1
|
Wang Y, Bai Y, Xu L, Su J, Ren M, Hou C, Feng J. Autotrophic ammonium nitrogen removal process mediated by manganese oxides: Bioreactors performance optimization and potential mechanisms. ENVIRONMENTAL RESEARCH 2025; 268:120778. [PMID: 39765308 DOI: 10.1016/j.envres.2025.120778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/18/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Manganese(IV) (Mn(IV)) reduction coupled with ammonium (NH4+-N) oxidation (Mnammox) has been found to play a significant role in the nitrogen (N) cycle within natural ecosystems. However, research and application of the autotrophic NH4+-N removal process mediated by manganese oxides (MnOx) in wastewater treatment are currently limited. This study established autotrophic NH4+-N removal sludge reactors mediated by various MnOx types, including δ-MnO2 (δ-MSR), β-MnO2 (β-MSR), α-MnO2 (α-MSR), and natural Mn ore (MOSR), investigating their NH4+-N removal performances and mechanisms under different initial N loading and pH conditions. During the 330 d operation, the reactors exhibited NH4+-N removal efficiencies in the order of δ-MSR > α-MSR > β-MSR > MOSR. Notably, metal-reducing bacteria (Candidatus Brocadia, Dechloromonas, and Rhodocyclaceae) and Mn(II) oxidizing bacteria (Pseudomonas and Zoogloea) were enriched in the reactors, especially in the δ-MSR. The presence of these microorganisms facilitated the reduction of Mn(IV) and utilized the generated Mn(II) to drive autotrophic denitrification (MnOAD), thereby completing the Mn(IV)/Mn(II) cycle and enhancing N removal in the system. An active Mn cycle displayed in δ-MSR, which could be demonstrated by the formation of petal-shaped biogenic MnOx and the increased abundance of Mn cycling genes (MtrCDE, MtrA, MtrB, and CotA, etc.). Meanwhile, genes involved in N metabolism were enriched, particularly functional genes associated with nitrification and denitrification. In this study, the coupling of Mnammox and MnOAD was realized via the Mn cycle, providing a new perspective on the application of autotrophic N removal technologies in wastewater treatment.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Miqi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jingting Feng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
2
|
Wang Y, Bai Y, Su J, Xu L, Ren M, Cao M. Manganese(IV) reduction coupled with ammonium oxidation mediated by a single strain Aromatoleum evansii MAY27: Performance, metabolomics, and mechanism. BIORESOURCE TECHNOLOGY 2024; 409:131235. [PMID: 39121511 DOI: 10.1016/j.biortech.2024.131235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/11/2024]
Abstract
Manganese(IV) (Mn(IV)) reduction coupled to anaerobic ammonium (NH4+-N) oxidation (Mnammox) is a recently identified metal oxide-mediated nitrogen (N) loss pathway, holding potential value for the efficient removal of NH4+-N from wastewater. However, little is known about the application of Mnammox in wastewater treatment. Here, a novel Mnammox bacterium Aromatoleum evansii (strain MAY27) was screened. Strain MAY27 can utilize MnO2 as an electron acceptor to achieve NH4+-N removal under a low C/N condition (C/N = 0.5). The influencing factors in the Mnammox process and the Mn(IV) reduction driving effect on NH4+-N oxidation were investigated. The physiological characteristics of strain MAY27 and differential metabolic pathways were identified through whole-genome sequencing and metabolomic analyses. A significant up-regulation of several key pathways upon the addition of MnO2, including glycolysis/gluconeogenesis, transmembrane transporter activity, and oxidoreductase activity. This study contributes to the advancement of biotechnological approaches for treating N-containing wastewater.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Miqi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Meng Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
3
|
Wu D, Zhang B, Shi S, Tang R, Qiao C, Li T, Jia J, Yang M, Si X, Wang Y, Sun X, Xiao D, Li F, Song H. Engineering extracellular electron transfer to promote simultaneous brewing wastewater treatment and chromium reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133171. [PMID: 38147750 DOI: 10.1016/j.jhazmat.2023.133171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Microbial fuel cell (MFC) technology has been developed for wastewater treatment in the anodic chamber, and heavy metal reduction in the cathodic chamber. However, the limited extracellular electron transfer (EET) rate of exoelectrogens remained a constraint for practical applications of MFCs. Here, a MFC system that used the electricity derived from anodic wastewater treatment to drive cathodic Cr6+ reduction was developed, which enabled an energy self-sustained approach to efficiently address Cr6+ contamination. This MFC system was achieved by screening exoelectrogens with a superior EET rate, promoting the exoelectrogenic EET rate, and constructing a conductive bio-anode. Firstly, Shewanella algae-L3 was screened from brewing wastewater acclimatized sludge, which generated power density of 566.83 mW m-2. Secondly, to facilitate EET rate, flavin synthesis gene operon ribADEHC was overexpressed in engineered S. algae-L3F to increase flavins biosynthesis, which promoted the power density to 1233.21 mW m-2. Thirdly, to facilitate interface electron transfer, carbon nanotube (CNT) was employed to construct a S. algae-L3F-CNT bio-anode, which further enhanced power density to 3112.98 mW m-2. Lastly, S. algae-L3F-CNT bio-anode was used to harvest electrical energy from brewing wastewater to drive cathodic Cr6+ reduction in MFC, realizing 71.43% anodic COD removal and 98.14% cathodic Cr6+ reduction. This study demonstrated that enhanced exoelectrogenic EET could facilitate cathodic Cr6+ reduction in MFC.
Collapse
Affiliation(s)
- Deguang Wu
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Box 08, No. 29, 13ST. TEDA, Tianjin 300457, PR China
| | - Baocai Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Sicheng Shi
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Rui Tang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Chunxiao Qiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Teng Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Jichao Jia
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Meiyi Yang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Xiaoguang Si
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources, Tianjin, PR China
| | - Yifei Wang
- College of Biological Engineering, Tianjin Agricultural University, Tianjin, PR China
| | - Xi Sun
- College of Biological Engineering, Tianjin Agricultural University, Tianjin, PR China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Box 08, No. 29, 13ST. TEDA, Tianjin 300457, PR China.
| | - Feng Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| | - Hao Song
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
4
|
Evidence for Horizontal and Vertical Transmission of Mtr-Mediated Extracellular Electron Transfer among the Bacteria. mBio 2021; 13:e0290421. [PMID: 35100867 PMCID: PMC8805035 DOI: 10.1128/mbio.02904-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth's redox landscape. IMPORTANCE While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly "plug in" to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system (mtrCAB) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments.
Collapse
|
5
|
Martín-Rodríguez AJ, Reyes-Darias JA, Martín-Mora D, González JM, Krell T, Römling U. Reduction of alternative electron acceptors drives biofilm formation in Shewanella algae. NPJ Biofilms Microbiomes 2021; 7:9. [PMID: 33504806 PMCID: PMC7840931 DOI: 10.1038/s41522-020-00177-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/11/2020] [Indexed: 01/30/2023] Open
Abstract
Shewanella spp. possess a broad respiratory versatility, which contributes to the occupation of hypoxic and anoxic environmental or host-associated niches. Here, we observe a strain-specific induction of biofilm formation in response to supplementation with the anaerobic electron acceptors dimethyl sulfoxide (DMSO) and nitrate in a panel of Shewanella algae isolates. The respiration-driven biofilm response is not observed in DMSO and nitrate reductase deletion mutants of the type strain S. algae CECT 5071, and can be restored upon complementation with the corresponding reductase operon(s) but not by an operon containing a catalytically inactive nitrate reductase. The distinct transcriptional changes, proportional to the effect of these compounds on biofilm formation, include cyclic di-GMP (c-di-GMP) turnover genes. In support, ectopic expression of the c-di-GMP phosphodiesterase YhjH of Salmonella Typhimurium but not its catalytically inactive variant decreased biofilm formation. The respiration-dependent biofilm response of S. algae may permit differential colonization of environmental or host niches.
Collapse
Affiliation(s)
| | - José A. Reyes-Darias
- grid.418877.50000 0000 9313 223XDepartment of Environmental Protection, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - David Martín-Mora
- grid.418877.50000 0000 9313 223XDepartment of Environmental Protection, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - José M. González
- grid.10041.340000000121060879Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Tino Krell
- grid.418877.50000 0000 9313 223XDepartment of Environmental Protection, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Ute Römling
- grid.465198.7Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
6
|
Szeinbaum N, Nunn BL, Cavazos AR, Crowe SA, Stewart FJ, DiChristina TJ, Reinhard CT, Glass JB. Novel insights into the taxonomic diversity and molecular mechanisms of bacterial Mn(III) reduction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:583-593. [PMID: 32613749 PMCID: PMC7775658 DOI: 10.1111/1758-2229.12867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 05/23/2023]
Abstract
Soluble ligand-bound Mn(III) can support anaerobic microbial respiration in diverse aquatic environments. Thus far, Mn(III) reduction has only been associated with certain Gammaproteobacteria. Here, we characterized microbial communities enriched from Mn-replete sediments of Lake Matano, Indonesia. Our results provide the first evidence for the biological reduction of soluble Mn(III) outside the Gammaproteobacteria. Metagenome assembly and binning revealed a novel betaproteobacterium, which we designate 'Candidatus Dechloromonas occultata.' This organism dominated the enrichment and expressed a porin-cytochrome c complex typically associated with iron-oxidizing Betaproteobacteria and a novel cytochrome c-rich protein cluster (Occ), including an undecaheme putatively involved in extracellular electron transfer. This occ gene cluster was also detected in diverse aquatic bacteria, including uncultivated Betaproteobacteria from the deep subsurface. These observations provide new insight into the taxonomic and functional diversity of microbially driven Mn(III) reduction in natural environments.
Collapse
Affiliation(s)
- Nadia Szeinbaum
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- NASA Astrobiology Institute, Alternative Earths Team, Mountain View, CA, USA
| | - Brook L. Nunn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Amanda R. Cavazos
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sean A. Crowe
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Frank J. Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- NASA Astrobiology Institute, Alternative Earths Team, Mountain View, CA, USA
| | - Jennifer B. Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- NASA Astrobiology Institute, Alternative Earths Team, Mountain View, CA, USA
| |
Collapse
|
7
|
Aigle A, Bonin P, Fernandez-Nunez N, Loriod B, Guasco S, Bergon A, Armougom F, Iobbi-Nivol C, Imbert J, Michotey V. The nature of the electron acceptor (MnIV/NO3) triggers the differential expression of genes associated with stress and ammonium limitation responses in Shewanella algae C6G3. FEMS Microbiol Lett 2019; 365:4939474. [PMID: 29566166 DOI: 10.1093/femsle/fny068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/15/2018] [Indexed: 01/05/2023] Open
Abstract
Shewanella algae C6G3 can dissimilatively reduce nitrate into ammonium and manganese oxide (MnIV) into MnII. It has the unusual ability to anaerobically produce nitrite from ammonium in the presence of MnIV. To gain insight into their metabolic capabilities, global mRNA expression patterns were investigated by RNA-seq and qRT-PCR in cells growing with lactate and ammonium as carbon and nitrogen sources, and with either MnIV or nitrate as electron acceptors. Genes exhibiting higher expression levels in the presence of MnIV belonged to functional categories of carbohydrate, coenzyme, lipid metabolisms and inorganic ion transport. The comparative transcriptomic pattern between MnIV and NO3 revealed that the strain presented an ammonium limitation status with MnIV, despite the presence of a non-limiting concentration of ammonium under both culture conditions. In addition, in the presence of MnIV, ntrB/nrtC regulators, ammonium channel, nitrogen regulatory protein P-II, glutamine synthetase and asparagine synthetase glutamine-dependent genes were over-represented. Under the nitrate condition, the expression of genes involved in the synthesis of several amino acids was increased. Finally, the expression level of genes associated with the general stress response was also amplified in both conditions and among them, katE, a putative catalase/peroxidase present on several Shewanella genomes, was highly expressed with a median value relatively higher in the MnIV condition.
Collapse
Affiliation(s)
- Axel Aigle
- Aix Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, Marseille, France
| | - Patricia Bonin
- Aix Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, Marseille, France
| | | | - Béatrice Loriod
- UMR_S 1090, TGML/TAGC, Aix-Marseille Université, Marseille F-13009, France
| | - Sophie Guasco
- Aix Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, Marseille, France
| | - Aurélie Bergon
- UMR_S 1090, TGML/TAGC, Aix-Marseille Université, Marseille F-13009, France
| | - Fabrice Armougom
- Aix Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, Marseille, France
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université, CNRS, BIP Bioénergétique et Ingénierie des Protéines UMR 7281, 13402, Marseille, France
| | - Jean Imbert
- UMR_S 1090, TGML/TAGC, Aix-Marseille Université, Marseille F-13009, France
| | - Valérie Michotey
- Aix Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, Marseille, France
| |
Collapse
|