1
|
Xu D, Lu H, Chu G, Shen C, Sun Q, Wu J, Li F, Song B, Cui A, Li H, Wu N. Fast response of vegetation in East Asia to abrupt climatic events during the last deglaciation. PNAS NEXUS 2023; 2:pgad061. [PMID: 37007712 PMCID: PMC10062325 DOI: 10.1093/pnasnexus/pgad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 04/03/2023]
Abstract
Climate changes had major impacts on the vegetation of East Asia during the last deglaciation. However, the rate and pattern of vegetation succession in response to large-scale climatic events during this interval are controversial. Here, we present well-dated decadal-resolution pollen records from annually laminated Maar Lake Xiaolongwan during the last deglaciation. The vegetation changes were rapid and near-synchronous with millennial-scale climatic events, including Greenland Stadial 2.1a (GS-2.1a), Greenland Interstadial 1 (GI-1), Greenland Stadial 1 (GS-1), and the early Holocene (EH). The vegetation responded in different ways to the different rates of climate change. Vegetation change was gradual [∼1 thousand years (kyr) response time] during the transition between GS-2.1a and GI-1, but it was faster (∼0.4 kyr response time) during the transitions between GI-1, GS-1, and the EH, resulting in different patterns of vegetation succession. Additionally, the amplitude and pattern of vegetation changes resembled those in the records of regional climate change based on long-chain n-alkanes δ13C and stalagmite δ18O, as well as in the mid-latitude Northern Hemisphere temperature record and the Greenland ice core δ18O record. Therefore, the rate and pattern of vegetation succession in the Changbai Mountain of Northeast Asia during the last deglaciation were sensitive to the characteristics of changes in the regional hydrothermal conditions and mid-latitude Northern Hemisphere temperature, which were linked to both high- and low-latitude atmospheric-oceanic dynamics. Overall, our findings reveal a close relationship between ecosystem succession and hydrothermal changes during these millennial-scale climatic events in East Asia during the last deglaciation.
Collapse
Affiliation(s)
- Deke Xu
- To whom correspondence should be addressed: ;
| | - Houyuan Lu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19, Beitucheng Western Road, Chaoyang District, Beijing 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, No. 19, Beitucheng Western Road, Chaoyang District, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Guoqiang Chu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19, Beitucheng Western Road, Chaoyang District, Beijing 100029, China
- CAS Center for Excellence in Life and Paleoenvironment, No. 142 Xizhimenwai Str, Xicheng District, Beijing 100044, China
| | | | - Qing Sun
- Geoanalysis Center, Chinese Academy of Geological Sciences, No. 26 Baiwanzhuang Str, Xicheng District, Beijing 100037, China
| | - Jing Wu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19, Beitucheng Western Road, Chaoyang District, Beijing 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, No. 19, Beitucheng Western Road, Chaoyang District, Beijing 100029, China
| | - Fengjiang Li
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19, Beitucheng Western Road, Chaoyang District, Beijing 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, No. 19, Beitucheng Western Road, Chaoyang District, Beijing 100029, China
| | - Bing Song
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, No. 73 East Beijing Rd, Xuanwu District, Nanjing 210008, China
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19, Beitucheng Western Road, Chaoyang District, Beijing 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, No. 19, Beitucheng Western Road, Chaoyang District, Beijing 100029, China
| | - Anning Cui
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19, Beitucheng Western Road, Chaoyang District, Beijing 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, No. 19, Beitucheng Western Road, Chaoyang District, Beijing 100029, China
| | - Hao Li
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19, Beitucheng Western Road, Chaoyang District, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | | |
Collapse
|
2
|
Lucena-Perez M, Marmesat E, Kleinman-Ruiz D, Martínez-Cruz B, Węcek K, Saveljev AP, Seryodkin IV, Okhlopkov I, Dvornikov MG, Ozolins J, Galsandorj N, Paunovic M, Ratkiewicz M, Schmidt K, Godoy JA. Genomic patterns in the widespread Eurasian lynx shaped by Late Quaternary climatic fluctuations and anthropogenic impacts. Mol Ecol 2020; 29:812-828. [PMID: 31995648 PMCID: PMC7064982 DOI: 10.1111/mec.15366] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 12/28/2022]
Abstract
Disentangling the contribution of long-term evolutionary processes and recent anthropogenic impacts to current genetic patterns of wildlife species is key to assessing genetic risks and designing conservation strategies. Here, we used 80 whole nuclear genomes and 96 mitogenomes from populations of the Eurasian lynx covering a range of conservation statuses, climatic zones and subspecies across Eurasia to infer the demographic history, reconstruct genetic patterns, and discuss the influence of long-term isolation and/or more recent human-driven changes. Our results show that Eurasian lynx populations shared a common history until 100,000 years ago, when Asian and European populations started to diverge and both entered a period of continuous and widespread decline, with western populations, except Kirov, maintaining lower effective sizes than eastern populations. Population declines and increased isolation in more recent times probably drove the genetic differentiation between geographically and ecologically close westernmost European populations. By contrast, and despite the wide range of habitats covered, populations are quite homogeneous genetically across the Asian range, showing a pattern of isolation by distance and providing little genetic support for the several proposed subspecies. Mitogenomic and nuclear divergences and population declines starting during the Late Pleistocene can be mostly attributed to climatic fluctuations and early human influence, but the widespread and sustained decline since the Holocene is more probably the consequence of anthropogenic impacts which intensified in recent centuries, especially in western Europe. Genetic erosion in isolated European populations and lack of evidence for long-term isolation argue for the restoration of lost population connectivity.
Collapse
Affiliation(s)
- Maria Lucena-Perez
- Department of Integrative Ecology, Estación Biológica de Doñana (CSIC), Seville, Spain
| | - Elena Marmesat
- Department of Integrative Ecology, Estación Biológica de Doñana (CSIC), Seville, Spain
| | - Daniel Kleinman-Ruiz
- Department of Integrative Ecology, Estación Biológica de Doñana (CSIC), Seville, Spain
| | - Begoña Martínez-Cruz
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Karolina Węcek
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Alexander P Saveljev
- Department of Animal Ecology, Russian Research Institute of Game Management and Fur Farming, Kirov, Russia.,Biological Faculty of Moscow State University, Moscow, Russia
| | - Ivan V Seryodkin
- Laboratory of Ecology and Conservation of Animals, Pacific Institute of Geography of Far East Branch of Russian Academy of Sciences, Vladivostok, Russia.,Far Eastern Federal University, Vladivostok, Russia
| | - Innokentiy Okhlopkov
- Institute for Biological Problems of Cryolithozone, Siberian Division of the Russian Academy of Sciences, Yakutsk, Russia
| | - Mikhail G Dvornikov
- Department of Hunting Resources, Russian Research Institute of Game Management and Fur Farming, Kirov, Russia
| | - Janis Ozolins
- Department of Hunting and Wildlife Management, Latvijas Valsts mežzinātnes institūts "Silava", Salaspils, Latvia
| | - Naranbaatar Galsandorj
- Institute of General and Experimental Biology, Mongolian Academy of Science, Ulaanbaatar, Mongolia
| | | | | | - Krzysztof Schmidt
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - José A Godoy
- Department of Integrative Ecology, Estación Biológica de Doñana (CSIC), Seville, Spain
| |
Collapse
|
3
|
Eroglu D, Marwan N, Stebich M, Kurths J. Multiplex recurrence networks. Phys Rev E 2018; 97:012312. [PMID: 29448424 DOI: 10.1103/physreve.97.012312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 06/08/2023]
Abstract
We have introduced a multiplex recurrence network approach by combining recurrence networks with the multiplex network approach in order to investigate multivariate time series. The potential use of this approach is demonstrated on coupled map lattices and a typical example from palaeobotany research. In both examples, topological changes in the multiplex recurrence networks allow for the detection of regime changes in their dynamics. The method goes beyond classical interpretation of pollen records by considering the vegetation as a whole and using the intrinsic similarity in the dynamics of the different regional vegetation elements. We find that the different vegetation types behave more similarly when one environmental factor acts as the dominant driving force.
Collapse
Affiliation(s)
- Deniz Eroglu
- Potsdam Institute for Climate Impact Research (PIK), Potsdam 14473, Germany
- Department of Physics, Humboldt University, 12489 Berlin, Germany
| | - Norbert Marwan
- Potsdam Institute for Climate Impact Research (PIK), Potsdam 14473, Germany
| | - Martina Stebich
- Senckenberg Research Station of Quaternary Palaeontology Weimar, Am Jakobskirchhof 4, Weimar 99423, Germany
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research (PIK), Potsdam 14473, Germany
- Department of Physics, Humboldt University, 12489 Berlin, Germany
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| |
Collapse
|