasizing the need for additional treatment options. Promising targets for adjuvant therapy have been identified recently and will be the focus of this review. RECENT FINDINGS Brain disease in pneumococcal meningitis is caused by direct bacterial toxicity and excessive meningeal inflammation. Accordingly, promising targets for adjuvant therapy comprise limiting the release of toxic bacterial products and suppressing inflammation in a way that maximally protects against tissue injury without hampering pathogen eradication by antibiotics. Among the agents tested so far in experimental models, complement inhibitors, matrix-metalloproteinase inhibitors, and nonbacteriolytic antibiotics or a combination of the above have the potential to more efficiently protect the brain either alone (e.g., in children and outside the high-income settings) or in addition to adjuvant dexamethasone. Additionally, new protein-based pneumococcal vaccines are being developed that promise to improve disease prevention, namely by addressing the increasing problem of serotype replacement seen with pneumococcal conjugate vaccines. SUMMARY Pneumococcal meningitis remains a life-threatening disease requiring early antibiotic and targeted anti-inflammatory therapy. New adjuvant therapies showed promising results in animal models but need systematic clinical testing.
Collapse
|
8
|
Nurkhametova D, Kudryavtsev I, Guselnikova V, Serebryakova M, Giniatullina RR, Wojciechowski S, Tore F, Rizvanov A, Koistinaho J, Malm T, Giniatullin R. Activation of P2X7 Receptors in Peritoneal and Meningeal Mast Cells Detected by Uptake of Organic Dyes: Possible Purinergic Triggers of Neuroinflammation in Meninges. Front Cell Neurosci 2019; 13:45. [PMID: 30814932 PMCID: PMC6381076 DOI: 10.3389/fncel.2019.00045] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/28/2019] [Indexed: 12/24/2022] Open
Abstract
Extracellular ATP activates inflammasome and triggers the release of multiple cytokines in various immune cells, a process primarily mediated by P2X7 receptors. However, the expression and functional properties of P2X7 receptors in native mast cells in tissues such as meninges where migraine pain originates from have not been explored. Here we report a novel model of murine cultured meningeal mast cells and using these, as well as easily accessible peritoneal mast cells, studied the mechanisms of ATP-mediated mast cell activation. We show that ATP induced a time and dose-dependent activation of peritoneal mast cells as analyzed by the uptake of organic dye YO-PRO1 as well as 4,6-diamidino-2-phenylindole (DAPI). Both YO-PRO1 and DAPI uptake in mast cells was mediated by the P2X7 subtype of ATP receptors as demonstrated by the inhibitory effect of P2X7 antagonist A839977. Consistent with this, significant YO-PRO1 uptake was promoted by the P2X7 agonist 2′,3′-O-(benzoyl-4-benzoyl)-ATP (BzATP). Extracellular ATP-induced degranulation of native and cultured meningeal mast cells was shown with Toluidine Blue staining. Taken together, these data demonstrate the important contribution of P2X7 receptors to ATP-driven activation of mast cells, suggesting these purinergic mechanisms as potential triggers of neuroinflammation and pain sensitization in migraine.
Collapse
Affiliation(s)
- Dilyara Nurkhametova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Igor Kudryavtsev
- Department of Immunology, Institute of Experimental Medicine, St. Petersburg, Russia.,Department of Fundamental Medicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Guselnikova
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Department of General and Special Morphology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Maria Serebryakova
- Department of Immunology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Raisa R Giniatullina
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sara Wojciechowski
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Fatma Tore
- School of Medicine, Biruni University, Istanbul, Turkey
| | - Albert Rizvanov
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tarja Malm
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
9
|
Fritscher J, Amberger D, Dyckhoff S, Bewersdorf JP, Masouris I, Voelk S, Hammerschmidt S, Schmetzer HM, Klein M, Pfister HW, Koedel U. Mast Cells Are Activated by Streptococcus pneumoniae In Vitro but Dispensable for the Host Defense Against Pneumococcal Central Nervous System Infection In Vivo. Front Immunol 2018; 9:550. [PMID: 29616039 PMCID: PMC5867309 DOI: 10.3389/fimmu.2018.00550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/05/2018] [Indexed: 01/01/2023] Open
Abstract
Mast cells reside on and near the cerebral vasculature, the predominant site of pneumococcal entry into the central nervous system (CNS). Although mast cells have been reported to be crucial in protecting from systemic bacterial infections, their role in bacterial infections of the CNS remained elusive. Here, we assessed the role of mast cells in pneumococcal infection in vitro and in vivo. In introductory experiments using mouse bone marrow-derived mast cells (BMMC), we found that (i) BMMC degranulate and release selected cytokines upon exposure to Streptococcus pneumoniae, (ii) the response of BMMC varies between different pneumococcal serotypes and (iii) is dependent on pneumolysin. Intriguingly though, apart from a slight enhancement of cerebrospinal fluid (CSF) pleocytosis, neither two different mast cell-deficient Kit mutant mouse strains (WBB6F1-KitW/Wv and C57BL/6 KitW-sh/W-sh mice) nor pharmacologic mast cell stabilization with cromoglycate had any significant impact on the disease phenotype of experimental pneumococcal meningitis. The incomplete reversal of the enhanced CSF pleocytosis by local mast cell engraftment suggests that this phenomenon is caused by other c-Kit mutation-related mechanisms than mast cell deficiency. In conclusion, our study suggests that mast cells can be activated by S. pneumoniae in vitro. However, mast cells do not play a significant role as sentinels of pneumococcal CSF invasion and initiators of innate immunity in vivo.
Collapse
Affiliation(s)
- Johanna Fritscher
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Daniel Amberger
- Department of Internal Medicine III (Oncology), University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Susanne Dyckhoff
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Jan Philipp Bewersdorf
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Ilias Masouris
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Stefanie Voelk
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Helga Maria Schmetzer
- Department of Internal Medicine III (Oncology), University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Walter Pfister
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Uwe Koedel
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
10
|
Souza CF, Baldissera MD, Bottari NB, Moreira KLS, da Rocha MIUM, da Veiga ML, Santos RCV, Baldisserotto B. Purinergic signaling modulates the cerebral inflammatory response in experimentally infected fish with Streptococcus agalactiae: an attempt to improve the immune response. Mol Cell Biochem 2017; 443:131-138. [DOI: 10.1007/s11010-017-3217-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022]
|
11
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|