1
|
Barnett EJ, Hess JL, Hou J, Escott-Price V, Fennema-Notestine C, Kremen W, Lin SJ, Zhang C, Gaiteri C, Elman J, Holmans P, Faraone SV, Glatt SJ. A Novel Method to Disentangle Tightly Linked Risk and Resilience Genes for Brain Disorders: Application to Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.26.25322962. [PMID: 40061341 PMCID: PMC11888503 DOI: 10.1101/2025.02.26.25322962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Background Genetic risk factors for psychiatric and neurodegenerative disorders are well documented. However, some individuals with high genetic risk remain unaffected, and the mechanisms underlying such resilience remain poorly understood. The presence of protective resilience factors that mitigate risk could help explain the disconnect between predicted risk and reality, particularly for brain disorders, where genetic contributions are substantial but incompletely understood. Identifying and studying resilience factors could improve our understanding of pathology, enhance risk prediction, and inform preventive measures or treatment strategies. However, such efforts are complicated by the difficulty of identifying resilience that is separable from low risk. Methods We developed a novel adversarial multi-task neural network model to detect genetic resilience markers. The model learns to separate high-risk unaffected individuals from affected individuals at similar risk while "unlearning" patterns found in low-risk groups using adversarial learning. In simulated and existing Alzheimer's disease (AD) datasets, we identified markers of resilience with a feature-importance-based approach that prioritized specificity, generated resilience scores, and analyzed associations with polygenic risk scores (PRS). Results In simulations, our model had high specificity and moderate sensitivity in identifying resilience markers, outperforming traditional approaches. Applied to AD data, the model generated genetic resilience scores protective against AD and independent of PRS. We identified five resilience-associated SNPs, including known AD-associated variants, underscoring their potential involvement in risk/resilience interactions. Conclusions Our methods of modeling and evaluation of feature-importance successfully identified resilience markers that were obscured in previous work. The high specificity of our model provides high confidence that these markers reflect resilience and not simply low risk. Our findings support the utility of resilience scores in modifying risk predictions, particularly for high-risk groups. Expanding this method could aid in understanding resilience mechanisms, potentially improving diagnosis, prevention, and treatment strategies for AD and other complex brain disorders.
Collapse
Affiliation(s)
- Eric J Barnett
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jonathan L Hess
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jiahui Hou
- Biomedical Informatics, School of Medicine, University of Pittsburgh
| | - Valentina Escott-Price
- Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurology and Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - William Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Shu-Ju Lin
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, California, USA
| | - Chunling Zhang
- Department of Neuroscience and Physiology, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, New York, USA
| | - Chris Gaiteri
- Department of Psychiatry and Behavioral Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jeremy Elman
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Peter Holmans
- Division of Psychological Medicine and Clinical Neurology and Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Stephen V Faraone
- Department of Neuroscience and Physiology, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Psychiatry and Behavioral Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, New York, USA
| | - Stephen J Glatt
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Neuroscience and Physiology, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Public Health and Preventive Medicine, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Wang R, Gao L, Zhang X, Han J, the Alzheimer's Disease Neuroimaging Initiative. SVFR: A novel slice-to-volume feature representation framework using deep neural networks and a clustering model for the diagnosis of Alzheimer's disease. Heliyon 2024; 10:e23008. [PMID: 38148809 PMCID: PMC10750062 DOI: 10.1016/j.heliyon.2023.e23008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/30/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023] Open
Abstract
Deep neural networks (DNNs) have been effective in classifying structural magnetic resonance imaging (sMRI) images for Alzheimer's disease (AD) diagnosis. In this study, we propose a novel two-phase slice-to-volume feature representation (SVFR) framework for AD diagnosis. Specifically, we design a slice-level feature extractor to automatically select informative slice images and extract their slice-level features, by combining DNN and clustering models. Furthermore, we propose a joint volume-level feature generator and classifier to hierarchically aggregate the slice-level features into volume-level features and to classify images, by devising a spatial pyramid set pooling module and a fusion module. Experimental results demonstrate the superior performance of the proposed SVFR, surpassing the majority of the state-of-the-art methods and achieving comparable results to the best-performing approach. Experimental results also showcase the efficacy of the slice-level feature extractor in the selection of informative slice images, as well as the effectiveness of the volume-level feature generator and classifier in the integration of slice-level features for image classification. The source code for this study is publicly available at https://github.com/gll89/SVFR.
Collapse
Affiliation(s)
- Rubing Wang
- Faculty of Electrical Engineering and Computer Science, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, China
| | - Linlin Gao
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
- Faculty of Electrical Engineering and Computer Science, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, China
| | | | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - the Alzheimer's Disease Neuroimaging Initiative
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
- Faculty of Electrical Engineering and Computer Science, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, China
- Ningbo Medical Center Lihuili Hospital, Ningbo, China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Barnett EJ, Onete DG, Salekin A, Faraone SV. Genomic Machine Learning Meta-regression: Insights on Associations of Study Features With Reported Model Performance. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:169-177. [PMID: 38109236 DOI: 10.1109/tcbb.2023.3343808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Many studies have been conducted with the goal of correctly predicting diagnostic status of a disorder using the combination of genomic data and machine learning. It is often hard to judge which components of a study led to better results and whether better reported results represent a true improvement or an uncorrected bias inflating performance. We extracted information about the methods used and other differentiating features in genomic machine learning models. We used these features in linear regressions predicting model performance. We tested for univariate and multivariate associations as well as interactions between features. Of the models reviewed, 46% used feature selection methods that can lead to data leakage. Across our models, the number of hyperparameter optimizations reported, data leakage due to feature selection, model type, and modeling an autoimmune disorder were significantly associated with an increase in reported model performance. We found a significant, negative interaction between data leakage and training size. Our results suggest that methods susceptible to data leakage are prevalent among genomic machine learning research, resulting in inflated reported performance. Best practice guidelines that promote the avoidance and recognition of data leakage may help the field avoid biased results.
Collapse
|
4
|
Huang W, Tan K, Zhang Z, Hu J, Dong S. A Review of Fusion Methods for Omics and Imaging Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:74-93. [PMID: 35044920 DOI: 10.1109/tcbb.2022.3143900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of omics data and biomedical images has greatly advanced the progress of precision medicine in diagnosis, treatment, and prognosis. The fusion of omics and imaging data, i.e., omics-imaging fusion, offers a new strategy for understanding complex diseases. However, due to a variety of issues such as the limited number of samples, high dimensionality of features, and heterogeneity of different data types, efficiently learning complementary or associated discriminative fusion information from omics and imaging data remains a challenge. Recently, numerous machine learning methods have been proposed to alleviate these problems. In this review, from the perspective of fusion levels and fusion methods, we first provide an overview of preprocessing and feature extraction methods for omics and imaging data, and comprehensively analyze and summarize the basic forms and variations of commonly used and newly emerging fusion methods, along with their advantages, disadvantages and the applicable scope. We then describe public datasets and compare experimental results of various fusion methods on the ADNI and TCGA datasets. Finally, we discuss future prospects and highlight remaining challenges in the field.
Collapse
|
5
|
Mirabnahrazam G, Ma D, Beaulac C, Lee S, Popuri K, Lee H, Cao J, Galvin JE, Wang L, Beg MF. Predicting time-to-conversion for dementia of Alzheimer's type using multi-modal deep survival analysis. Neurobiol Aging 2023; 121:139-156. [PMID: 36442416 PMCID: PMC10535369 DOI: 10.1016/j.neurobiolaging.2022.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022]
Abstract
Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from normal or mildly impaired cognition to DAT. An in-depth examination of multiple modalities of data may yield an accurate estimate of time-to-conversion to DAT for preclinical subjects at various stages of disease development. We used a deep-learning model designed for survival analyses to predict subjects' time-to-conversion to DAT using the baseline data of 401 subjects with 63 features from MRI, genetic, and CDC (Cognitive tests, Demographic, and CSF) data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our study demonstrated that CDC data outperform genetic or MRI data in predicting DAT time-to-conversion for subjects with Mild Cognitive Impairment (MCI). On the other hand, genetic data provided the most predictive power for subjects with Normal Cognition (NC) at the time of the visit. Furthermore, combining MRI and genetic features improved the time-to-event prediction over using either modality alone. Finally, adding CDC to any combination of features only worked as well as using only the CDC features.
Collapse
Affiliation(s)
- Ghazal Mirabnahrazam
- School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Da Ma
- School of Medicine, Wake Forest University, Winston-Salem, NC, USA; School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Cédric Beaulac
- Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada; School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sieun Lee
- Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK; School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Karteek Popuri
- Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, Canada; School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Hyunwoo Lee
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiguo Cao
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - James E Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lei Wang
- Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mirza Faisal Beg
- School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
6
|
Li L, Yu X, Sheng C, Jiang X, Zhang Q, Han Y, Jiang J. A review of brain imaging biomarker genomics in Alzheimer’s disease: implementation and perspectives. Transl Neurodegener 2022; 11:42. [PMID: 36109823 PMCID: PMC9476275 DOI: 10.1186/s40035-022-00315-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with phenotypic changes closely associated with both genetic variants and imaging pathology. Brain imaging biomarker genomics has been developed in recent years to reveal potential AD pathological mechanisms and provide early diagnoses. This technique integrates multimodal imaging phenotypes with genetic data in a noninvasive and high-throughput manner. In this review, we summarize the basic analytical framework of brain imaging biomarker genomics and elucidate two main implementation scenarios of this technique in AD studies: (1) exploring novel biomarkers and seeking mutual interpretability and (2) providing a diagnosis and prognosis for AD with combined use of machine learning methods and brain imaging biomarker genomics. Importantly, we highlight the necessity of brain imaging biomarker genomics, discuss the strengths and limitations of current methods, and propose directions for development of this research field.
Collapse
|
7
|
Ko W, Jung W, Jeon E, Suk HI. A Deep Generative-Discriminative Learning for Multimodal Representation in Imaging Genetics. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2348-2359. [PMID: 35344489 DOI: 10.1109/tmi.2022.3162870] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Imaging genetics, one of the foremost emerging topics in the medical imaging field, analyzes the inherent relations between neuroimaging and genetic data. As deep learning has gained widespread acceptance in many applications, pioneering studies employed deep learning frameworks for imaging genetics. However, existing approaches suffer from some limitations. First, they often adopt a simple strategy for joint learning of phenotypic and genotypic features. Second, their findings have not been extended to biomedical applications, e.g., degenerative brain disease diagnosis and cognitive score prediction. Finally, existing studies perform insufficient and inappropriate analyses from the perspective of data science and neuroscience. In this work, we propose a novel deep learning framework to simultaneously tackle the aforementioned issues. Our proposed framework learns to effectively represent the neuroimaging and the genetic data jointly, and achieves state-of-the-art performance when used for Alzheimer's disease and mild cognitive impairment identification. Furthermore, unlike the existing methods, the framework enables learning the relation between imaging phenotypes and genotypes in a nonlinear way without any prior neuroscientific knowledge. To demonstrate the validity of our proposed framework, we conducted experiments on a publicly available dataset and analyzed the results from diverse perspectives. Based on our experimental results, we believe that the proposed framework has immense potential to provide new insights and perspectives in deep learning-based imaging genetics studies.
Collapse
|
8
|
Tufail AB, Ullah K, Khan RA, Shakir M, Khan MA, Ullah I, Ma YK, Ali MS. On Improved 3D-CNN-Based Binary and Multiclass Classification of Alzheimer's Disease Using Neuroimaging Modalities and Data Augmentation Methods. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1302170. [PMID: 35186220 PMCID: PMC8856791 DOI: 10.1155/2022/1302170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is an irreversible illness of the brain impacting the functional and daily activities of elderly population worldwide. Neuroimaging sensory systems such as Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) measure the pathological changes in the brain associated with this disorder especially in its early stages. Deep learning (DL) architectures such as Convolutional Neural Networks (CNNs) are successfully used in recognition, classification, segmentation, detection, and other domains for data interpretation. Data augmentation schemes work alongside DL techniques and may impact the final task performance positively or negatively. In this work, we have studied and compared the impact of three data augmentation techniques on the final performances of CNN architectures in the 3D domain for the early diagnosis of AD. We have studied both binary and multiclass classification problems using MRI and PET neuroimaging modalities. We have found the performance of random zoomed in/out augmentation to be the best among all the augmentation methods. It is also observed that combining different augmentation methods may result in deteriorating performances on the classification tasks. Furthermore, we have seen that architecture engineering has less impact on the final classification performance in comparison to the data manipulation schemes. We have also observed that deeper architectures may not provide performance advantages in comparison to their shallower counterparts. We have further observed that these augmentation schemes do not alleviate the class imbalance issue.
Collapse
Affiliation(s)
- Ahsan Bin Tufail
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Electrical and Computer Engineering, COMSATS University Islamabad Sahiwal Campus, Sahiwal, Pakistan
| | - Kalim Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Rehan Ali Khan
- Department of Electrical Engineering, University of Science and Technology Bannu, Bannu 28100, Pakistan
| | - Mustafa Shakir
- Department of Electrical Engineering, Superior University, Lahore 54000, Pakistan
| | - Muhammad Abbas Khan
- Department of Electrical Engineering, Balochistan University of Information Technology,Engineering and Management Sciences, Quetta,Balochistan 87300, Pakistan
| | - Inam Ullah
- College of Internet of Things (IoT) Engineering, Hohai University (HHU), Changzhou Campus 213022, China
| | - Yong-Kui Ma
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Md. Sadek Ali
- Communication Research Laboratory, Department of Information and Communication Technology, Islamic University, Kushtia-7003, Bangladesh
| |
Collapse
|
9
|
Mirabnahrazam G, Ma D, Lee S, Popuri K, Lee H, Cao J, Wang L, Galvin JE, Beg MF, Alzheimer’s Disease Neuroimaging Initiative. Machine Learning Based Multimodal Neuroimaging Genomics Dementia Score for Predicting Future Conversion to Alzheimer's Disease. J Alzheimers Dis 2022; 87:1345-1365. [PMID: 35466939 PMCID: PMC9195128 DOI: 10.3233/jad-220021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The increasing availability of databases containing both magnetic resonance imaging (MRI) and genetic data allows researchers to utilize multimodal data to better understand the characteristics of dementia of Alzheimer's type (DAT). OBJECTIVE The goal of this study was to develop and analyze novel biomarkers that can help predict the development and progression of DAT. METHODS We used feature selection and ensemble learning classifier to develop an image/genotype-based DAT score that represents a subject's likelihood of developing DAT in the future. Three feature types were used: MRI only, genetic only, and combined multimodal data. We used a novel data stratification method to better represent different stages of DAT. Using a pre-defined 0.5 threshold on DAT scores, we predicted whether a subject would develop DAT in the future. RESULTS Our results on Alzheimer's Disease Neuroimaging Initiative (ADNI) database showed that dementia scores using genetic data could better predict future DAT progression for currently normal control subjects (Accuracy = 0.857) compared to MRI (Accuracy = 0.143), while MRI can better characterize subjects with stable mild cognitive impairment (Accuracy = 0.614) compared to genetics (Accuracy = 0.356). Combining MRI and genetic data showed improved classification performance in the remaining stratified groups. CONCLUSION MRI and genetic data can contribute to DAT prediction in different ways. MRI data reflects anatomical changes in the brain, while genetic data can detect the risk of DAT progression prior to the symptomatic onset. Combining information from multimodal data appropriately can improve prediction performance.
Collapse
Affiliation(s)
| | - Da Ma
- School of Engineering, Simon Fraser University, Burnaby, BC, Canada
- School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Sieun Lee
- School of Engineering, Simon Fraser University, Burnaby, BC, Canada
- Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Karteek Popuri
- School of Engineering, Simon Fraser University, Burnaby, BC, Canada
| | - Hyunwoo Lee
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jiguo Cao
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lei Wang
- Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - James E Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mirza Faisal Beg
- School of Engineering, Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|
10
|
Rowe TW, Katzourou IK, Stevenson-Hoare JO, Bracher-Smith MR, Ivanov DK, Escott-Price V. Machine learning for the life-time risk prediction of Alzheimer's disease: a systematic review. Brain Commun 2021; 3:fcab246. [PMID: 34805994 PMCID: PMC8598986 DOI: 10.1093/braincomms/fcab246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer’s disease is a neurodegenerative disorder and the most common form of dementia. Early diagnosis may assist interventions to delay onset and reduce the progression rate of the disease. We systematically reviewed the use of machine learning algorithms for predicting Alzheimer’s disease using single nucleotide polymorphisms and instances where these were combined with other types of data. We evaluated the ability of machine learning models to distinguish between controls and cases, while also assessing their implementation and potential biases. Articles published between December 2009 and June 2020 were collected using Scopus, PubMed and Google Scholar. These were systematically screened for inclusion leading to a final set of 12 publications. Eighty-five per cent of the included studies used the Alzheimer's Disease Neuroimaging Initiative dataset. In studies which reported area under the curve, discrimination varied (0.49–0.97). However, more than half of the included manuscripts used other forms of measurement, such as accuracy, sensitivity and specificity. Model calibration statistics were also found to be reported inconsistently across all studies. The most frequent limitation in the assessed studies was sample size, with the total number of participants often numbering less than a thousand, whilst the number of predictors usually ran into the many thousands. In addition, key steps in model implementation and validation were often not performed or unreported, making it difficult to assess the capability of machine learning models.
Collapse
Affiliation(s)
- Thomas W Rowe
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | | | | | - Matthew R Bracher-Smith
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Dobril K Ivanov
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Valentina Escott-Price
- UK Dementia Research Institute, Cardiff University, Cardiff, UK.,Division of Psychological Medicine and Clinical Neurosciences, School of Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
11
|
Yuan S, Li H, Wu J, Sun X. Classification of Mild Cognitive Impairment With Multimodal Data Using Both Labeled and Unlabeled Samples. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2281-2290. [PMID: 33471765 DOI: 10.1109/tcbb.2021.3053061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mild Cognitive Impairment (MCI) is a preclinical stage of Alzheimer's Disease (AD) and is clinical heterogeneity. The classification of MCI is crucial for the early diagnosis and treatment of AD. In this study, we investigated the potential of using both labeled and unlabeled samples from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort to classify MCI through the multimodal co-training method. We utilized both structural magnetic resonance imaging (sMRI) data and genotype data of 364 MCI samples including 228 labeled and 136 unlabeled MCI samples from the ADNI-1 cohort. First, the selected quantitative trait (QT) features from sMRI data and SNP features from genotype data were used to build two initial classifiers on 228 labeled MCI samples. Then, the co-training method was implemented to obtain new labeled samples from 136 unlabeled MCI samples. Finally, the random forest algorithm was used to obtain a combined classifier to classify MCI patients in the independent ADNI-2 dataset. The experimental results showed that our proposed framework obtains an accuracy of 85.50 percent and an AUC of 0.825 for MCI classification, respectively, which showed that the combined utilization of sMRI and SNP data through the co-training method could significantly improve the performances of MCI classification.
Collapse
|
12
|
Bloch L, Friedrich CM, for the Alzheimer’s Disease Neuroimaging Initiative. Data analysis with Shapley values for automatic subject selection in Alzheimer's disease data sets using interpretable machine learning. Alzheimers Res Ther 2021; 13:155. [PMID: 34526114 PMCID: PMC8444618 DOI: 10.1186/s13195-021-00879-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND For the recruitment and monitoring of subjects for therapy studies, it is important to predict whether mild cognitive impaired (MCI) subjects will prospectively develop Alzheimer's disease (AD). Machine learning (ML) is suitable to improve early AD prediction. The etiology of AD is heterogeneous, which leads to high variability in disease patterns. Further variability originates from multicentric study designs, varying acquisition protocols, and errors in the preprocessing of magnetic resonance imaging (MRI) scans. The high variability makes the differentiation between signal and noise difficult and may lead to overfitting. This article examines whether an automatic and fair data valuation method based on Shapley values can identify the most informative subjects to improve ML classification. METHODS An ML workflow was developed and trained for a subset of the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. The validation was executed for an independent ADNI test set and for the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) cohort. The workflow included volumetric MRI feature extraction, feature selection, sample selection using Data Shapley, random forest (RF), and eXtreme Gradient Boosting (XGBoost) for model training as well as Kernel SHapley Additive exPlanations (SHAP) values for model interpretation. RESULTS The RF models, which excluded 134 of the 467 training subjects based on their RF Data Shapley values, outperformed the base models that reached a mean accuracy of 62.64% by 5.76% (3.61 percentage points) for the independent ADNI test set. The XGBoost base models reached a mean accuracy of 60.00% for the AIBL data set. The exclusion of those 133 subjects with the smallest RF Data Shapley values could improve the classification accuracy by 2.98% (1.79 percentage points). The cutoff values were calculated using an independent validation set. CONCLUSION The Data Shapley method was able to improve the mean accuracies for the test sets. The most informative subjects were associated with the number of ApolipoproteinE ε4 (ApoE ε4) alleles, cognitive test results, and volumetric MRI measurements.
Collapse
Affiliation(s)
- Louise Bloch
- Department of Computer Science, University of Applied Sciences and Arts Dortmund, Dortmund, 44227 Germany
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, 45122 Germany
| | - Christoph M. Friedrich
- Department of Computer Science, University of Applied Sciences and Arts Dortmund, Dortmund, 44227 Germany
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, 45122 Germany
| | - for the Alzheimer’s Disease Neuroimaging Initiative
- Department of Computer Science, University of Applied Sciences and Arts Dortmund, Dortmund, 44227 Germany
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, 45122 Germany
| |
Collapse
|
13
|
Shojaie M, Tabarestani S, Cabrerizo M, DeKosky ST, Vaillancourt DE, Loewenstein D, Duara R, Adjouadi M. PET Imaging of Tau Pathology and Amyloid-β, and MRI for Alzheimer's Disease Feature Fusion and Multimodal Classification. J Alzheimers Dis 2021; 84:1497-1514. [PMID: 34719488 PMCID: PMC11572958 DOI: 10.3233/jad-210064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Machine learning is a promising tool for biomarker-based diagnosis of Alzheimer's disease (AD). Performing multimodal feature selection and studying the interaction between biological and clinical AD can help to improve the performance of the diagnosis models. OBJECTIVE This study aims to formulate a feature ranking metric based on the mutual information index to assess the relevance and redundancy of regional biomarkers and improve the AD classification accuracy. METHODS From the Alzheimer's Disease Neuroimaging Initiative (ADNI), 722 participants with three modalities, including florbetapir-PET, flortaucipir-PET, and MRI, were studied. The multivariate mutual information metric was utilized to capture the redundancy and complementarity of the predictors and develop a feature ranking approach. This was followed by evaluating the capability of single-modal and multimodal biomarkers in predicting the cognitive stage. RESULTS Although amyloid-β deposition is an earlier event in the disease trajectory, tau PET with feature selection yielded a higher early-stage classification F1-score (65.4%) compared to amyloid-β PET (63.3%) and MRI (63.2%). The SVC multimodal scenario with feature selection improved the F1-score to 70.0% and 71.8% for the early and late-stage, respectively. When age and risk factors were included, the scores improved by 2 to 4%. The Amyloid-Tau-Neurodegeneration [AT(N)] framework helped to interpret the classification results for different biomarker categories. CONCLUSION The results underscore the utility of a novel feature selection approach to reduce the dimensionality of multimodal datasets and enhance model performance. The AT(N) biomarker framework can help to explore the misclassified cases by revealing the relationship between neuropathological biomarkers and cognition.
Collapse
Affiliation(s)
- Mehdi Shojaie
- Center for Advanced Technology and Education, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Solale Tabarestani
- Center for Advanced Technology and Education, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Mercedes Cabrerizo
- Center for Advanced Technology and Education, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Steven T. DeKosky
- bDepartment of Neurology, University of Florida; Gainesville, FL, USA
- 1Florida ADRC (Florida Alzheimer’s Disease Research Center), Gainesville, FL, USA
| | - David E. Vaillancourt
- bDepartment of Neurology, University of Florida; Gainesville, FL, USA
- Department of Applied Physiology and Kinesiology; University of Florida; Gainesville, FL, USA
- 1Florida ADRC (Florida Alzheimer’s Disease Research Center), Gainesville, FL, USA
| | - David Loewenstein
- Center for Cognitive Neuroscience and Aging, University of Miami Miller School of Medicine, Miami, FL, USA
- 1Florida ADRC (Florida Alzheimer’s Disease Research Center), Gainesville, FL, USA
| | - Ranjan Duara
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center, Miami, FL, USA
- 1Florida ADRC (Florida Alzheimer’s Disease Research Center), Gainesville, FL, USA
| | - Malek Adjouadi
- Center for Advanced Technology and Education, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
- 1Florida ADRC (Florida Alzheimer’s Disease Research Center), Gainesville, FL, USA
| |
Collapse
|
14
|
Lei M, Miyoshi T, Dan I, Sato H. Using a Data-Driven Approach to Estimate Second-Language Proficiency From Brain Activation: A Functional Near-Infrared Spectroscopy Study. Front Neurosci 2020; 14:694. [PMID: 32754011 PMCID: PMC7365871 DOI: 10.3389/fnins.2020.00694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
While non-invasive brain imaging has made substantial contributions to advance human brain science, estimation of individual state is becoming important to realize its applications in society. Brain activations were used to classify second-language proficiencies. Participants in functional near-infrared spectroscopy (fNIRS) experiment were 20/20 native Japanese speakers with high/low English abilities and 19/19 native English speakers with high/low Japanese abilities. Their cortical activities were measured by functional near-infrared spectroscopy while they were conducting Japanese/English listening comprehension tests. The data-driven method achieved classification accuracy of 77.5% in the case of Japanese speakers and 81.9% in the case of English speakers. The informative features predominantly originated from regions associated with language function. These results bring an insight of fNIRS neuroscience and its applications in society.
Collapse
Affiliation(s)
- Miaomei Lei
- Research & Development Group, Hitachi, Ltd., Tokyo, Japan
| | | | - Ippeita Dan
- Research and Development Initiatives, Applied Cognitive Neuroscience Laboratory, Chuo University, Tokyo, Japan
| | - Hiroki Sato
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
15
|
Young PNE, Estarellas M, Coomans E, Srikrishna M, Beaumont H, Maass A, Venkataraman AV, Lissaman R, Jiménez D, Betts MJ, McGlinchey E, Berron D, O'Connor A, Fox NC, Pereira JB, Jagust W, Carter SF, Paterson RW, Schöll M. Imaging biomarkers in neurodegeneration: current and future practices. Alzheimers Res Ther 2020; 12:49. [PMID: 32340618 PMCID: PMC7187531 DOI: 10.1186/s13195-020-00612-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
There is an increasing role for biological markers (biomarkers) in the understanding and diagnosis of neurodegenerative disorders. The application of imaging biomarkers specifically for the in vivo investigation of neurodegenerative disorders has increased substantially over the past decades and continues to provide further benefits both to the diagnosis and understanding of these diseases. This review forms part of a series of articles which stem from the University College London/University of Gothenburg course "Biomarkers in neurodegenerative diseases". In this review, we focus on neuroimaging, specifically positron emission tomography (PET) and magnetic resonance imaging (MRI), giving an overview of the current established practices clinically and in research as well as new techniques being developed. We will also discuss the use of machine learning (ML) techniques within these fields to provide additional insights to early diagnosis and multimodal analysis.
Collapse
Affiliation(s)
- Peter N E Young
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mar Estarellas
- Centre for Medical Image Computing (CMIC), Department of Computer Science & Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Emma Coomans
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Meera Srikrishna
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helen Beaumont
- Neuroscience and Aphasia Research Unit, Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester, UK
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Ashwin V Venkataraman
- Division of Brain Sciences, Imperial College London, London, UK
- United Kingdom Dementia Research Institute, Imperial College London, London, UK
| | - Rikki Lissaman
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, UK
| | - Daniel Jiménez
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
- Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | - David Berron
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Antoinette O'Connor
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Nick C Fox
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Joana B Pereira
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen F Carter
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, MAHSC, University of Manchester, Manchester, UK
| | - Ross W Paterson
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK.
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
16
|
Che K, Chen X, Guo M, Wang C, Liu X. Genetic Variants Detection Based on Weighted Sparse Group Lasso. Front Genet 2020; 11:155. [PMID: 32194631 PMCID: PMC7063084 DOI: 10.3389/fgene.2020.00155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/10/2020] [Indexed: 01/21/2023] Open
Abstract
Identification of genetic variants associated with complex traits is a critical step for improving plant resistance and breeding. Although the majority of existing methods for variants detection have good predictive performance in the average case, they can not precisely identify the variants present in a small number of target genes. In this paper, we propose a weighted sparse group lasso (WSGL) method to select both common and low-frequency variants in groups. Under the biologically realistic assumption that complex traits are influenced by a few single loci in a small number of genes, our method involves a sparse group lasso approach to simultaneously select associated groups along with the loci within each group. To increase the probability of selecting out low-frequency variants, biological prior information is introduced in the model by re-weighting lasso regularization based on weights calculated from input data. Experimental results from both simulation and real data of single nucleotide polymorphisms (SNPs) associated with Arabidopsis flowering traits demonstrate the superiority of WSGL over other competitive approaches for genetic variants detection.
Collapse
Affiliation(s)
- Kai Che
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xi Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Maozu Guo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.,School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China.,Beijing Key Laboratory of Intelligent Processing for Building Big Data, Beijing, China
| | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiaoyan Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
17
|
Toward an interpretable Alzheimer’s disease diagnostic model with regional abnormality representation via deep learning. Neuroimage 2019; 202:116113. [DOI: 10.1016/j.neuroimage.2019.116113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 01/17/2023] Open
|
18
|
Zhou T, Liu M, Thung KH, Shen D. Latent Representation Learning for Alzheimer's Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2411-2422. [PMID: 31021792 PMCID: PMC8034601 DOI: 10.1109/tmi.2019.2913158] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The fusion of complementary information contained in multi-modality data [e.g., magnetic resonance imaging (MRI), positron emission tomography (PET), and genetic data] has advanced the progress of automated Alzheimer's disease (AD) diagnosis. However, multi-modality based AD diagnostic models are often hindered by the missing data, i.e., not all the subjects have complete multi-modality data. One simple solution used by many previous studies is to discard samples with missing modalities. However, this significantly reduces the number of training samples, thus leading to a sub-optimal classification model. Furthermore, when building the classification model, most existing methods simply concatenate features from different modalities into a single feature vector without considering their underlying associations. As features from different modalities are often closely related (e.g., MRI and PET features are extracted from the same brain region), utilizing their inter-modality associations may improve the robustness of the diagnostic model. To this end, we propose a novel latent representation learning method for multi-modality based AD diagnosis. Specifically, we use all the available samples (including samples with incomplete modality data) to learn a latent representation space. Within this space, we not only use samples with complete multi-modality data to learn a common latent representation, but also use samples with incomplete multi-modality data to learn independent modality-specific latent representations. We then project the latent representations to the label space for AD diagnosis. We perform experiments using 737 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and the experimental results verify the effectiveness of our proposed method.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Inception Institute of Artificial Intelligence, Abu Dhabi 51133, United Arab Emirates
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Kim-Han Thung
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
19
|
Li F, Liu M. A hybrid Convolutional and Recurrent Neural Network for Hippocampus Analysis in Alzheimer's Disease. J Neurosci Methods 2019; 323:108-118. [DOI: 10.1016/j.jneumeth.2019.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 05/15/2019] [Indexed: 01/29/2023]
|
20
|
Zhou T, Thung KH, Liu M, Shen D. Brain-Wide Genome-Wide Association Study for Alzheimer's Disease via Joint Projection Learning and Sparse Regression Model. IEEE Trans Biomed Eng 2019; 66:165-175. [PMID: 29993426 PMCID: PMC6342004 DOI: 10.1109/tbme.2018.2824725] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brain-wide and genome-wide association (BW-GWA) study is presented in this paper to identify the associations between the brain imaging phenotypes (i.e., regional volumetric measures) and the genetic variants [i.e., single nucleotide polymorphism (SNP)] in Alzheimer's disease (AD). The main challenges of this study include the data heterogeneity, complex phenotype-genotype associations, high-dimensional data (e.g., thousands of SNPs), and the existence of phenotype outliers. Previous BW-GWA studies, while addressing some of these challenges, did not consider the diagnostic label information in their formulations, thus limiting their clinical applicability. To address these issues, we present a novel joint projection and sparse regression model to discover the associations between the phenotypes and genotypes. Specifically, to alleviate the negative influence of data heterogeneity, we first map the genotypes into an intermediate imaging-phenotype-like space. Then, to better reveal the complex phenotype-genotype associations, we project both the mapped genotypes and the original imaging phenotypes into a diagnostic-label-guided joint feature space, where the intraclass projected points are constrained to be close to each other. In addition, we use l2,1-norm minimization on both the regression loss function and the transformation coefficient matrices, to reduce the effect of phenotype outliers and also to encourage sparse feature selections of both the genotypes and phenotypes. We evaluate our method using AD neuroimaging initiative dataset, and the results show that our proposed method outperforms several state-of-the-art methods in term of the average root-mean-square error of genome-to-phenotype predictions. Besides, the associated SNPs and brain regions identified in this study have also been shown in the previous AD-related studies, thus verifying the effectiveness and potential of our proposed method in AD pathogenesis study.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ()
| | - Kim-Han Thung
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ()
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ()
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599 USA, and also with the Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea ()
| |
Collapse
|
21
|
Sakai K, Yamada K. Machine learning studies on major brain diseases: 5-year trends of 2014–2018. Jpn J Radiol 2018; 37:34-72. [DOI: 10.1007/s11604-018-0794-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022]
|
22
|
Zhou T, Thung KH, Zhu X, Shen D. Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis. Hum Brain Mapp 2018; 40:1001-1016. [PMID: 30381863 DOI: 10.1002/hbm.24428] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 09/04/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive Impairment (MCI), from normal aging subjects. Multimodality neuroimaging data such as MRI and PET provide valuable insights into brain abnormalities, while genetic data such as single nucleotide polymorphism (SNP) provide information about a patient's AD risk factors. When these data are used together, the accuracy of AD diagnosis may be improved. However, these data are heterogeneous (e.g., with different data distributions), and have different number of samples (e.g., with far less number of PET samples than the number of MRI or SNPs). Thus, learning an effective model using these data is challenging. To this end, we present a novel three-stage deep feature learning and fusion framework, where deep neural network is trained stage-wise. Each stage of the network learns feature representations for different combinations of modalities, via effective training using the maximum number of available samples. Specifically, in the first stage, we learn latent representations (i.e., high-level features) for each modality independently, so that the heterogeneity among modalities can be partially addressed, and high-level features from different modalities can be combined in the next stage. In the second stage, we learn joint latent features for each pair of modality combination by using the high-level features learned from the first stage. In the third stage, we learn the diagnostic labels by fusing the learned joint latent features from the second stage. To further increase the number of samples during training, we also use data at multiple scanning time points for each training subject in the dataset. We evaluate the proposed framework using Alzheimer's disease neuroimaging initiative (ADNI) dataset for AD diagnosis, and the experimental results show that the proposed framework outperforms other state-of-the-art methods.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Radiology and the Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| | - Kim-Han Thung
- Department of Radiology and the Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| | - Xiaofeng Zhu
- Department of Radiology and the Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| | - Dinggang Shen
- Department of Radiology and the Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Li F, Liu M. Alzheimer's disease diagnosis based on multiple cluster dense convolutional networks. Comput Med Imaging Graph 2018; 70:101-110. [PMID: 30340094 DOI: 10.1016/j.compmedimag.2018.09.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/12/2018] [Accepted: 09/26/2018] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with progressive impairment of memory and cognitive functions. Structural magnetic resonance images (MRI) play important role to evaluate the brain anatomical changes for AD Diagnosis. Machine learning technologies have been widely studied on MRI computation and analysis for quantitative evaluation and computer-aided-diagnosis of AD. Most existing methods extract the hand-craft features after image processing such as registration and segmentation, and then train a classifier to distinguish AD subjects from other groups. Motivated by the success of deep learning in image classification, this paper proposes a classification method based on multiple cluster dense convolutional neural networks (DenseNets) to learn the various local features of MR brain images, which are combined for AD classification. First, we partition the whole brain image into different local regions and extract a number of 3D patches from each region. Second, the patches from each region are grouped into different clusters with the K-Means clustering method. Third, we construct a DenseNet to learn the patch features for each cluster and the features learned from the discriminative clusters of each region are ensembled for classification. Finally, the classification results from different local regions are combined to enhance final image classification. The proposed method can gradually learn the MRI features from the local patches to global image level for the classification task. There are no rigid registration and segmentation required for preprocessing MRI images. Our method is evaluated using T1-weighted MRIs of 831 subjects including 199 AD patients, 403 mild cognitive impairment (MCI) and 229 normal control (NC) subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 89.5% and an AUC (area under the ROC curve) of 92.4% for AD vs. NC classification, and an accuracy of 73.8% and an AUC of 77.5% for MCI vs. NC classification, demonstrating the promising classification performances.
Collapse
Affiliation(s)
- Fan Li
- Department of Instrument Science and Engineering, School of EIEE, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Manhua Liu
- Department of Instrument Science and Engineering, School of EIEE, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | | |
Collapse
|
24
|
Lu D, Popuri K, Ding GW, Balachandar R, Beg MF. Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer's Disease using structural MR and FDG-PET images. Sci Rep 2018; 8:5697. [PMID: 29632364 PMCID: PMC5890270 DOI: 10.1038/s41598-018-22871-z] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/02/2018] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease where biomarkers for disease based on pathophysiology may be able to provide objective measures for disease diagnosis and staging. Neuroimaging scans acquired from MRI and metabolism images obtained by FDG-PET provide in-vivo measurements of structure and function (glucose metabolism) in a living brain. It is hypothesized that combining multiple different image modalities providing complementary information could help improve early diagnosis of AD. In this paper, we propose a novel deep-learning-based framework to discriminate individuals with AD utilizing a multimodal and multiscale deep neural network. Our method delivers 82.4% accuracy in identifying the individuals with mild cognitive impairment (MCI) who will convert to AD at 3 years prior to conversion (86.4% combined accuracy for conversion within 1-3 years), a 94.23% sensitivity in classifying individuals with clinical diagnosis of probable AD, and a 86.3% specificity in classifying non-demented controls improving upon results in published literature.
Collapse
Affiliation(s)
- Donghuan Lu
- School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Karteek Popuri
- School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Gavin Weiguang Ding
- School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Rakesh Balachandar
- School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6, Canada.
| |
Collapse
|