1
|
Nandi P, DeVore K, Wang F, Li S, Walker JD, Truong TT, LaPorte MG, Wipf P, Schlager H, McCleerey J, Paquette W, Columbres RCA, Gan T, Poh YP, Fromme P, Flint AJ, Wolf M, Huryn DM, Chou TF, Chiu PL. Mechanism of allosteric inhibition of human p97/VCP ATPase and its disease mutant by triazole inhibitors. Commun Chem 2024; 7:177. [PMID: 39122922 PMCID: PMC11316111 DOI: 10.1038/s42004-024-01267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Human p97 ATPase is crucial in various cellular processes, making it a target for inhibitors to treat cancers, neurological, and infectious diseases. Triazole allosteric p97 inhibitors have been demonstrated to match the efficacy of CB-5083, an ATP-competitive inhibitor, in cellular models. However, the mechanism is not well understood. This study systematically investigates the structures of new triazole inhibitors bound to both wild-type and disease mutant forms of p97 and measures their effects on function. These inhibitors bind at the interface of the D1 and D2 domains of each p97 subunit, shifting surrounding helices and altering the loop structures near the C-terminal α2 G helix to modulate domain-domain communications. A key structural moiety of the inhibitor affects the rotameric conformations of interacting side chains, indirectly modulating the N-terminal domain conformation in p97 R155H mutant. The differential effects of inhibitor binding to wild-type and mutant p97 provide insights into drug design with enhanced specificity, particularly for oncology applications.
Collapse
Affiliation(s)
- Purbasha Nandi
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Kira DeVore
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Joel D Walker
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thanh Tung Truong
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
- Faculty of Pharmacy, Phenikaa University, Hanoi, Vietnam
| | - Matthew G LaPorte
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Wipf
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - John McCleerey
- Curia Global, Albany, NY, USA
- Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
| | | | - Rod Carlo A Columbres
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Taiping Gan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yu-Ping Poh
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Mechanism of Evolution, Arizona State University, Tempe, AZ, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
| | - Andrew J Flint
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Donna M Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA.
| | - Po-Lin Chiu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Atalay Şahar E, Ballar Kirmizibayrak P. Differential Expression and Function of SVIP in Breast Cancer Cell Lines and In Silico Analysis of Its Expression and Prognostic Potential in Human Breast Cancer. Cells 2023; 12:1362. [PMID: 37408196 DOI: 10.3390/cells12101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
The heterogeneity of cancer strongly suggests the need to explore additional pathways to target. As cancer cells have increased proteotoxic stress, targeting proteotoxic stress-related pathways such as endoplasmic reticulum stress is attracting attention as a new anticancer treatment. One of the downstream responses to endoplasmic reticulum stress is endoplasmic reticulum-associated degradation (ERAD), a major degradation pathway that facilitates proteasome-dependent degradation of unfolded or misfolded proteins. Recently, SVIP (small VCP/97-interacting protein), an endogenous ERAD inhibitor, has been implicated in cancer progression, especially in glioma, prostate, and head and neck cancers. Here, the data of several RNA-sequencing (RNA-seq) and gene array studies were combined to evaluate the SVIP gene expression analysis on a variety of cancers, with a particular focus on breast cancer. The mRNA level of SVIP was found to be significantly higher in primary breast tumors and correlated well with its promoter methylation status and genetic alterations. Strikingly, the SVIP protein level was found to be low despite increased mRNA levels in breast tumors compared to normal tissues. On the other hand, the immunoblotting analysis showed that the expression of SVIP protein was significantly higher in breast cancer cell lines compared to non-tumorigenic epithelial cell lines, while most of the key proteins of gp78-mediated ERAD did not exhibit such an expression pattern, except for Hrd1. Silencing of SVIP enhanced the proliferation of p53 wt MCF-7 and ZR-75-1 cells but not p53 mutant T47D and SK-BR-3 cells; however, it increased the migration ability of both types of cell lines. Importantly, our data suggest that SVIP may increase p53 protein levels in MCF7 cells by inhibiting Hrd1-mediated p53 degradation. Overall, our data reveal the differential expression and function of SVIP on breast cancer cell lines together with in silico data analysis.
Collapse
Affiliation(s)
- Esra Atalay Şahar
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir 35100, Turkey
| | - Petek Ballar Kirmizibayrak
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir 35100, Turkey
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey
| |
Collapse
|
3
|
Wang K, Chen L, Dai X, Ye Z, Zhou C, Zhang CJ, Feng Z. Synthesis and structure-activity relationships of N - (3 - (1H-imidazol-2-yl) phenyl) - 3-phenylpropionamide derivatives as a novel class of covalent inhibitors of p97/VCP ATPase. Eur J Med Chem 2023; 248:115094. [PMID: 36634454 DOI: 10.1016/j.ejmech.2023.115094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Noncovalent inhibitors of p97 have entered clinical studies. Compared with noncovalent inhibitors, covalent inhibitors have unique advantages in maintaining inhibitory effect and improving the resistance of the target. We previously employed the activity-based protein profiling to definitely identify p97 as the protein target of FL-18 that has a unique scaffold of benpropargylamide coupled with an imidazole. In this study, we report a thorough structure-activity-relationship study involving the new scaffold. A total of three rounds of optimization led to the discovery of the most potent covalent inhibitor of p97 to date. A chemical proteomics study indicated that the newly-synthesized compounds still targeted the C522 residue of p97 and retained selectivity among the complicated whole proteome. This study provides a suite of new covalent inhibitors of p97 to assist in its biological study and drug discovery.
Collapse
Affiliation(s)
- Ke Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, PR China
| | - Lianguo Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Xinyan Dai
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, PR China
| | - Zi Ye
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, PR China
| | - Chuan Zhou
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, PR China
| | - Chong-Jing Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, PR China.
| | - Zhiqiang Feng
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, PR China.
| |
Collapse
|
4
|
Kilgas S, Ramadan K. Inhibitors of the ATPase p97/VCP: From basic research to clinical applications. Cell Chem Biol 2023; 30:3-21. [PMID: 36640759 DOI: 10.1016/j.chembiol.2022.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/13/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Protein homeostasis deficiencies underlie various cancers and neurodegenerative diseases. The ubiquitin-proteasome system (UPS) and autophagy are responsible for most of the protein degradation in mammalian cells and, therefore, represent attractive targets for cancer therapy and that of neurodegenerative diseases. The ATPase p97, also known as VCP, is a central component of the UPS that extracts and disassembles its substrates from various cellular locations and also regulates different steps in autophagy. Several UPS- and autophagy-targeting drugs are in clinical trials. In this review, we focus on the development of various p97 inhibitors, including the ATPase inhibitors CB-5083 and CB-5339, which reached clinical trials by demonstrating effective anti-tumor activity across various tumor models, providing an effective alternative to targeting protein degradation for cancer therapy. Here, we provide an overview of how different p97 inhibitors have evolved over time both as basic research tools and effective UPS-targeting cancer therapies in the clinic.
Collapse
Affiliation(s)
- Susan Kilgas
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Kristijan Ramadan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
5
|
Fragment screening using biolayer interferometry reveals ligands targeting the SHP-motif binding site of the AAA+ ATPase p97. Commun Chem 2022; 5:169. [PMID: 36697690 PMCID: PMC9814400 DOI: 10.1038/s42004-022-00782-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Biosensor techniques have become increasingly important for fragment-based drug discovery during the last years. The AAA+ ATPase p97 is an essential protein with key roles in protein homeostasis and a possible target for cancer chemotherapy. Currently available p97 inhibitors address its ATPase activity and globally impair p97-mediated processes. In contrast, inhibition of cofactor binding to the N-domain by a protein-protein-interaction inhibitor would enable the selective targeting of specific p97 functions. Here, we describe a biolayer interferometry-based fragment screen targeting the N-domain of p97 and demonstrate that a region known as SHP-motif binding site can be targeted with small molecules. Guided by molecular dynamics simulations, the binding sites of selected screening hits were postulated and experimentally validated using protein- and ligand-based NMR techniques, as well as X-ray crystallography, ultimately resulting in the first structure of a small molecule in complex with the N-domain of p97. The identified fragments provide insights into how this region could be targeted and present first chemical starting points for the development of a protein-protein interaction inhibitor preventing the binding of selected cofactors to p97.
Collapse
|
6
|
Read ML, Brookes K, Thornton CEM, Fletcher A, Nieto HR, Alshahrani M, Khan R, Borges de Souza P, Zha L, Webster JRM, Alderwick LJ, Campbell MJ, Boelaert K, Smith VE, McCabe CJ. Targeting non-canonical pathways as a strategy to modulate the sodium iodide symporter. Cell Chem Biol 2022; 29:502-516.e7. [PMID: 34520744 PMCID: PMC8958605 DOI: 10.1016/j.chembiol.2021.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/17/2021] [Accepted: 07/21/2021] [Indexed: 12/31/2022]
Abstract
The sodium iodide symporter (NIS) functions to transport iodide and is critical for successful radioiodide ablation of cancer cells. Approaches to bolster NIS function and diminish recurrence post-radioiodide therapy are impeded by oncogenic pathways that suppress NIS, as well as the inherent complexity of NIS regulation. Here, we utilize NIS in high-throughput drug screening and undertake rigorous evaluation of lead compounds to identify and target key processes underpinning NIS function. We find that multiple proteostasis pathways, including proteasomal degradation and autophagy, are central to the cellular processing of NIS. Utilizing inhibitors targeting distinct molecular processes, we pinpoint combinatorial drug strategies giving robust >5-fold increases in radioiodide uptake. We also reveal significant dysregulation of core proteostasis genes in human tumors, identifying a 13-gene risk score classifier as an independent predictor of recurrence in radioiodide-treated patients. We thus propose and discuss a model for targetable steps of intracellular processing of NIS function.
Collapse
Affiliation(s)
- Martin L Read
- Institute of Metabolism and Systems Research (IMSR), and Centre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, UK
| | - Katie Brookes
- Institute of Metabolism and Systems Research (IMSR), and Centre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, UK
| | - Caitlin E M Thornton
- Institute of Metabolism and Systems Research (IMSR), and Centre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, UK
| | - Alice Fletcher
- Institute of Metabolism and Systems Research (IMSR), and Centre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, UK
| | - Hannah R Nieto
- Institute of Metabolism and Systems Research (IMSR), and Centre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, UK
| | - Mohammed Alshahrani
- Institute of Metabolism and Systems Research (IMSR), and Centre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, UK
| | - Rashida Khan
- Institute of Metabolism and Systems Research (IMSR), and Centre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, UK
| | - Patricia Borges de Souza
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Ferrara 44124, Italy
| | - Ling Zha
- Institute of Metabolism and Systems Research (IMSR), and Centre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, UK
| | - Jamie R M Webster
- Protein Expression Facility, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK
| | - Luke J Alderwick
- Birmingham Drug Discovery Facility, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmacology, The Ohio State University, College of Pharmacy, Columbus, OH 43210, USA
| | - Kristien Boelaert
- Institute of Applied Health Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Vicki E Smith
- Institute of Metabolism and Systems Research (IMSR), and Centre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, UK
| | - Christopher J McCabe
- Institute of Metabolism and Systems Research (IMSR), and Centre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
7
|
An Integrated In Silico, In Vitro and Tumor Tissues Study Identified Selenoprotein S (SELENOS) and Valosin-Containing Protein (VCP/p97) as Novel Potential Associated Prognostic Biomarkers in Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14030646. [PMID: 35158912 PMCID: PMC8833666 DOI: 10.3390/cancers14030646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Triple negative breast cancer (TNBC) represents a clinical challenge because its early relapse, poor overall survival and lack of effective treatments. Altered levels selenoproteins have been correlated with development and progression of some cancers, however, no consistent data are available about their involvement in TNBC. Here we analyzed the expression profile of all twenty-five human selenoproteins in TNBC cells and tissues by a systematic approach, integrating in silico and wet lab approaches. We showed that the expression profiles of five selenoproteins are specifically dysregulated in TNBC. Most importantly, by a bioinformatics analysis, we selected selenoprotein S and its interacting protein valosin-containing protein (VCP/p97) as inter-related with the others and whose coordinated over-expression is associated with poor prognosis in TNBC. Overall, we highlighted two mechanistically related novel proteins whose correlated expression could be exploited for a better definition of prognosis as well as suggested as novel therapeutic target in TNBC. Abstract Background. Triple negative breast cancer (TNBC) is a heterogeneous group of tumors with early relapse, poor overall survival, and lack of effective treatments. Hence, new prognostic biomarkers and therapeutic targets are needed. Methods. The expression profile of all twenty-five human selenoproteins was analyzed in TNBC by a systematic approach.In silicoanalysis was performed on publicly available mRNA expression datasets (Cancer Cell Line Encyclopedia, CCLE and Library of Integrated Network-based Cellular Signatures, LINCS). Reverse transcription quantitative PCR analysis evaluated selenoprotein mRNA expression in TNBC versus non-TNBC and normal breast cells, and in TNBC tissues versus normal counterparts. Immunohistochemistry was employed to study selenoproteins in TNBC tissues. STRING and Cytoscape tools were used for functional and network analysis. Results.GPX1, GPX4, SELENOS, TXNRD1 and TXNRD3 were specifically overexpressed in TNBC cells, tissues and CCLE/LINCS datasets. Network analysis demonstrated that SELENOS-binding valosin-containing protein (VCP/p97) played a critical hub role in the TNBCselenoproteins sub-network, being directly associated with SELENOS expression. The combined overexpression of SELENOS and VCP/p97 correlated with advanced stages and poor prognosis in TNBC tissues and the TCGA dataset. Conclusion. Combined evaluation of SELENOS and VCP/p97 might represent a novel potential prognostic signature and a therapeutic target to be exploited in TNBC.
Collapse
|
8
|
Valosin-Containing Protein (VCP)/p97: A Prognostic Biomarker and Therapeutic Target in Cancer. Int J Mol Sci 2021; 22:ijms221810177. [PMID: 34576340 PMCID: PMC8469696 DOI: 10.3390/ijms221810177] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/02/2023] Open
Abstract
Valosin-containing protein (VCP)/p97, a member of the AAA+ ATPase family, is a molecular chaperone recruited to the endoplasmic reticulum (ER) membrane by binding to membrane adapters (nuclear protein localization protein 4 (NPL4), p47 and ubiquitin regulatory X (UBX) domain-containing protein 1 (UBXD1)), where it is involved in ER-associated protein degradation (ERAD). However, VCP/p97 interacts with many cofactors to participate in different cellular processes that are critical for cancer cell survival and aggressiveness. Indeed, VCP/p97 is reported to be overexpressed in many cancer types and is considered a potential cancer biomarker and therapeutic target. This review summarizes the role of VCP/p97 in different cancers and the advances in the discovery of small-molecule inhibitors with therapeutic potential, focusing on the challenges associated with cancer-related VCP mutations in the mechanisms of resistance to inhibitors.
Collapse
|
9
|
Zhang G, Li S, Cheng KW, Chou TF. AAA ATPases as therapeutic targets: Structure, functions, and small-molecule inhibitors. Eur J Med Chem 2021; 219:113446. [PMID: 33873056 PMCID: PMC8165034 DOI: 10.1016/j.ejmech.2021.113446] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 01/07/2023]
Abstract
ATPases Associated with Diverse Cellular Activity (AAA ATPase) are essential enzymes found in all organisms. They are involved in various processes such as DNA replication, protein degradation, membrane fusion, microtubule serving, peroxisome biogenesis, signal transduction, and the regulation of gene expression. Due to the importance of AAA ATPases, several researchers identified and developed small-molecule inhibitors against these enzymes. We discuss six AAA ATPases that are potential drug targets and have well-developed inhibitors. We compare available structures that suggest significant differences of the ATP binding pockets among the AAA ATPases with or without ligand. The distances from ADP to the His20 in the His-Ser-His motif and the Arg finger (Arg353 or Arg378) in both RUVBL1/2 complex structures bound with or without ADP have significant differences, suggesting dramatically different interactions of the binding site with ADP. Taken together, the inhibitors of six well-studied AAA ATPases and their structural information suggest further development of specific AAA ATPase inhibitors due to difference in their structures. Future chemical biology coupled with proteomic approaches could be employed to develop variant specific, complex specific, and pathway specific inhibitors or activators for AAA ATPase proteins.
Collapse
Affiliation(s)
- Gang Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
10
|
Cai X, Wang R, Tan J, Meng Z, Li N. Mechanisms of regulating NIS transport to the cell membrane and redifferentiation therapy in thyroid cancer. Clin Transl Oncol 2021; 23:2403-2414. [PMID: 34100218 DOI: 10.1007/s12094-021-02655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022]
Abstract
Iodine is an essential constituent of thyroid hormone. Active iodide accumulation in the thyroid is mediated by the sodium iodide symporter (NIS), comprising the first step in thyroid hormone biosynthesis, which relies on the functional expression of NIS on the cell membrane. The retention of NIS expressed in differentiated thyroid cancer (DTC) cells allows further treatment with post-operative radioactive iodine (RAI) therapy. However, compared with normal thyroid tissue, differentiated thyroid tumors usually show a decrease in the active iodide conveyance and NIS is generally retained within the cells, indicating that posttranslational protein transfer to the plasma membrane is abnormal. In recent years, through in vitro studies and studies of patients with DTC, various methods have been tested to increase the transport rate of NIS to the cell membrane and increase the absorption of iodine. An in-depth understanding of the mechanism of NIS transport to the plasma membrane could lead to improvements in RAI therapy. Therefore, in this review, we discuss the current knowledge concerning the post-translational mechanisms that regulate NIS transport to the cell membrane and the current status of redifferentiation therapy for patients with RAI-refractory (RAIR)-DTC.
Collapse
Affiliation(s)
- X Cai
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - R Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - J Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Z Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - N Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
11
|
Zhang G, Li S, Wang F, Jones AC, Goldberg AFG, Lin B, Virgil S, Stoltz BM, Deshaies RJ, Chou TF. A covalent p97/VCP ATPase inhibitor can overcome resistance to CB-5083 and NMS-873 in colorectal cancer cells. Eur J Med Chem 2021; 213:113148. [PMID: 33476933 DOI: 10.1016/j.ejmech.2020.113148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022]
Abstract
Small-molecule inhibitors of p97 are useful tools to study p97 function. Human p97 is an important AAA ATPase due to its diverse cellular functions and implication in mediating the turnover of proteins involved in tumorigenesis and virus infections. Multiple p97 inhibitors identified from previous high-throughput screening studies are thiol-reactive compounds targeting Cys522 in the D2 ATP-binding domain. Thus, these findings suggest a potential strategy to develop covalent p97 inhibitors. We first used purified p97 to assay several known covalent kinase inhibitors to determine if they can inhibit ATPase activity. We evaluated their selectivity using our dual reporter cells that can distinguish p97 dependent and independent degradation. We selected a β-nitrostyrene scaffold to further study the structure-activity relationship. In addition, we used p97 structures to design and synthesize analogues of pyrazolo[3,4-d]pyrimidine (PP). We incorporated electrophiles into a PP-like compound 17 (4-amino-1-tert-butyl-3-phenyl pyrazolo[3,4-d]pyrimidine) to generate eight compounds. A selective compound 18 (N-(1-(tert-butyl)-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)acrylamide, PPA) exhibited excellent selectivity in an in vitro ATPase activity assay: IC50 of 0.6 μM, 300 μM, and 100 μM for wild type p97, yeast Cdc48, and N-ethylmaleimide sensitive factor (NSF), respectively. To further examine the importance of Cys522 on the active site pocket during PPA inhibition, C522A and C522T mutants of p97 were purified and shown to increase IC50 values by 100-fold, whereas replacement of Thr532 of yeast Cdc48 with Cysteine decreased the IC50 by 10-fold. The molecular modeling suggested the hydrogen bonds and hydrophobic interactions in addition to the covalent bonding at Cys522 between WT-p97 and PPA. Furthermore, tandem mass spectrometry confirmed formation of a covalent bond between Cys522 and PPA. An anti-proliferation assay indicated that the proliferation of HCT116, HeLa, and RPMI8226 was inhibited by PPA with IC50 of 2.7 μM, 6.1 μM, and 3.4 μM, respectively. In addition, PPA is able to inhibit proliferation of two HCT116 cell lines that are resistant to CB-5083 and NMS-873, respectively. Proteomic analysis of PPA-treated HCT116 revealed Gene Ontology enrichment of known p97 functional pathways such as the protein ubiquitination and the ER to Golgi transport vesicle membrane. In conclusion, we have identified and characterized PPA as a selective covalent p97 inhibitor, which will allow future exploration to improve the potency of p97 inhibitors with different mechanisms of action.
Collapse
Affiliation(s)
- Gang Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Amanda C Jones
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Alexander F G Goldberg
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Benjamin Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Scott Virgil
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Brian M Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States; Howard Hughes Medical Institute, Chevy Chase, MD, 20815, United States.
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
12
|
Gu Y, Wang X, Wang Y, Wang Y, Li J, Yu FX. Nelfinavir inhibits human DDI2 and potentiates cytotoxicity of proteasome inhibitors. Cell Signal 2020; 75:109775. [PMID: 32916277 DOI: 10.1016/j.cellsig.2020.109775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 01/24/2023]
Abstract
Proteasome inhibitors (PIs) are currently used in the clinic to treat cancers such as multiple myeloma (MM). However, cancer cells often rapidly develop drug resistance towards PIs due to a compensatory mechanism mediated by nuclear factor erythroid 2 like 1 (NFE2L1) and aspartic protease DNA damage inducible 1 homolog 2 (DDI2). Following DDI2-mediated cleavage, NFE2L1 is able to induce transcription of virtually all proteasome subunit genes. Under normal condition, cleaved NFE2L1 is constantly degraded by proteasome, whereas in the presence of PIs, it accumulates and induces proteasome synthesis which in turn promotes the development of drug resistance towards PIs. Here, we report that Nelfinavir (NFV), an HIV protease inhibitor, can inhibit DDI2 activity directly. Inhibition of DDI2 by NFV effectively blocks NFE2L1 proteolysis and potentiates cytotoxicity of PIs in cancer cells. Recent clinical evidence indicated that NFV can effectively delay the refractory period of MM patients treated with PI-based therapy. Our finding hence provides a specific molecular mechanism for combinatorial therapy using NFV and PIs for treating MM and probably additional cancers.
Collapse
Affiliation(s)
- Yuan Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yebin Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Li
- Large-scale Protein Preparation System, National Facility for Protein Sciences, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Her NG, Kesari S, Nurmemmedov E. Thrombospondin-1 counteracts the p97 inhibitor CB-5083 in colon carcinoma cells. Cell Cycle 2020; 19:1590-1601. [PMID: 32423265 DOI: 10.1080/15384101.2020.1754584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
p97 has recently emerged as a therapeutic target for cancer due to its essential functions in protein homeostasis. CB-5083 is a first-in-class, potent and selective ATP-competitive p97 inhibitor that induces proteotoxic stress in cancer cells. Potential mechanisms regulating the sensitivity of cells to p97 inhibition remain poorly studied. Here, we demonstrate that Thrombospondin-1 (THBS1) is a CB-5083-upregulated gene that helps confer resistance of HCT116 cells to CB-5083. Our immunoblotting and immunofluorescence data showed that CB-5083 significantly increases the steady-state abundance of THBS1. Blockade of THBS1 induction sensitized cells to CB-5083-mediated growth inhibition. Suppression of THBS1 caused an increase of CB-5083-induced sub-G1 population and caspase 3/7 activity suggesting that its function is linked to the survival of cancer cells in response to p97 inhibition. Altogether our data provide new evidence that THBS1 is important for the susceptibility of cells to p97 inhibition.
Collapse
Affiliation(s)
- Nam-Gu Her
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences , Seoul, Republic of Korea.,Department of Neuro-sciences and Neuro-therapeutics, John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center , Santa Monica, CA, USA
| | - Santosh Kesari
- Institute for Refractory Cancer Research, Current Address: Samsung Medical Center , Seoul, Republic of Korea
| | - Elmar Nurmemmedov
- Institute for Refractory Cancer Research, Current Address: Samsung Medical Center , Seoul, Republic of Korea
| |
Collapse
|
14
|
Pharmacophore modeling, atom-based 3D-QSAR and molecular docking studies on N-benzylpyrimidin-4-amine derivatives as VCP/p97 inhibitors. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02517-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Abstract
p97 belongs to the functional diverse superfamily of AAA+ (ATPases Associated with diverse cellular Activities) ATPases and is characterized by an N-terminal regulatory domain and two stacked hexameric ATPase domains forming a central protein conducting channel. p97 is highly versatile and has key functions in maintaining protein homeostasis including protein quality control mechanisms like the ubiquitin proteasome system (UPS) and autophagy to disassemble polyubiquitylated proteins from chromatin, membranes, macromolecular protein complexes and aggregates which are either degraded by the proteasome or recycled. p97 can use energy derived from ATP hydrolysis to catalyze substrate unfolding and threading through its central channel. The function of p97 in a large variety of different cellular contexts is reflected by its simultaneous association with different cofactors, which are involved in substrate recognition and processing, thus leading to the formation of transient multi-protein complexes. Dysregulation in protein homeostasis and proteotoxic stress are often involved in the development of cancer and neurological diseases and targeting the UPS including p97 in cancer is a well-established pharmacological strategy. In this chapter we will describe structural and functional aspects of the p97 interactome in regulating diverse cellular processes and will discuss the role of p97 in targeted cancer therapy.
Collapse
|
16
|
Dennis EK, Garneau-Tsodikova S. Synergistic combinations of azoles and antihistamines against Candida species in vitro. Med Mycol 2020; 57:874-884. [PMID: 30295881 DOI: 10.1093/mmy/myy088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/21/2018] [Accepted: 09/21/2018] [Indexed: 02/07/2023] Open
Abstract
Fungal infections are a major cause of skin and mucosal membrane disease. Immunocompromised individuals, such as those undergoing chemotherapy, are most susceptible to fungal infections. With a growing population of immunocompromised patients, there are many reports of increasing numbers of infections and of fungal strains resistant to current antifungals. One way to treat drug-resistant infections is to administer combinations of drugs to patients. Azoles are the most prescribed antifungals, as they are broad-spectrum and orally bioavailable. Terfenadine (TERF) and ebastine (EBA) are second-generation antihistamines, with EBA being used in many countries. In this study, we explored combinations of seven azole antifungals and two antihistamines (TERF and EBA) against a panel of 13 Candida fungal strains. We found 55 out of 91 combinations tested of TERF and EBA against the various fungal strains to be synergistic with the azoles. To evaluate the efficiency of these combinations to inhibit fungal growth, we performed time-kill assays. We also investigated the ability of these combinations to disrupt biofilm formation. Finally, we tested the specificity of the combinations towards fungal cells by mammalian cytotoxicity assays. These findings suggest a potential new strategy for targeting drug-resistant Candida infections.
Collapse
Affiliation(s)
- Emily K Dennis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, USA
| |
Collapse
|
17
|
Fletcher A, Read ML, Thornton CEM, Larner DP, Poole VL, Brookes K, Nieto HR, Alshahrani M, Thompson RJ, Lavery GG, Landa I, Fagin JA, Campbell MJ, Boelaert K, Turnell AS, Smith VE, McCabe CJ. Targeting Novel Sodium Iodide Symporter Interactors ADP-Ribosylation Factor 4 and Valosin-Containing Protein Enhances Radioiodine Uptake. Cancer Res 2019; 80:102-115. [PMID: 31672844 DOI: 10.1158/0008-5472.can-19-1957] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/17/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022]
Abstract
The sodium iodide symporter (NIS) is required for iodide uptake, which facilitates thyroid hormone biosynthesis. NIS has been exploited for over 75 years in ablative radioiodine (RAI) treatment of thyroid cancer, where its ability to transport radioisotopes depends on its localization to the plasma membrane. The advent of NIS-based in vivo imaging and theranostic strategies in other malignancies and disease modalities has recently increased the clinical importance of NIS. However, NIS trafficking remains ill-defined. Here, we used tandem mass spectrometry followed by coimmunoprecipitation and proximity ligation assays to identify and validate two key nodes-ADP-ribosylation factor 4 (ARF4) and valosin-containing protein (VCP)-controlling NIS trafficking. Using cell-surface biotinylation assays and highly inclined and laminated optical sheet microscopy, we demonstrated that ARF4 enhanced NIS vesicular trafficking from the Golgi to the plasma membrane, whereas VCP-a principal component of endoplasmic reticulum (ER)-associated degradation-governed NIS proteolysis. Gene expression analysis indicated VCP expression was particularly induced in aggressive thyroid cancers and in patients who had poorer outcomes following RAI treatment. Two repurposed FDA-approved VCP inhibitors abrogated VCP-mediated repression of NIS function, resulting in significantly increased NIS at the cell-surface and markedly increased RAI uptake in mouse and human thyroid models. Collectively, these discoveries delineate NIS trafficking and highlight the new possibility of systemically enhancing RAI therapy in patients using FDA-approved drugs. SIGNIFICANCE: These findings show that ARF4 and VCP are involved in NIS trafficking to the plasma membrane and highlight the possible therapeutic role of VCP inhibitors in enhancing radioiodine effectiveness in radioiodine-refractory thyroid cancer.
Collapse
Affiliation(s)
- Alice Fletcher
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Martin L Read
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Caitlin E M Thornton
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Dean P Larner
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Vikki L Poole
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Katie Brookes
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Hannah R Nieto
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Mohammed Alshahrani
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca J Thompson
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Iñigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James A Fagin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Kristien Boelaert
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Andrew S Turnell
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Vicki E Smith
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Christopher J McCabe
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
18
|
Huryn DM, Kornfilt DJP, Wipf P. p97: An Emerging Target for Cancer, Neurodegenerative Diseases, and Viral Infections. J Med Chem 2019; 63:1892-1907. [PMID: 31550150 DOI: 10.1021/acs.jmedchem.9b01318] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The AAA+ ATPase, p97, also referred to as VCP, plays an essential role in cellular homeostasis by regulating endoplasmic reticulum-associated degradation (ERAD), mitochondrial-associated degradation (MAD), chromatin-associated degradation, autophagy, and endosomal trafficking. Mutations in p97 have been linked to a number of neurodegenerative diseases, and overexpression of wild type p97 is observed in numerous cancers. Furthermore, p97 activity has been shown to be essential for the replication of certain viruses, including poliovirus, herpes simplex virus (HSV), cytomegalovirus (CMV), and influenza. Taken together, these observations highlight the potential for targeting p97 as a therapeutic approach in neurodegeneration, cancer, and certain infectious diseases. This Perspective reviews recent advances in the discovery of small molecule inhibitors of p97, their optimization and characterization, and therapeutic potential.
Collapse
|
19
|
Slater O, Kontoyianni M. The compromise of virtual screening and its impact on drug discovery. Expert Opin Drug Discov 2019; 14:619-637. [PMID: 31025886 DOI: 10.1080/17460441.2019.1604677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Docking and structure-based virtual screening (VS) have been standard approaches in structure-based design for over two decades. However, our understanding of the limitations, potential, and strength of these techniques has enhanced, raising expectations. Areas covered: Based on a survey of reports in the past five years, we assess whether VS: (1) predicts binding poses in agreement with crystallographic data (when available); (2) is a superior screening tool, as often claimed; (3) is successful in identifying chemical scaffolds that can be starting points for subsequent lead optimization cycles. Data shows that knowledge of the target and its chemotypes in postprocessing lead to viable hits in early drug discovery endeavors. Expert opinion: VS is capable of accurate placements in the pocket for the most part, but does not consistently score screening collections accurately. What matters is capitalization on available resources to get closer to a viable lead or optimizable series. Integration of approaches, subjective hit selection guided by knowledge of the receptor or endogenous ligand, libraries driven by experimental guides, validation studies to identify the best docking/scoring that reproduces experimental findings, constraints regarding receptor-ligand interactions, thoroughly designed methodologies, and predefined cutoff scoring criteria strengthen VS's position in pharmaceutical research.
Collapse
Affiliation(s)
- Olivia Slater
- a Department of Pharmaceutical Sciences , Southern Illinois University Edwardsville , Edwardsville , IL , USA
| | - Maria Kontoyianni
- a Department of Pharmaceutical Sciences , Southern Illinois University Edwardsville , Edwardsville , IL , USA
| |
Collapse
|
20
|
Wang F, Lei X, Wu FX. A Review of Drug Repositioning Based Chemical-induced Cell Line Expression Data. Curr Med Chem 2018; 27:5340-5350. [PMID: 30381060 DOI: 10.2174/0929867325666181101115801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 08/10/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022]
Abstract
Drug repositioning is an important area of biomedical research. The drug repositioning studies have shifted to computational approaches. Large-scale perturbation databases, such as the Connectivity Map and the Library of Integrated Network-Based Cellular Signatures, contain a number of chemical-induced gene expression profiles and provide great opportunities for computational biology and drug repositioning. One reason is that the profiles provided by the Connectivity Map and the Library of Integrated Network-Based Cellular Signatures databases show an overall view of biological mechanism in drugs, diseases and genes. In this article, we provide a review of the two databases and their recent applications in drug repositioning.
Collapse
Affiliation(s)
- Fei Wang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Fang-Xiang Wu
- School of Computer Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
21
|
Thiopurine Drugs Repositioned as Tyrosinase Inhibitors. Int J Mol Sci 2017; 19:ijms19010077. [PMID: 29283382 PMCID: PMC5796027 DOI: 10.3390/ijms19010077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023] Open
Abstract
Drug repositioning is the application of the existing drugs to new uses and has the potential to reduce the time and cost required for the typical drug discovery process. In this study, we repositioned thiopurine drugs used for the treatment of acute leukaemia as new tyrosinase inhibitors. Tyrosinase catalyses two successive oxidations in melanin biosynthesis: the conversions of tyrosine to dihydroxyphenylalanine (DOPA) and DOPA to dopaquinone. Continuous efforts are underway to discover small molecule inhibitors of tyrosinase for therapeutic and cosmetic purposes. Structure-based virtual screening predicted inhibitor candidates from the US Food and Drug Administration (FDA)-approved drugs. Enzyme assays confirmed the thiopurine leukaemia drug, thioguanine, as a tyrosinase inhibitor with the inhibitory constant of 52 μM. Two other thiopurine drugs, mercaptopurine and azathioprine, were also evaluated for their tyrosinase inhibition; mercaptopurine caused stronger inhibition than thioguanine did, whereas azathioprine was a poor inhibitor. The inhibitory constant of mercaptopurine (16 μM) was comparable to that of the well-known inhibitor kojic acid (13 μM). The cell-based assay using B16F10 melanoma cells confirmed that the compounds inhibit mammalian tyrosinase. Particularly, 50 μM thioguanine reduced the melanin content by 57%, without apparent cytotoxicity. Cheminformatics showed that the thiopurine drugs shared little chemical similarity with the known tyrosinase inhibitors.
Collapse
|