1
|
Nakahashi N, Emori M, Takada K, Murahashi Y, Shimizu J, Murase K, Tsukahara T, Sugita S, Takasawa A, Iba K, Teramoto A, Osanai M. Establishment and characterization of the novel myxofibrosarcoma cell line, SMU-MFS. Hum Cell 2024; 38:25. [PMID: 39625530 DOI: 10.1007/s13577-024-01157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025]
Abstract
Myxofibrosarcoma (MFS) is one of the most common soft-tissue sarcomas in elderly patients. Owing to the limited efficacy of chemotherapy and radiotherapy, complete resection is the only available curative treatment. Therefore, developing novel therapies for MFS is important to improve clinical outcomes. Herein, a novel MFS cell line, namely SMU-MFS, was established to better understand the biologic characteristics of MFS and develop new therapies. A tissue sample from the surgically resected tumor tissue of a 56-year-old patient with a tumor was subjected to primary culture. The cell line was established and authenticated by assessing the short tandem repeats of DNA microsatellites. The monolayer cultures of SMU-MFS cells exhibited constant growth, spheroid formation, and invasive capacity. Furthermore, the cells exhibited low chemosensitivity to doxorubicin, eribulin, and pazopanib, which are used to inhibit metastatic progression. In addition, of the four mice inoculated with SMU-MFS cells, tumors developed in two mice after 8 weeks. Altogether, the findings of this study suggest that the SMU-MFS cell line can be a useful tool for investigating MFS development and evaluating novel therapeutic agents.
Collapse
Affiliation(s)
- Naoya Nakahashi
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, West 16, South 1, Chuo-ku, Sapporo, 060-8543, Japan
- Departments of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Emori
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, West 16, South 1, Chuo-ku, Sapporo, 060-8543, Japan.
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasutaka Murahashi
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, West 16, South 1, Chuo-ku, Sapporo, 060-8543, Japan
| | - Junya Shimizu
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, West 16, South 1, Chuo-ku, Sapporo, 060-8543, Japan
| | - Kazuyuki Murase
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomohide Tsukahara
- Departments of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shintaro Sugita
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Departments of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University School of Medicine, Asahikawa, Japan
| | - Kousuke Iba
- Department of Musculoskeletal Anti-Aging Medicine, Sapporo Medical University, Sapporo, Japan
| | - Atsushi Teramoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, West 16, South 1, Chuo-ku, Sapporo, 060-8543, Japan
| | - Makoto Osanai
- Departments of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Tomáš T, Apostolopoulos V, Pazourek L, Kubíček M, Staniczková Zambo I, Adámková D, Šlampa P, Mahdal M. Clear surgical margins as a prognostic indicator for disease recurrence, with no impact on survival rates in patients with myxofibrosarcoma. Sci Rep 2024; 14:12232. [PMID: 38806595 PMCID: PMC11133331 DOI: 10.1038/s41598-024-63035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
Myxofibrosarcoma presents an infiltrating growth pattern that results in a high tendency for local recurrence. Clear margin resection is challenging because of microscopic infiltration. The purpose of the present study was to analyze the overall and disease-free survival rates of patients with myxofibrosarcoma and the prognostic factors that determine both survival and disease recurrence. Among the 111 patients included in our study, the 5-year overall survival rate was 65.5%. An age of more than 65 years (hazard ratio [HR] 1.9 [95% confidence interval (CI) 1.4-5.6]; p < 0.001), a tumor size of more than 5 cm (HR 2.8 [95% CI 0.9-8.1]; p = 0.049) and the G3 tumor grade (HR 14.1 [95% CI 2.1-105.0]; p < 0.001) negatively affected overall survival. The 5-year recurrence-free survival rate was 49.4%. R1/R2-type resection (HR 2.4 [95% CI 1.0-5.6]; p = 0.048) had a detrimental effect on tumor recurrence. Clear margins had a positive impact on recurrence-free survival, but did not significantly affect overall patient survival, suggesting that other factors may play a more significant role in determining patient outcomes. A surgical margin of 2 mm was not sufficient to significantly influence the incidence of recurrence. Consequently, a wider surgical margin may be necessary to reduce the risk of myxofibrosarcoma recurrence.
Collapse
Affiliation(s)
- Tomáš Tomáš
- First Department of Orthopaedic Surgery, St. Anne's University Hospital, 60200, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Vasileios Apostolopoulos
- First Department of Orthopaedic Surgery, St. Anne's University Hospital, 60200, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Lukáš Pazourek
- First Department of Orthopaedic Surgery, St. Anne's University Hospital, 60200, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Marián Kubíček
- First Department of Orthopaedic Surgery, St. Anne's University Hospital, 60200, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Iva Staniczková Zambo
- Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- First Pathology Department, St. Anne's University Hospital, 60200, Brno, Czech Republic
| | - Dagmar Adámková
- Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Clinic of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 60200, Brno, Czech Republic
| | - Pavel Šlampa
- Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, 60200, Brno, Czech Republic
| | - Michal Mahdal
- First Department of Orthopaedic Surgery, St. Anne's University Hospital, 60200, Brno, Czech Republic.
- Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic.
| |
Collapse
|
3
|
Guerrieri AN, Bellotti C, Penzo M, Columbaro M, Pannella M, De Vita A, Gambarotti M, Mercatali L, Laranga R, Dozza B, Vanni S, Corsini S, Frisoni T, Miserocchi G, Ibrahim T, Lucarelli E. A novel patient-derived immortalised cell line of myxofibrosarcoma: a tool for preclinical drugs testing and the generation of near-patient models. BMC Cancer 2023; 23:1194. [PMID: 38057796 DOI: 10.1186/s12885-023-11658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Myxofibrosarcoma is a rare malignant soft tissue sarcoma characterised by multiple local recurrence and can become of higher grade with each recurrence. Consequently, myxofibrosarcoma represents a burden for patients, a challenge for clinicians, and an interesting disease to study tumour progression. Currently, few myxofibrosarcoma preclinical models are available. METHODS In this paper, we present a spontaneously immortalised myxofibrosarcoma patient-derived cell line (MF-R 3). We performed phenotypic characterization through multiple biological assays and analyses: proliferation, clonogenic potential, anchorage-independent growth and colony formation, migration, invasion, AgNOR staining, and ultrastructural evaluation. RESULTS MF-R 3 cells match morphologic and phenotypic characteristics of the original tumour as 2D cultures, 3D aggregates, and on the chorioallantoic membrane of chick embryos. Overall results show a clear neoplastic potential of this cell line. Finally, we tested MF-R 3 sensitivity to anthracyclines in 2D and 3D conditions finding a good response to these drugs. CONCLUSIONS In conclusion, we established a novel patient-derived myxofibrosarcoma cell line that, together with the few others available, could serve as an important model for studying the molecular pathogenesis of myxofibrosarcoma and for testing new drugs and therapeutic strategies in diverse experimental settings.
Collapse
Affiliation(s)
- Ania Naila Guerrieri
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Chiara Bellotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy.
| | - Marianna Penzo
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum-University of Bologna, 40138, Bologna, Italy
| | - Marta Columbaro
- Electron Microscopy Platform, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Micaela Pannella
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Marco Gambarotti
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Laura Mercatali
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Roberta Laranga
- 3rd Orthopaedic and Traumatologic Clinic prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna IT, Via Pupilli 1, Bologna, 40136, Italy
| | - Barbara Dozza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Silvia Vanni
- Preclinic and Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Serena Corsini
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Tommaso Frisoni
- 3rd Orthopaedic and Traumatologic Clinic prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna IT, Via Pupilli 1, Bologna, 40136, Italy
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| |
Collapse
|
4
|
Lohberger B, Kaltenegger H, Eck N, Glänzer D, Leithner A, Kretschmer N. The Biological Assessment of Shikonin and β,β-dimethylacrylshikonin Using a Cellular Myxofibrosarcoma Tumor Heterogeneity Model. Int J Mol Sci 2023; 24:15910. [PMID: 37958891 PMCID: PMC10650664 DOI: 10.3390/ijms242115910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Myxofibrosarcoma (MFS) is a subtype of soft tissue sarcoma of connective tissue, which is characterized by large intra-tumor heterogeneity. Therapy includes surgical resection. Additional chemotherapy is of limited effect. In this study, we demonstrated the potent anticancer activity of shikonin derivatives in our MFS cellular model of tumor heterogeneity for developing a new therapeutic approach. The impact of shikonin and β,β-dimethylacrylshikonin (DMAS) on viability, apoptotic induction, MAPK phosphorylation, and DNA damage response were analyzed by means of two human MFS cell lines, MUG-Myx2a and MUG-Myx2b, derived from a singular tumor tissue specimen. MFS cells showed a dose-dependent inhibition of cell viability and a significant induction of apoptosis. Treatment with shikonin derivatives caused an inhibition of pSTAT3 and an increase in pAKT, pERK, pJNK, and pp38. DMAS and shikonin inhibited the activation of the two master upstream regulators of the DNA damage response, ATR and ATM. MUG-Myx2b, which contains an additional PTEN mutation, was more sensitive in some targets. These data demonstrate the significant antitumorigenic effect of shikonin derivatives in MFS and highlight the importance of intra-tumor heterogeneity in treatment planning.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria; (H.K.); (N.E.); (D.G.); (A.L.)
| | - Heike Kaltenegger
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria; (H.K.); (N.E.); (D.G.); (A.L.)
| | - Nicole Eck
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria; (H.K.); (N.E.); (D.G.); (A.L.)
| | - Dietmar Glänzer
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria; (H.K.); (N.E.); (D.G.); (A.L.)
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria; (H.K.); (N.E.); (D.G.); (A.L.)
| | - Nadine Kretschmer
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, 8010 Graz, Austria
| |
Collapse
|
5
|
Lucarelli E, De Vita A, Bellotti C, Frisoni T, Vanni S, Guerrieri AN, Pannella M, Mercatali L, Gambarotti M, Duchi S, Miserocchi G, Maioli M, Liverani C, Ibrahim T. Modeling Myxofibrosarcoma: Where Do We Stand and What Is Missing? Cancers (Basel) 2023; 15:5132. [PMID: 37958307 PMCID: PMC10650645 DOI: 10.3390/cancers15215132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Myxofibrosarcoma (MFS) is a malignant soft tissue sarcoma (STS) that originates in the body's connective tissues. It is characterized by the presence of myxoid (gel-like) and fibrous components and typically affects patients after the fifth decade of life. Considering the ongoing trend of increasing lifespans across many nations, MFS is likely to become the most common musculoskeletal sarcoma in the future. Although MFS patients have a lower risk of developing distant metastases compared with other STS cases, MFS is characterized by a high frequency of local recurrence. Notably, in 40-60% of the patients where the tumor recurs, it does so multiple times. Consequently, patients may undergo multiple local surgeries, removing the risk of potential amputation. Furthermore, because the tumor relapses generally have a higher grade, they exhibit a decreased response to radio and chemotherapy and an increased tendency to form metastases. Thus, a better understanding of MFS is required, and improved therapeutic options must be developed. Historically, preclinical models for other types of tumors have been instrumental in obtaining a better understanding of tumor development and in testing new therapeutic approaches. However, few MFS models are currently available. In this review, we will describe the MFS models available and will provide insights into the advantages and constraints of each model.
Collapse
Affiliation(s)
- Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (S.V.); (G.M.); (C.L.)
| | - Chiara Bellotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| | - Tommaso Frisoni
- Unit of 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Silvia Vanni
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (S.V.); (G.M.); (C.L.)
| | - Ania Naila Guerrieri
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| | - Micaela Pannella
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| | - Laura Mercatali
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| | - Marco Gambarotti
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.G.); (M.M.)
| | - Serena Duchi
- Department of Surgery-ACMD, St. Vincent’s Hospital Melbourne, University of Melbourne, Melbourne, VIC 3065, Australia;
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (S.V.); (G.M.); (C.L.)
| | - Margherita Maioli
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.G.); (M.M.)
| | - Chiara Liverani
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (S.V.); (G.M.); (C.L.)
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| |
Collapse
|
6
|
Kyriazoglou A, Dimitriadis E, Mahaira L, Kotsantis J, Kouloulias V, Kontogeorgakos V, Psyrri A, Agrogiannis G. Myxoid spindle cell sarcoma with ETV6-NTRK3 fusion. Cancer Genet 2022; 268-269:93-96. [PMID: 36274330 DOI: 10.1016/j.cancergen.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/26/2022] [Accepted: 09/30/2022] [Indexed: 01/25/2023]
Abstract
Myxoid spindle cell sarcoma is a rare sarcoma with a demanding histopathologic diagnosis due to the absence of pathognomic immunohistochemistry markers. Genetics include complex karyotypic alterations without characteristic molecular abnormalities for this entity. NTRK alterations are rare findings with great clinical importance since they can be therapeutically targeted with two NTRK inhibitors. Herein we present a case of an adult unclassified myxoid spindle cell sarcoma with ETV6/NTRK3 fusion gene, which is a molecular finding characteristic for infantile fibrosarcoma.
Collapse
Affiliation(s)
- Anastasios Kyriazoglou
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 1 Rimini Street, Chaidari, 12462 Athens, Greece.
| | | | - Luiza Mahaira
- Department of Genetics, Agios Savvas Anticancer Hospital, Athens, Greece
| | - John Kotsantis
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 1 Rimini Street, Chaidari, 12462 Athens, Greece
| | | | - Vasileios Kontogeorgakos
- First Department of Orthopaedic Surgery, Attikon' University General Hospital, Chaidari, Attica, Greece
| | - Amanda Psyrri
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 1 Rimini Street, Chaidari, 12462 Athens, Greece
| | - Georgios Agrogiannis
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
7
|
Vanni S, De Vita A, Gurrieri L, Fausti V, Miserocchi G, Spadazzi C, Liverani C, Cocchi C, Calabrese C, Bongiovanni A, Riva N, Mercatali L, Pieri F, Casadei R, Lucarelli E, Ibrahim T. Myxofibrosarcoma landscape: diagnostic pitfalls, clinical management and future perspectives. Ther Adv Med Oncol 2022; 14:17588359221093973. [PMID: 35782752 PMCID: PMC9244941 DOI: 10.1177/17588359221093973] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/12/2022] [Indexed: 12/26/2022] Open
Abstract
Myxofibrosarcoma (MFS) is a common entity of adult soft tissue sarcomas (STS) characterized by a predilection of the extremities and a high local recurrence rate. Originally classified as a myxoid variant of malignant fibrous histiocytoma, this musculoskeletal tumor has been recognized since 2002 as a distinct histotype showing a spectrum of malignant fibroblastic lesions with myxoid stroma, pleomorphism and curvilinear vessels. Currently, the molecular pathogenesis of MFS is still poorly understood and its genomic profile exhibits a complex karyotype with a number of aberrations including amplifications, deletions and loss of function. The diagnosis is challenging due to the unavailability of specific immunohistochemical markers and is based on the analysis of cytomorphologic features. The mainstay of treatment for localized disease is represented by surgical resection, with (neo)-adjuvant radio- and chemotherapy. In the metastatic setting, chemotherapy represents the backbone of treatments, however its role is still controversial and the outcome is very poor. Recent advent of genomic profiling, targeted therapies and larger enrollment of patients in translational and clinical studies, have improved the understanding of biological behavior and clinical outcome of such a disease. This review will provide an overview of current diagnostic pitfalls and clinical management of MFS. Finally, a look at future directions will be discussed.
Collapse
Affiliation(s)
- Silvia Vanni
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Alessandro De Vita
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Via P. Maroncelli 40, Meldola 47014, Forlì-Cesena, Italy
| | - Lorena Gurrieri
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Valentina Fausti
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Chiara Spadazzi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Chiara Liverani
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Claudia Cocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Chiara Calabrese
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Nada Riva
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Laura Mercatali
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Federica Pieri
- Pathology Unit, 'Morgagni-Pierantoni' Hospital, Forlì, Italy
| | - Roberto Casadei
- Orthopedic Unit, 'Morgagni-Pierantoni' Hospital, Forlì, Italy
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
8
|
Yamashita A, Suehara Y, Hayashi T, Takagi T, Kubota D, Sasa K, Hasegawa N, Ishijima M, Yao T, Saito T. Molecular and clinicopathological analysis revealed an immuno-checkpoint inhibitor as a potential therapeutic target in a subset of high-grade myxofibrosarcoma. Virchows Arch 2022; 481:1-17. [PMID: 35705750 DOI: 10.1007/s00428-022-03358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
This study aimed to identify differences in genetic alterations between low- and high-grade lesions in myxofibrosarcoma (MFS) and to examine the efficacy of immune checkpoint inhibitors in 45 patients with MFS. First, genetic differences between low- and high-grade components within the same tumor were analyzed in 11 cases using next-generation sequencing. Based on the obtained data, Sanger sequencing was performed for TP53 mutations in the remaining 34 patients. Loss of heterozygosity (LOH) analysis was performed at the TP53 and RB1 loci. Immunohistochemistry was performed for FGFR3, KIT, MET, programmed death receptor ligand 1 (PD-L1), CD8, FOXP3, and mismatch repair proteins. The microsatellite instability status was also evaluated in all cases. TP53 deleterious mutations and LOH at TP53 and RB1 loci were detected significantly more frequently in high-grade than in low-grade MFS (P = 0.0423, 0.0455, and 0.0455, respectively). LOH at the RB1 locus was significantly associated with shorter recurrence-free survival in both univariate and multivariate analyses. TP53 alterations, such as mutation and LOH, were more frequently observed in low-grade areas within high-grade MFS than in pure low-grade MFS. The positive PD-L1 expression rate was 35.6% (16/45), and all these 16 cases were high-grade. A high density of both CD8+ and FOXP3+ tumor-infiltrating lymphocytes was associated with PD-L1 positivity. LOH at the RB1 locus was identified an independent adverse prognostic factor for recurrence-free survival in patients with MFS. Immune checkpoint inhibitors may be a therapeutic option for a subset of high-grade MFS.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tatsuya Takagi
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Daisuke Kubota
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Keita Sasa
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobuhiko Hasegawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan. .,Intractable Disease Research Center, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
9
|
Establishment and characterization of NCC-MFS4-C1: a novel patient-derived cell line of myxofibrosarcoma. Hum Cell 2021; 34:1911-1918. [PMID: 34383271 DOI: 10.1007/s13577-021-00589-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023]
Abstract
Myxofibrosarcoma (MFS) is an aggressive sarcoma with a highly complex karyotype. Complete resection is the only curative treatment for MFS because it is refractory to chemotherapy. To improve clinical outcomes, it is critical to develop novel treatments for MFS. Although patient-derived cell lines play a key role in cancer research, only 12 MFS cell lines have been reported to date, and considering the diversity of the disease, more cell lines need to be established. Hence, in the present study, we established a novel MFS cell line, NCC-MFS4-C1, using a surgically resected tumor tissue from a patient with MFS. NCC-MFS4-C1 cells exhibited copy number alterations similar to those of the original tumors and showed constant proliferation, spheroid formation, and aggressive invasion. By screening a drug library, we found that actinomycin D, bortezomib, docetaxel, eribulin, and romidepsin significantly reduced the proliferation of NCC-MFS4-C1 cells. Therefore, the NCC-MFS4-C1 cell line may be a useful resource for researching MFS.
Collapse
|
10
|
Tsuchiya R, Yoshimatsu Y, Noguchi R, Sin Y, Ono T, Sei A, Takeshita F, Sugaya J, Iwata S, Yoshida A, Ohtori S, Kawai A, Kondo T. Establishment and characterization of NCC-MFS3-C1: a novel patient-derived cell line of myxofibrosarcoma. Hum Cell 2021; 34:1266-1273. [PMID: 33990915 DOI: 10.1007/s13577-021-00548-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022]
Abstract
Myxofibrosarcoma (MFS) is one of the most aggressive sarcomas with highly complex karyotypes and genomic profiles. Although a complete resection is required in the treatment of MFS, it is often not achieved due to its strong invasive nature. Additionally, MFS is refractory to conventional chemotherapy, leading to poor prognosis. Therefore, it is necessary to develop novel treatment modalities for MFS. Patient-derived cell lines are important tools in basic research and preclinical studies. However, only 10 MFS cell lines have been reported to date. Furthermore, among these cell lines, merely two MFS cell lines are publicly available. Hence, we established a novel MFS cell line named NCC-MFS3-C1, using a surgically resected tumor specimen from a patient with MFS. NCC-MFS3-C1 cells had copy number alterations corresponding to the original tumor. NCC-MFS3-C1 cells demonstrate constant proliferation, spheroid formation, and aggressive invasion. In drug screening tests, the proteasome inhibitor bortezomib and the histone deacetylase inhibitor romidepsin demonstrated significant antiproliferative effects on NCC-MFS3-C1 cells. Thus, the NCC-MFS3-C1 cell line is a useful tool in both basic and preclinical studies for MFS.
Collapse
Affiliation(s)
- Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yooksil Sin
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akane Sei
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Fumitaka Takeshita
- Department of Translational Oncology, Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Jun Sugaya
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
11
|
Gilg MM, Sunitsch S, Leitner L, Bergovec M, Szkandera J, Leithner A, Liegl-Atzwanger B. Tumor-associated mortality and prognostic factors in myxofibrosarcoma - A retrospective review of 109 patients. Orthop Traumatol Surg Res 2020; 106:1059-1065. [PMID: 32778437 DOI: 10.1016/j.otsr.2020.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Myxofibrosarcoma (MFS) is one of the most common sarcoma subtype in elderly patients. They are reported to recur locally independently of the tumour grade in 30-40% of cases and metastases are reported to develop in high-grade tumours in 20-35% cases. As MFS is a rare diagnosis, data investigating specific survival and independent risk factors are lacking and have mostly been limited to single orthopaedic oncology centre studies so far. Thus we set up a pathology-based retrospective study and analyzed all MFS diagnosed in our institution with the following aims: (1) analysis of independent risk factors for overall survival, disease specific survival, local recurrence-free survival and distant metastasis free survival following resection of MFS; (2) analysis of resection margin status. HYPOTHESIS High-grade MFS have a low survival distant metastasis free survival and local recurrence free survival is dependent on surgical margin status. PATIENTS AND METHODS We retrospectively analysed 109 patients (median 66 years [range, 21-96]) diagnosed with MFS and a median follow-up of 42 months at one centre between 1990 and 2014. Tumor-associated survival, including competing risk analysis, and prognostic factors for local recurrence, metastatic disease and death from disease were investigated and included in a multivariate analysis. RESULTS Overall survival was 79% [95%CI: 71.9-87.5] at 3 years and 76% [95%CI: 67.4-84.6] at 5 years. Disease specific survival was 85% [95%CI: 78.4-92.2] at 3 years and 80% [95%CI: 72.2-88.2] at 5 years. There were local recurrences in 11/109 patients (10%). Local recurrence free survival (LRFS) was 95% [95%CI: 92.0-99.8] at 3 and 88% [95%CI: 84.3-96.4] at 5 years. Metastatic disease (n=25; 23%) occurred after a median follow-up of 10 months. Distant metastasis free survival was 78% [95%CI: 69.9-85.9] at 3 and 77% [95%CI: 68.4-84.8] at 5 years. R1 status at primary resection was an independent risk factor for decreased Local Recurrence-free survival (OR: 8.5, 95%CI: 1.59-49.79 [p=0.01]). Grading was an independent risk factor for decreased Disease specific survival (OR 13.4, 95%CI: 1.65-1734.84 [p=0.01]) and Distant metastasis free survival (OR 16.2, 95%CI: 2.0-2110.5 [p=0.004]). Primary resection achieved R0 margins in 63 (58%) of 109 patients. Margins were adequate significantly more often (p<0.001) in patients treated primarily at a sarcoma centre (R0=58/68, 85%) than in those treated primarily at non-sarcoma centres (R0= 5/41, 12%), whereby the latter significantly more often treated superficial tumours (p=0.001) with a size of less than 5cm (p<0.001). DISCUSSION Patients with high-grade MFS had a poorer prognosis with respect to Disease specific survival/Distant metastasis free survival than low-grade MFS. Local recurrence did not significantly affect disease specific survival. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Magdalena M Gilg
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 6, 8036 Graz, Austria.
| | - Sandra Sunitsch
- Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Lukas Leitner
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 6, 8036 Graz, Austria
| | - Marko Bergovec
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 6, 8036 Graz, Austria
| | - Joanna Szkandera
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 6, 8036 Graz, Austria
| | | |
Collapse
|
12
|
Noguchi R, Yoshimatsu Y, Ono T, Sei A, Hirabayashi K, Ozawa I, Kikuta K, Kondo T. Establishment and characterization of NCC-MFS2-C1: a novel patient-derived cancer cell line of myxofibrosarcoma. Hum Cell 2020; 34:246-253. [PMID: 32870449 DOI: 10.1007/s13577-020-00420-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Myxofibrosarcoma (MFS) is among the most aggressive and complex sarcoma types that require novel therapeutic approaches for improved clinical outcomes. MFS displays highly complex karyotypes, and frequent alterations in p53 signaling and cell cycle checkpoint genes as well as loss-of-function mutations in NF1 and PTEN have been reported. The effects of radiotherapy and chemotherapy on MFS are limited, and complete surgical resection is the only curative treatment. Thus, the development of novel therapeutic strategies for MFS has long been long desired for MFS. Patient-derived cell lines are an essential tool for basic and translational research in oncology. However, public cell banks provide only a limited number of MFS cell lines. In this study, we aimed to develop a novel patient-derived MFS cell line, which was established from the primary tumor tissue of a 71-year-old male patient with MFS and was named NCC-MFS2-C1. A single-nucleotide polymorphism assay revealed that NCC-MFS2-C1 cells exhibited gain and loss of genetic loci. NCC-MFS2-C1 cells were maintained as a monolayer culture for over 24 passages for 10 months. The cells exhibited spindle-like morphology, continuous growth, and capacity for spheroid formation and invasion. Screening of 213 anticancer agents revealed that bortezomib, gemcitabine, romidepsin, and topotecan at low concentrations inhibited the proliferation of NCC-MFS2-C1 cells. In conclusion, we established a novel MFS cell line, NCC-MFS2-C1, which can be used for studying the molecular mechanisms underlying tumor development and for the in vitro screening of anti-cancer drugs.
Collapse
Affiliation(s)
- Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akane Sei
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kaoru Hirabayashi
- Division of Diagnostic Pathology, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
| | - Iwao Ozawa
- Division of Hepato-Biliary-Pancreatic Surgery, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
| | - Kazutaka Kikuta
- Division of Musculoskeletal Oncology and Orthopaedics Surgery, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan. .,Division of Diagnostic Pathology, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan.
| |
Collapse
|
13
|
Zuckerman LM, Frames WL, Mirshahidi HR, Williams NL, Shields TG, Otoukesh S, Mirshahidi S. Antiproliferative effect of bupivacaine on patient-derived sarcoma cells. Mol Clin Oncol 2020; 13:7. [PMID: 32754321 PMCID: PMC7393627 DOI: 10.3892/mco.2020.2077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcomas are rare tumors with limited treatment options. Although chemotherapy is standard for certain subtypes, overall survival has not improved in several decades. Bupivacaine has been shown to induce apoptosis and prevent cell growth in multiple different types of malignancies but has not been studied in sarcoma. The current study evaluated the effects of bupivacaine on multiple patient-derived sarcoma cells and a commercial sarcoma cell line. Multiple patient-derived sarcoma cell subtypes and a commercial synovial cell sarcoma cell line were exposed to bupivacaine for different durations and at different concentrations. The patient-derived cells included a high-grade conventional osteosarcoma, a high-grade undifferentiated pleomorphic sarcoma of bone, and a high-grade synovial sarcoma. Flow cytometry and an MTT assay were used to evaluate whether a treatment effect was observed. Treatment of all the subtypes of sarcomas in this study with bupivacaine demonstrated a time- and dose-dependent increase in apoptosis and decrease in cell viability. A cell viability assay demonstrated that the IC50 was between 0.04 and 0.05% and that the treatment effect occurred at clinically relevant doses in vitro. Bupivacaine was toxic to both the patient-derived cells and the commercial cell line at doses commonly used in the clinical setting. These findings provide a foundation for further in vivo studies to evaluate whether these effects will translate to the clinical setting. Although further research is necessary, bupivacaine shows promise as not only an adjunct for pain management but as a treatment modality for sarcoma.
Collapse
Affiliation(s)
- Lee M Zuckerman
- Department of Surgery, Division of Orthopaedic Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - William L Frames
- Department of Orthopaedic Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Hamid R Mirshahidi
- Division of Hematology and Oncology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Nadine L Williams
- Department of Orthopaedic Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Troy G Shields
- Department of Orthopaedic Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Salman Otoukesh
- Division of Hematology and Oncology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Saied Mirshahidi
- Loma Linda Cancer Center Biospecimen Laboratory, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| |
Collapse
|
14
|
Sambri A, De Paolis M, Spinnato P, Donati DM, Bianchi G. The Biology of Myxofibrosarcoma: State of the Art and Future Perspectives. Oncol Res Treat 2020; 43:314-322. [PMID: 32450554 DOI: 10.1159/000507334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Myxofibrosarcoma (MFS) is among the most highly complex sarcoma types. Molecular cytogenetic studies have identified a high level of genomic complexity. SUMMARY This review provides an update of the current research related to MFS, with particular emphasis on emerging mechanisms of tumorigenesis and their potential therapeutic impact. Many novel possible molecular markers have been identified, not only for prognostication in MFS, but also to serve as possible therapeutic targets, and thereby improve clinical outcomes. However, the molecular pathogenesis of MFS remains incompletely understood. Key Messages: Patients suffering from advanced MFS might benefit from expanded molecular evaluation in order to detect specific expression profiles and identify drug-able targets. Moreover, immunotherapy represents an intriguingly perspective due to the presence of "T-cell inflamed" tumor microenvironment.
Collapse
Affiliation(s)
- Andrea Sambri
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy, .,University of Bologna, Bologna, Italy,
| | | | | | - Davide Maria Donati
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,University of Bologna, Bologna, Italy
| | | |
Collapse
|
15
|
Zhang L, Feng L, Cong H, Yu Z, Wang H, Dong Y, Wang J. Multiple primary malignant neoplasms: A case report and literature review. Oncol Lett 2019; 18:4210-4220. [PMID: 31579423 PMCID: PMC6757307 DOI: 10.3892/ol.2019.10779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
Until recently, few cases of three or more malignant tumors in one patient have been reported. Owing to the high incidence rate of these tumors, the improvement in cancer diagnosis and treatment, and the extension of patient survival time, the incidence of reported multiple primary malignant neoplasms has gradually increased. The present study reported the case of a 57-year-old man with non-small cell lung cancer combined with B-Raf proto-oncogene serine/threonine kinase V600E mutation, gastrointestinal stromal tumors and lumbar vertebral malignant mucinous sarcoma. The pathogenesis, diagnosis and treatment of these three malignancies are discussed and previous studies are also reviewed. The aim of the study was to analyze the genetic mutations associated with multiple primary malignant tumors and to discuss whether those mutations with unknown functional significance could be used as therapeutic indicators. This case report will serve as a reference for future treatment of such patients.
Collapse
Affiliation(s)
- Linwei Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lingxin Feng
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Hui Cong
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhuang Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Haocheng Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Ya Dong
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jing Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
16
|
Establishment and genomic characterization of gingivobuccal carcinoma cell lines with smokeless tobacco associated genetic alterations and oncogenic PIK3CA mutation. Sci Rep 2019; 9:8272. [PMID: 31164688 PMCID: PMC6547758 DOI: 10.1038/s41598-019-44143-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/07/2019] [Indexed: 12/15/2022] Open
Abstract
Smokeless tobacco associated Gingivobuccal squamous cell carcinoma (GB-SCC) is a major public health problem but available oral cancer cell lines are mostly from smoking associated tongue SCC raising the need for pertinent GB-SCC cell line models. As part of the International Cancer Genome Consortium (ICGC) Project, 4 novel cell lines, namely, Indian Tata Memorial Centre Oral Cancer (ITOC) -01 to -04 were established and characterized with conventional methods, karyotyping, ultrastructure, in vivo tumourigenicity, Whole exome sequencing (WES) and RNA sequencing. These hyperploid cell lines form xenografts in mice and show metabolically active and necrotic areas on fluorodeoxyglucose-positron emission tomography (FDG-PET) imaging. WES of ITOC cell lines recapitulate the genomic tumor profile of ICGC GB-SCC database. We further identified smokeless tobacco associated genetic alterations (PCLO, FAT3 and SYNE2) and oncogenic PIK3CA mutation in GB-SCC cell lines. Transcriptome profiling identified deregulation of pathways commonly altered in cancer and down-regulation of arachidonic acid metabolism pathway, implying its possible role in GB-SCC. Clinical application of high throughput sequencing data depends on relevant cell line models to validate potential targets. Extensively characterized, these oral SCC cell lines are particularly suited for mechanistic studies and pre-clinical drug development for smokeless tobacco associated oral cancer.
Collapse
|
17
|
Human melanoma brain metastases cell line MUG-Mel1, isolated clones and their detailed characterization. Sci Rep 2019; 9:4096. [PMID: 30858407 PMCID: PMC6411871 DOI: 10.1038/s41598-019-40570-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/15/2019] [Indexed: 01/25/2023] Open
Abstract
Melanoma is a leading cause of high mortality that frequently spreads to the brain and is associated with deterioration in quality and quantity of life. Treatment opportunities have been restricted until now and new therapy options are urgently required. Our focus was to reveal the potential heterogeneity of melanoma brain metastasis. We succeeded to establish a brain melanoma metastasis cell line, namely MUG-Mel1 and two resulting clones D5 and C8 by morphological variety, differences in lipidome, growth behavior, surface, and stem cell markers. Mutation analysis by next-generation sequencing, copy number profiling, and cytogenetics demonstrated the different genetic profile of MUG-Mel1 and clones. Tumorigenicity was unsuccessfully tested in various mouse systems and finally established in a zebra fish model. As innovative treatment option, with high potential to pass the blood-brain barrier a peptide isolated from lactoferricin was studied in potential toxicity. Brain metastases are a major clinical challenge, therefore the development of relevant in vitro and in vivo models derived from brain melanoma metastases provides valuable information about tumor biology and offers great potential to screen for new innovative therapies.
Collapse
|
18
|
Establishment and characterization of a novel cell line, NCC-MFS1-C1, derived from a patient with myxofibrosarcoma. Hum Cell 2019; 32:214-222. [DOI: 10.1007/s13577-018-00233-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/08/2018] [Indexed: 01/10/2023]
|
19
|
Characterization and Drug Sensitivity of a New High-Grade Myxofibrosarcoma Cell Line. Cells 2018; 7:cells7110186. [PMID: 30366467 PMCID: PMC6262427 DOI: 10.3390/cells7110186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
Myxofibrosarcoma (MFS) belongs to the group of sarcoma tumors, which represent only 1% of the totality of adult tumors worldwide. Thus, given the rare nature of this cancer, this makes the availability of MFS cell lines difficult. In an attempt to partially fill this gap, we immortalized a primary culture of MFS (IM-MFS-1) and compared the cell morphology with patient’s tumor tissue. IM-MFS-1 was genetically characterized through a Comparative Genomic Hybridization (CGH) array and the mesenchymal phenotype was evaluated using Polymerase chain reaction (PCR) and immunofluorescence staining. Drug sensitivity for MFS therapies was monitored over time in cultures. We confirmed the conservation of the patient’s tumor cell morphology and of the mesenchymal phenotype. Conversely, the synthesis and expression of CD109, a TGFβ co-receptor used to facilitate the diagnosis of high-grade MFS diagnosis, was maintained constant until high cancer cell line passages. The CGH array revealed a complex karyotype with cytogenetic alterations that include chromosome regions associated with genes involved in tumor processes. Cytotoxicity assays show drug sensitivity constantly increased during the culture passages until a plateau was reached. In conclusion, we established and characterized a new MFS cell line that can be used for future preclinical and molecular studies on soft tissue sarcomas.
Collapse
|
20
|
Expanded molecular profiling of myxofibrosarcoma reveals potentially actionable targets. Mod Pathol 2017; 30:1698-1709. [PMID: 28776571 DOI: 10.1038/modpathol.2017.94] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/08/2017] [Accepted: 06/18/2017] [Indexed: 12/13/2022]
Abstract
Myxofibrosarcomas are morphologically heterogeneous soft tissue sarcomas lacking a specific immunohistochemical expression profile and recurrent genetic changes. The study was designed to gain further insights into the molecular landscape of myxofibrosarcomas by targeted re-sequencing of known cancer driver hotspot mutations and the analysis of genomewide somatic copy number alterations. A well-defined group of myxofibrosarcomas, including myxofibrosarcomas G1 (n=6), myxofibrosarcomas G3 (n=7), myxofibrosarcomas with morphologically heterogeneous and independently selectable G1 and G3 areas within a tumor (n=8), and myxofibrosarcomas G3 with subsequent tumor recurrence (n=1) or metastatic disease (n=3) were evaluated. Mutational analysis demonstrated mutations in TP53, PTEN, FGFR3, CDKN2A, and RB1. TP53 mutations were seen in 11 (44%) of patients and detected in myxofibrosarcomas G1, G3, with heterogeneous morphology and G3 with subsequent metastases in 1 patient (16%), 3 patients (42%), 2 patients (62.5%), and 3 patients (75%), respectively. Additional mutations were detected in 2 patients, intratumoral mutational heterogeneity in 1 patient. We observed a variety of copy number alterations typical for myxofibrosarcomas, with higher numbers in G3 compared with G1 myxofibrosarcomas. Cluster analysis revealed distinctive features especially in metastatic and recurrent disease. Focal alterations affected CDKN2A, CCND1, CCNE1, EGFR, EPHA3, EPHB1, FGFR1, JUN, NF1, RB1, RET, TP53, and additional novel amplifications in CCNE1, KIT, EGFR, RET, BRAF, NTRK2 were seen in G3 compared with the G1 tumor areas. The total number of focal events in G1 versus G3 tumors differed significantly (P=0.0014). TRIO and RICTOR co-amplification was seen in 8 (44%) G3 and 1 (10%) G1 myxofibrosarcomas and RICTOR amplification alone in 4 (40%) G1 myxofibrosarcomas. TRIO amplification was significantly (P=0.0218) higher in G3 myxofibrosarcomas indicating a late genetic event. These findings support the use of expanded molecular profiling in myxofibrosarcomas to detect drug-able targets to allow patients to participate in basket trials.
Collapse
|