1
|
Umezawa K, Isezaki T, Okitsu K, Yokoyama O, Suzuki M, Nishimura Y. Refined Force Estimation in Monkey's Pinching Tasks Through Integrated EMG and ECoG Data: A Kalman Filter Method. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039271 DOI: 10.1109/embc53108.2024.10782574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In the development of brain-computer interfaces (BCIs), precise decoding of motor outputs is crucial. This study presents an enhanced Kalman filter approach that integrates electromyography (EMG) with electrocorticography (ECoG) to improve force estimation in pinching tasks. By incorporating EMG data as a state variable in the filter, we aim to account for musculoskeletal dynamics, enhancing the accuracy of force predictions. This integration significantly improves the decoding performance, particularly during dynamic force phases. The results confirm the importance of embedding musculoskeletal dynamics into ECoG-based BCIs, which may help improve prosthetic control and motor rehabilitation for people with motor impairments.
Collapse
|
2
|
Tharawadeepimuk K, Limroongreungrat W, Pilanthananond M, Nanbancha A. Auditory Cue Effects on Gait-Phase-Dependent Electroencephalogram (EEG) Modulations during Overground and Treadmill Walking. SENSORS (BASEL, SWITZERLAND) 2024; 24:1548. [PMID: 38475084 DOI: 10.3390/s24051548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Walking rehabilitation following injury or disease involves voluntary gait modification, yet the specific brain signals underlying this process remains unclear. This aim of this study was to investigate the impact of an auditory cue on changes in brain activity when walking overground (O) and on a treadmill (T) using an electroencephalogram (EEG) with a 32-electrode montage. Employing a between-group repeated-measures design, 24 participants (age: 25.7 ± 3.8 years) were randomly allocated to either an O (n = 12) or T (n = 12) group to complete two walking conditions (self-selected speed control (sSC) and speed control (SC)). The differences in brain activities during the gait cycle were investigated using statistical non-parametric mapping (SnPM). The addition of an auditory cue did not modify cortical activity in any brain area during the gait cycle when walking overground (all p > 0.05). However, significant differences in EEG activity were observed in the delta frequency band (0.5-4 Hz) within the sSC condition between the O and T groups. These differences occurred at the central frontal (loading phase) and frontocentral (mid stance phase) brain areas (p < 0.05). Our data suggest auditory cueing has little impact on modifying cortical activity during overground walking. This may have practical implications in neuroprosthesis development for walking rehabilitation, sports performance optimization, and overall human quality-of-life improvement.
Collapse
Affiliation(s)
| | | | | | - Ampika Nanbancha
- College of Sports Science and Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
3
|
Branco MP, Geukes SH, Aarnoutse EJ, Ramsey NF, Vansteensel MJ. Nine decades of electrocorticography: A comparison between epidural and subdural recordings. Eur J Neurosci 2023; 57:1260-1288. [PMID: 36843389 DOI: 10.1111/ejn.15941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
In recent years, electrocorticography (ECoG) has arisen as a neural signal recording tool in the development of clinically viable neural interfaces. ECoG electrodes are generally placed below the dura mater (subdural) but can also be placed on top of the dura (epidural). In deciding which of these modalities best suits long-term implants, complications and signal quality are important considerations. Conceptually, epidural placement may present a lower risk of complications as the dura is left intact but also a lower signal quality due to the dura acting as a signal attenuator. The extent to which complications and signal quality are affected by the dura, however, has been a matter of debate. To improve our understanding of the effects of the dura on complications and signal quality, we conducted a literature review. We inventorized the effect of the dura on signal quality, decodability and longevity of acute and chronic ECoG recordings in humans and non-human primates. Also, we compared the incidence and nature of serious complications in studies that employed epidural and subdural ECoG. Overall, we found that, even though epidural recordings exhibit attenuated signal amplitude over subdural recordings, particularly for high-density grids, the decodability of epidural recorded signals does not seem to be markedly affected. Additionally, we found that the nature of serious complications was comparable between epidural and subdural recordings. These results indicate that both epidural and subdural ECoG may be suited for long-term neural signal recordings, at least for current generations of clinical and high-density ECoG grids.
Collapse
Affiliation(s)
- Mariana P Branco
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Simon H Geukes
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Erik J Aarnoutse
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Śliwowski M, Martin M, Souloumiac A, Blanchart P, Aksenova T. Impact of dataset size and long-term ECoG-based BCI usage on deep learning decoders performance. Front Hum Neurosci 2023; 17:1111645. [PMID: 37007675 PMCID: PMC10061076 DOI: 10.3389/fnhum.2023.1111645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionIn brain-computer interfaces (BCI) research, recording data is time-consuming and expensive, which limits access to big datasets. This may influence the BCI system performance as machine learning methods depend strongly on the training dataset size. Important questions arise: taking into account neuronal signal characteristics (e.g., non-stationarity), can we achieve higher decoding performance with more data to train decoders? What is the perspective for further improvement with time in the case of long-term BCI studies? In this study, we investigated the impact of long-term recordings on motor imagery decoding from two main perspectives: model requirements regarding dataset size and potential for patient adaptation.MethodsWe evaluated the multilinear model and two deep learning (DL) models on a long-term BCI & Tetraplegia (ClinicalTrials.gov identifier: NCT02550522) clinical trial dataset containing 43 sessions of ECoG recordings performed with a tetraplegic patient. In the experiment, a participant executed 3D virtual hand translation using motor imagery patterns. We designed multiple computational experiments in which training datasets were increased or translated to investigate the relationship between models' performance and different factors influencing recordings.ResultsOur results showed that DL decoders showed similar requirements regarding the dataset size compared to the multilinear model while demonstrating higher decoding performance. Moreover, high decoding performance was obtained with relatively small datasets recorded later in the experiment, suggesting motor imagery patterns improvement and patient adaptation during the long-term experiment. Finally, we proposed UMAP embeddings and local intrinsic dimensionality as a way to visualize the data and potentially evaluate data quality.DiscussionDL-based decoding is a prospective approach in BCI which may be efficiently applied with real-life dataset size. Patient-decoder co-adaptation is an important factor to consider in long-term clinical BCI.
Collapse
Affiliation(s)
- Maciej Śliwowski
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
- Université Paris-Saclay, CEA, List, Palaiseau, France
| | - Matthieu Martin
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
| | | | | | - Tetiana Aksenova
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
- *Correspondence: Tetiana Aksenova
| |
Collapse
|
5
|
Moly A, Aksenov A, Martel F, Aksenova T. Online adaptive group-wise sparse Penalized Recursive Exponentially Weighted N-way Partial Least Square for epidural intracranial BCI. Front Hum Neurosci 2023; 17:1075666. [PMID: 36950147 PMCID: PMC10025377 DOI: 10.3389/fnhum.2023.1075666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/03/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Motor Brain-Computer Interfaces (BCIs) create new communication pathways between the brain and external effectors for patients with severe motor impairments. Control of complex effectors such as robotic arms or exoskeletons is generally based on the real-time decoding of high-resolution neural signals. However, high-dimensional and noisy brain signals pose challenges, such as limitations in the generalization ability of the decoding model and increased computational demands. Methods The use of sparse decoders may offer a way to address these challenges. A sparsity-promoting penalization is a common approach to obtaining a sparse solution. BCI features are naturally structured and grouped according to spatial (electrodes), frequency, and temporal dimensions. Applying group-wise sparsity, where the coefficients of a group are set to zero simultaneously, has the potential to decrease computational time and memory usage, as well as simplify data transfer. Additionally, online closed-loop decoder adaptation (CLDA) is known to be an efficient procedure for BCI decoder training, taking into account neuronal feedback. In this study, we propose a new algorithm for online closed-loop training of group-wise sparse multilinear decoders using L p -Penalized Recursive Exponentially Weighted N-way Partial Least Square (PREW-NPLS). Three types of sparsity-promoting penalization were explored using L p with p = 0., 0.5, and 1. Results The algorithms were tested offline in a pseudo-online manner for features grouped by spatial dimension. A comparison study was conducted using an epidural ECoG dataset recorded from a tetraplegic individual during long-term BCI experiments for controlling a virtual avatar (left/right-hand 3D translation). Novel algorithms showed comparable or better decoding performance than conventional REW-NPLS, which was achieved with sparse models. The proposed algorithms are compatible with real-time CLDA. Discussion The proposed algorithm demonstrated good performance while drastically reducing the computational load and the memory consumption. However, the current study is limited to offline computation on data recorded with a single patient, with penalization restricted to the spatial domain only.
Collapse
Affiliation(s)
- Alexandre Moly
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
| | | | - Félix Martel
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
| | - Tetiana Aksenova
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
- *Correspondence: Tetiana Aksenova
| |
Collapse
|
6
|
Jang SJ, Yang YJ, Ryun S, Kim JS, Chung CK, Jeong J. Decoding trajectories of imagined hand movement using electrocorticograms for brain-machine interface. J Neural Eng 2022; 19. [PMID: 35985293 DOI: 10.1088/1741-2552/ac8b37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/19/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Reaching hand movement is an important motor skill actively examined in brain-computer interface (BCI). Among various components of movement analyzed is the hand's trajectory, which describes the hand's continuous positions in three-dimensional space. While a large body of studies have investigated the decoding of real movements and the reconstruction of real hand movement trajectories from neural signals, fewer studies have attempted to decode the trajectory of imagined hand movement. To develop BCI systems for patients with hand motor dysfunctions, the systems essentially require to achieve movement-free control of external devices, which is only possible through successful decoding of purely imagined hand movement. APPROACH To achieve this goal, this study used a machine learning technique (i.e., the variational Bayesian least square) to analyze the electrocorticogram (ECoG) of eighteen epilepsy patients obtained from when they performed movement execution (ME) and kinesthetic movement imagination (KMI) of the reach-and-grasp hand action. MAIN RESULTS The variational Bayesian decoding model was able to successfully predict the imagined trajectories of hand movement significantly above chance level. The Pearson's correlation coefficient between imagined and predicted trajectories was 0.3393 and 0.4936 for the KMI (KMI trials only) and MEKMI paradigm (alternating trials of ME and KMI) respectively. SIGNIFICANCE This study demonstrated a high accuracy of prediction for trajectories of imagined hand movement, and more importantly, higher decoding accuracy of imagined trajectories in the MEKMI paradigm than in the KMI paradigm solely.
Collapse
Affiliation(s)
- Sang Jin Jang
- Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 411 E16-1(YBS Building) Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea 34141, Daejeon, Daejeon, 34141, Korea (the Republic of)
| | - Yu Jin Yang
- Seoul National University College of Natural Sciences, 103, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, Seoul, 03080, Korea (the Republic of)
| | - Seokyun Ryun
- Seoul National University College of Natural Sciences, 103, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, Seoul, 03080, Korea (the Republic of)
| | - June Sic Kim
- Seoul National University College of Natural Sciences, 103, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, Seoul, 03080, Korea (the Republic of)
| | - Chun Kee Chung
- Seoul National University College of Natural Sciences, 103, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, Seoul, 03080, Korea (the Republic of)
| | - Jaeseung Jeong
- Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 514 E16-1(YBS Building) Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea 34141, Daejeon, 34141, Korea (the Republic of)
| |
Collapse
|
7
|
Abstract
Many patients with upper limb defects desire myoelectric prosthetic hands, but they are still not used for some reasons. One of the most significant reasons is its external appearance, which has the discomfort caused by the structural difference between a human hand and a robotic link. The structure must be based on human anatomy to create a more natural-looking prosthesis. This study designed a biomimetic prosthetic hand with bones, ligaments, tendons, and multiple muscles based on the human musculoskeletal system. We verified the proposed prosthetic hand using the viscoelastic angle sensor to determine whether it works like a human hand. We also compared the finger force of the prosthetic hand with that of a human finger. It could be capable of controlling the angle and the stiffness of the joint by multiple extensor and flexor muscles, like humans.
Collapse
|
8
|
Śliwowski M, Martin M, Souloumiac A, Blanchart P, Aksenova T. Decoding ECoG signal into 3D hand translation using deep learning. J Neural Eng 2022; 19. [PMID: 35287119 DOI: 10.1088/1741-2552/ac5d69] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/14/2022] [Indexed: 12/29/2022]
Abstract
Objective.Motor brain-computer interfaces (BCIs) are a promising technology that may enable motor-impaired people to interact with their environment. BCIs would potentially compensate for arm and hand function loss, which is the top priority for individuals with tetraplegia. Designing real-time and accurate BCI is crucial to make such devices useful, safe, and easy to use by patients in a real-life environment. Electrocorticography (ECoG)-based BCIs emerge as a good compromise between invasiveness of the recording device and good spatial and temporal resolution of the recorded signal. However, most ECoG signal decoders used to predict continuous hand movements are linear models. These models have a limited representational capacity and may fail to capture the relationship between ECoG signal features and continuous hand movements. Deep learning (DL) models, which are state-of-the-art in many problems, could be a solution to better capture this relationship.Approach.In this study, we tested several DL-based architectures to predict imagined 3D continuous hand translation using time-frequency features extracted from ECoG signals. The dataset used in the analysis is a part of a long-term clinical trial (ClinicalTrials.gov identifier: NCT02550522) and was acquired during a closed-loop experiment with a tetraplegic subject. The proposed architectures include multilayer perceptron, convolutional neural networks (CNNs), and long short-term memory networks (LSTM). The accuracy of the DL-based and multilinear models was compared offline using cosine similarity.Main results.Our results show that CNN-based architectures outperform the current state-of-the-art multilinear model. The best architecture exploited the spatial correlation between neighboring electrodes with CNN and benefited from the sequential character of the desired hand trajectory by using LSTMs. Overall, DL increased the average cosine similarity, compared to the multilinear model, by up to 60%, from 0.189 to 0.302 and from 0.157 to 0.249 for the left and right hand, respectively.Significance.This study shows that DL-based models could increase the accuracy of BCI systems in the case of 3D hand translation prediction in a tetraplegic subject.
Collapse
Affiliation(s)
- Maciej Śliwowski
- Université Grenoble Alpes, CEA, LETI, Clinatec, F-38000 Grenoble, France.,Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France
| | - Matthieu Martin
- Université Grenoble Alpes, CEA, LETI, Clinatec, F-38000 Grenoble, France
| | | | | | - Tetiana Aksenova
- Université Grenoble Alpes, CEA, LETI, Clinatec, F-38000 Grenoble, France
| |
Collapse
|
9
|
Moly A, Costecalde T, Martel F, Martin M, Larzabal C, Karakas S, Verney A, Charvet G, Chabardès S, Benabid AL, Aksenova T. An adaptive closed-loop ECoG decoder for long-term and stable bimanual control of an exoskeleton by a tetraplegic. J Neural Eng 2022; 19. [PMID: 35234665 DOI: 10.1088/1741-2552/ac59a0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/01/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The article aims at addressing 2 challenges to step motor BCI out of laboratories: asynchronous control of complex bimanual effectors with large numbers of degrees of freedom, using chronic and safe recorders, and the decoding performance stability over time without frequent decoder recalibration. APPROACH Closed-loop adaptive/incremental decoder training is one strategy to create a model stable over time. Adaptive decoders update their parameters with new incoming data, optimizing the model parameters in real time. It allows cross-session training with multiple recording conditions during closed loop BCI experiments. In the article, an adaptive tensor-based Recursive Exponentially Weighted Markov-Switching multi-Linear Model (REW-MSLM) decoder is proposed. REW-MSLM uses a Mixture of Expert (ME) architecture, mixing or switching independent decoders (experts) according to the probability estimated by a "gating" model. A Hidden Markov model approach is employed as gating model to improve the decoding robustness and to provide strong idle state support. The ME architecture fits the multi-limb paradigm associating an expert to a particular limb or action. MAIN RESULTS Asynchronous control of an exoskeleton by a tetraplegic patient using a chronically implanted epidural electrocorticography (EpiCoG) recorder is reported. The stable over a period of 6 months (without decoder recalibration) 8-dimensional alternative bimanual control of the exoskeleton and its virtual avatar is demonstrated. SIGNIFICANCE Based on the long-term (>36 months) chronic bilateral epidural ECoG recordings in a tetraplegic (ClinicalTrials.gov, NCT02550522), we addressed the poorly explored field of asynchronous bimanual BCI. The new decoder was designed to meet to several challenges: the high-dimensional control of a complex effector in experiments closer to real-world behaviour (point-to-point pursuit versus conventional center-out tasks), with the ability of the BCI system to act as a stand-alone device switching between idle and control states, and a stable performance over a long period of time without decoder recalibration.
Collapse
Affiliation(s)
- Alexandre Moly
- Univ. Grenoble Alpes, CEA, LETI, Clinatec,, 17 av. des martyrs, Grenoble, Auvergne-Rhône-Alpes, 38000, FRANCE
| | - Thomas Costecalde
- Univ. Grenoble Alpes, CEA, LETI, Clinatec,, 17 av. des martyrs, Grenoble, Auvergne-Rhône-Alpes, 38000, FRANCE
| | - Félix Martel
- Univ. Grenoble Alpes, CEA, LETI, Clinatec,, 17 av. des martyrs, Grenoble, Auvergne-Rhône-Alpes, 38000, FRANCE
| | - Matthieu Martin
- Univ. Grenoble Alpes, CEA, LETI, Clinatec,, 17 av. des Martyrs, Grenoble, 38000, FRANCE
| | - Christelle Larzabal
- Univ. Grenoble Alpes, CEA, LETI, Clinatec,, 17 av. des martyrs, Grenoble, Auvergne-Rhône-Alpes, 38000, FRANCE
| | - Serpil Karakas
- Univ. Grenoble Alpes, CEA, LETI, Clinatec,, 17 av. des martyrs, Grenoble, Auvergne-Rhône-Alpes, 38000, FRANCE
| | - Alexandre Verney
- Université Paris-Saclay, Palaiseau, Palaiseau, Île-de-France, 91120, FRANCE
| | - Guillaume Charvet
- Univ. Grenoble Alpes, CEA, LETI, Clinatec,, 17 av. des martyrs, Grenoble, Auvergne-Rhône-Alpes, 38000, FRANCE
| | - Stephan Chabardès
- CHU Grenoble Alpes, Boulevard de la Chantourne, La Tronche, Auvergne-Rhône-Alpes, 38700, FRANCE
| | - Alim-Louis Benabid
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 17, avenue des Martyrs, Grenoble, 38000, FRANCE
| | - Tatiana Aksenova
- Univ. Grenoble Alpes, CEA, LETI, Clinatec,, 17 av. des martyrs, Grenoble, Auvergne-Rhône-Alpes, 38000, FRANCE
| |
Collapse
|
10
|
Kim HH, Jeong J. An electrocorticographic decoder for arm movement for brain–machine interface using an echo state network and Gaussian readout. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2021.108393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Yokoyama H, Kaneko N, Watanabe K, Nakazawa K. Neural decoding of gait phases during motor imagery and improvement of the decoding accuracy by concurrent action observation. J Neural Eng 2021; 18. [PMID: 34082405 DOI: 10.1088/1741-2552/ac07bd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022]
Abstract
Objective. Brain decoding of motor imagery (MI) not only is crucial for the control of neuroprosthesis but also provides insights into the underlying neural mechanisms. Walking consists of stance and swing phases, which are associated with different biomechanical and neural control features. However, previous knowledge on decoding the MI of gait is limited to simple information (e.g. the classification of 'walking' and 'rest').Approach. Here, we investigated the feasibility of electroencephalogram (EEG) decoding of the two gait phases during the MI of walking and whether the combined use of MI and action observation (AO) would improve decoding accuracy.Main results. We demonstrated that the stance and swing phases could be decoded from EEGs during MI or AO alone. We also demonstrated the decoding accuracy during MI was improved by concurrent AO. The decoding models indicated that the improved decoding accuracy following the combined use of MI and AO was facilitated by the additional information resulting from the concurrent cortical activations related to sensorimotor, visual, and action understanding systems associated with MI and AO.Significance. This study is the first to show that decoding the stance versus swing phases during MI is feasible. The current findings provide fundamental knowledge for neuroprosthetic design and gait rehabilitation, and they expand our understanding of the neural activity underlying AO, MI, and AO + MI of walking.Novelty and significanceBrain decoding of detailed gait-related information during motor imagery (MI) is important for brain-computer interfaces (BCIs) for gait rehabilitation. This study is the first to show the feasibility of EEG decoding of the stance versus swing phases during MI. We also demonstrated that the combined use of MI and action observation (AO) improves decoding accuracy, which is facilitated by the concurrent and synergistic involvement of the cortical activations for MI and AO. These findings extend the current understanding of neural activity and the combined effects of AO and MI and provide a basis for effective techniques for walking rehabilitation.
Collapse
Affiliation(s)
- Hikaru Yokoyama
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo 102-0083, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Naotsugu Kaneko
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Katsumi Watanabe
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan.,Faculty of Arts, Design, and Architecture, University of New South Wales, Sydney, NSW 2021, Australia
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
12
|
Decoding the torque of lower limb joints from EEG recordings of pre-gait movements using a machine learning scheme. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.03.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Cortico-Spinal Neural Interface to Restore Hindlimb Movements in Spinally-Injured Rabbits. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Cracchiolo M, Panarese A, Valle G, Strauss I, Granata G, Iorio RD, Stieglitz T, Rossini PM, Mazzoni A, Micera S. Computational approaches to decode grasping force and velocity level in upper-limb amputee from intraneural peripheral signals. J Neural Eng 2021; 18. [PMID: 33725672 DOI: 10.1088/1741-2552/abef3a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 11/12/2022]
Abstract
Objective. Recent results have shown the potentials of neural interfaces to provide sensory feedback to subjects with limb amputation increasing prosthesis usability. However, their advantages for decoding motor control signals over current methods based on electromyography (EMG) are still debated. In this study we compared a standard EMG-based method with approaches that use peripheral intraneural data to infer distinct levels of grasping force and velocity in a trans-radial amputee.Approach. Surface EMG (three channels) and intraneural signals (collected with transverse intrafascicular multichannel electrodes, TIMEs, 56 channels) were simultaneously recorded during the amputee's intended grasping movements. We sorted single unit activity (SUA) from each neural signal and then we identified the most informative units. EMG envelopes were extracted from the recorded EMG signals. A reference support vector machine (SVM) classifier was used to map EMG envelopes into desired force and velocity levels. Two decoding approaches using SUA were then tested and compared to the EMG-based reference classifier: (a) SVM classification of firing rates into desired force and velocity levels; (b) reconstruction of covariates (the grasp cue level or EMG envelopes) from neural data and use of covariates for classification into desired force and velocity levels.Main results.Using EMG envelopes as reconstructed covariates from SUA yielded significantly better results than the other approaches tested, with performance similar to that of the EMG-based reference classifier, and stable over three different recording days. Of the two reconstruction algorithms used in this approach, a linear Kalman filter and a nonlinear point process adaptive filter, the nonlinear filter gave better results.Significance.This study presented a new effective approach for decoding grasping force and velocity from peripheral intraneural signals in a trans-radial amputee, which relies on using SUA to reconstruct EMG envelopes. Being dependent on EMG recordings only for the training phase, this approach can fully exploit the advantages of implanted neural interfaces and potentially overcome, in the medium to long term, current state-of-the-art methods. (Clinical trial's registration number: NCT02848846).
Collapse
Affiliation(s)
- Marina Cracchiolo
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Alessandro Panarese
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Giacomo Valle
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH, Zürich 8006, Switzerland
| | - Ivo Strauss
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Giuseppe Granata
- Institute of Neurology, Catholic University of The Sacred Heart, Policlinic A. Gemelli Foundation, Roma, Italy
| | - Riccardo Di Iorio
- Institute of Neurology, Catholic University of The Sacred Heart, Policlinic A. Gemelli Foundation, Roma, Italy
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, BrainLinks-BrainTools Center of Excellence & Bernstein Center Freiburg, University of Freiburg, D-79110 Freiburg, Germany
| | - Paolo M Rossini
- Institute of Neurology, Catholic University of The Sacred Heart, Policlinic A. Gemelli Foundation, Roma, Italy
| | - Alberto Mazzoni
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Silvestro Micera
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.,Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, Geneva 1202, Switzerland
| |
Collapse
|
15
|
Kobler RJ, Sburlea AI, Mondini V, Hirata M, Müller-Putz GR. Distance- and speed-informed kinematics decoding improves M/EEG based upper-limb movement decoder accuracy. J Neural Eng 2020; 17:056027. [PMID: 33146148 DOI: 10.1088/1741-2552/abb3b3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE One of the main goals in brain-computer interface (BCI) research is the replacement or restoration of lost function in individuals with paralysis. One line of research investigates the inference of movement kinematics from brain activity during different volitional states. A growing number of electroencephalography (EEG) and magnetoencephalography (MEG) studies suggest that information about directional (e.g. velocity) and nondirectional (e.g. speed) movement kinematics is accessible noninvasively. We sought to assess if the neural information associated with both types of kinematics can be combined to improve the decoding accuracy. APPROACH In an offline analysis, we reanalyzed the data of two previous experiments containing the recordings of 34 healthy participants (15 EEG, 19 MEG). We decoded 2D movement trajectories from low-frequency M/EEG signals in executed and observed tracking movements, and compared the accuracy of an unscented Kalman filter (UKF) that explicitly modeled the nonlinear relation between directional and nondirectional kinematics to the accuracies of linear Kalman (KF) and Wiener filters which did not combine both types of kinematics. MAIN RESULTS At the group level, posterior-parietal and parieto-occipital (executed and observed movements) and sensorimotor areas (executed movements) encoded kinematic information. Correlations between the recorded position and velocity trajectories and the UKF decoded ones were on average 0.49 during executed and 0.36 during observed movements. Compared to the other filters, the UKF could achieve the best trade-off between maximizing the signal to noise ratio and minimizing the amplitude mismatch between the recorded and decoded trajectories. SIGNIFICANCE We present direct evidence that directional and nondirectional kinematic information is simultaneously detectable in low-frequency M/EEG signals. Moreover, combining directional and nondirectional kinematic information significantly improves the decoding accuracy upon a linear KF.
Collapse
Affiliation(s)
- Reinmar J Kobler
- Institute of Neural Engineering, Graz University of Technology, Graz 8010, Styria, Austria
| | | | | | | | | |
Collapse
|
16
|
Milosevic M, Marquez-Chin C, Masani K, Hirata M, Nomura T, Popovic MR, Nakazawa K. Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation. Biomed Eng Online 2020; 19:81. [PMID: 33148270 PMCID: PMC7641791 DOI: 10.1186/s12938-020-00824-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
Delivering short trains of electric pulses to the muscles and nerves can elicit action potentials resulting in muscle contractions. When the stimulations are sequenced to generate functional movements, such as grasping or walking, the application is referred to as functional electrical stimulation (FES). Implications of the motor and sensory recruitment of muscles using FES go beyond simple contraction of muscles. Evidence suggests that FES can induce short- and long-term neurophysiological changes in the central nervous system by varying the stimulation parameters and delivery methods. By taking advantage of this, FES has been used to restore voluntary movement in individuals with neurological injuries with a technique called FES therapy (FEST). However, long-lasting cortical re-organization (neuroplasticity) depends on the ability to synchronize the descending (voluntary) commands and the successful execution of the intended task using a FES. Brain-computer interface (BCI) technologies offer a way to synchronize cortical commands and movements generated by FES, which can be advantageous for inducing neuroplasticity. Therefore, the aim of this review paper is to discuss the neurophysiological mechanisms of electrical stimulation of muscles and nerves and how BCI-controlled FES can be used in rehabilitation to improve motor function.
Collapse
Affiliation(s)
- Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan.
| | - Cesar Marquez-Chin
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| |
Collapse
|
17
|
Hashimoto H, Kameda S, Maezawa H, Oshino S, Tani N, Khoo HM, Yanagisawa T, Yoshimine T, Kishima H, Hirata M. A Swallowing Decoder Based on Deep Transfer Learning: AlexNet Classification of the Intracranial Electrocorticogram. Int J Neural Syst 2020; 31:2050056. [PMID: 32938263 DOI: 10.1142/s0129065720500562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To realize a brain-machine interface to assist swallowing, neural signal decoding is indispensable. Eight participants with temporal-lobe intracranial electrode implants for epilepsy were asked to swallow during electrocorticogram (ECoG) recording. Raw ECoG signals or certain frequency bands of the ECoG power were converted into images whose vertical axis was electrode number and whose horizontal axis was time in milliseconds, which were used as training data. These data were classified with four labels (Rest, Mouth open, Water injection, and Swallowing). Deep transfer learning was carried out using AlexNet, and power in the high-[Formula: see text] band (75-150[Formula: see text]Hz) was the training set. Accuracy reached 74.01%, sensitivity reached 82.51%, and specificity reached 95.38%. However, using the raw ECoG signals, the accuracy obtained was 76.95%, comparable to that of the high-[Formula: see text] power. We demonstrated that a version of AlexNet pre-trained with visually meaningful images can be used for transfer learning of visually meaningless images made up of ECoG signals. Moreover, we could achieve high decoding accuracy using the raw ECoG signals, allowing us to dispense with the conventional extraction of high-[Formula: see text] power. Thus, the images derived from the raw ECoG signals were equivalent to those derived from the high-[Formula: see text] band for transfer deep learning.
Collapse
Affiliation(s)
- Hiroaki Hashimoto
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan.,Department of Neurosurgery, Otemae Hospital, Chuo-Ku Otemae 1-5-34, Osaka, Osaka 540-0008, Japan.,Endowed Research Department of Clinical Neuroengineering, Global Center for Medical Engineering and Informatics, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Seiji Kameda
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hitoshi Maezawa
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Naoki Tani
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hui Ming Khoo
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Toshiki Yoshimine
- Endowed Research Department of Clinical Neuroengineering, Global Center for Medical Engineering and Informatics, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan.,Endowed Research Department of Clinical Neuroengineering, Global Center for Medical Engineering and Informatics, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan.,Department of Neurosurgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Wang M, Li G, Jiang S, Wei Z, Hu J, Chen L, Zhang D. Enhancing gesture decoding performance using signals from posterior parietal cortex: a stereo-electroencephalograhy (SEEG) study. J Neural Eng 2020; 17:046043. [DOI: 10.1088/1741-2552/ab9987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Heravi MAY, Maghooli K, Nowshiravan Rahatabad F, Rezaee R. Application of a neural interface for restoration of leg movements: Intra-spinal stimulation using the brain electrical activity in spinally injured rabbits. J Appl Biomed 2020; 18:33-40. [PMID: 34907723 DOI: 10.32725/jab.2020.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/12/2020] [Indexed: 11/05/2022] Open
Abstract
This study aimed to design a neural interface that extracts movement commands from the brain to generate appropriate intra-spinal stimulation to restore leg movement. This study comprised four steps: (1) Recording electrocorticographic (ECoG) signals and corresponding leg movements in different trials. (2) Partial laminectomy to induce spinal cord injury (SCI) and detect motor modules in the spinal cord. (3) Delivering appropriate intra-spinal stimulation to the motor modules for restoration of the movements to those documented before SCI. (4) Development of a neural interface created by sparse linear regression (SLiR) model to detect movement commands transmitted from the brain to the modules. Correlation coefficient (CC) and normalized root mean square (NRMS) error was calculated to evaluate the neural interface effectiveness. It was found that by stimulating detected spinal cord modules, joint angle evaluated before SCI was not significantly different from that of post-SCI (P > 0.05). Based on results of SLiR model, overall CC and NRMS values were 0.63 ± 0.14 and 0.34 ± 0.16 (mean ± SD), respectively. These results indicated that ECoG data contained information about intra-spinal stimulations and the developed neural interface could produce intra-spinal stimulation based on ECoG data, for restoration of leg movements after SCI.
Collapse
Affiliation(s)
| | - Keivan Maghooli
- Islamic Azad University, Science and Research Branch, Department of Biomedical Engineering, Tehran, Iran
| | | | - Ramin Rezaee
- Mashhad University of Medical Sciences, Faculty of Medicine, Clinical Research Unit, Mashhad, Iran.,Mashhad University of Medical Sciences, Neurogenic Inflammation Research Center, Mashhad, Iran
| |
Collapse
|
20
|
Farrokhi B, Erfanian A. A state-based probabilistic method for decoding hand position during movement from ECoG signals in non-human primate. J Neural Eng 2020; 17:026042. [PMID: 32224511 DOI: 10.1088/1741-2552/ab848b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE In this study, we proposed a state-based probabilistic method for decoding hand positions during unilateral and bilateral movements using the ECoG signals recorded from the brain of Rhesus monkey. APPROACH A customized electrode array was implanted subdurally in the right hemisphere of the brain covering from the primary motor cortex to the frontal cortex. Three different experimental paradigms were considered: ipsilateral, contralateral, and bilateral movements. During unilateral movement, the monkey was trained to get food with one hand, while during bilateral movement, the monkey used its left and right hands alternately to get food. To estimate the hand positions, a state-based probabilistic method was introduced which was based on the conditional probability of the hand movement state (i.e. idle, right hand movement, and left hand movement) and the conditional expectation of the hand position for each state. Moreover, a hybrid feature extraction method based on linear discriminant analysis and partial least squares (PLS) was introduced. MAIN RESULTS The proposed method could successfully decode the hand positions during ipsilateral, contralateral, and bilateral movements and significantly improved the decoding performance compared to the conventional Kalman and PLS regression methods [Formula: see text]. The proposed hybrid feature extraction method was found to outperform both the PLS and PCA methods [Formula: see text]. Investigating the kinematic information of each frequency band shows that more informative frequency bands were [Formula: see text] (15-30 Hz) and [Formula: see text](50-100 Hz) for ipsilateral and [Formula: see text] and [Formula: see text] (100-200 Hz) for contralateral movements. It is observed that ipsilateral movement was decoded better than contralateral movement for [Formula: see text] (5-15 Hz) and [Formula: see text] bands, while contralateral movements was decoded better for [Formula: see text] (30-200 Hz) and hfECoG (200-400 Hz) bands. SIGNIFICANCE Accurate decoding the bilateral movement using the ECoG recorded from one brain hemisphere is an important issue toward real-life applications of the brain-machine interface technologies.
Collapse
Affiliation(s)
- Behraz Farrokhi
- Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Iran Neural Technology Research Centre, Tehran, Iran
| | | |
Collapse
|
21
|
Volkova K, Lebedev MA, Kaplan A, Ossadtchi A. Decoding Movement From Electrocorticographic Activity: A Review. Front Neuroinform 2019; 13:74. [PMID: 31849632 PMCID: PMC6901702 DOI: 10.3389/fninf.2019.00074] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023] Open
Abstract
Electrocorticography (ECoG) holds promise to provide efficient neuroprosthetic solutions for people suffering from neurological disabilities. This recording technique combines adequate temporal and spatial resolution with the lower risks of medical complications compared to the other invasive methods. ECoG is routinely used in clinical practice for preoperative cortical mapping in epileptic patients. During the last two decades, research utilizing ECoG has considerably grown, including the paradigms where behaviorally relevant information is extracted from ECoG activity with decoding algorithms of different complexity. Several research groups have advanced toward the development of assistive devices driven by brain-computer interfaces (BCIs) that decode motor commands from multichannel ECoG recordings. Here we review the evolution of this field and its recent tendencies, and discuss the potential areas for future development.
Collapse
Affiliation(s)
- Ksenia Volkova
- Center for Bioelectric Interfaces, Higher School of Economics, National Research University, Moscow, Russia
| | - Mikhail A. Lebedev
- Center for Bioelectric Interfaces, Higher School of Economics, National Research University, Moscow, Russia
| | - Alexander Kaplan
- Center for Bioelectric Interfaces, Higher School of Economics, National Research University, Moscow, Russia
- Center for Biotechnology Development, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Laboratory for Neurophysiology and Neuro-Computer Interfaces, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexei Ossadtchi
- Center for Bioelectric Interfaces, Higher School of Economics, National Research University, Moscow, Russia
| |
Collapse
|
22
|
Kirin SC, Yanagisawa T, Oshino S, Edakawa K, Tanaka M, Kishima H, Nishimura Y. Somatosensation Evoked by Cortical Surface Stimulation of the Human Primary Somatosensory Cortex. Front Neurosci 2019; 13:1019. [PMID: 31607854 PMCID: PMC6769168 DOI: 10.3389/fnins.2019.01019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Electrical stimulation of the primary somatosensory cortex using intracranial electrodes is crucial for the evocation of artificial somatosensations, typically tactile sensations associated with specific regions of the body, in brain-machine interface (BMI) applications. The qualitative characteristics of these artificially evoked somatosensations has been well documented. As of yet, however, the quantitative aspects of these evoked somatosensations, that is to say the quantitative relationship between intensity of electrical stimulation and perceived intensity of the resultant somatosensation remains obscure. This study aimed to explore this quantitative relationship by surface electrical stimulation of the primary somatosensory cortex in two human participants undergoing electrocorticographic monitoring prior to surgical treatment of intractable epilepsy. Electrocorticogram electrodes on the primary somatosensory cortical surface were stimulated with varying current intensities, and a visual analogue scale was employed to provide a quantitative measure of intensity of the evoked sensations. Evoked sensations included those of the thumb, tongue, and hand. A clear linear relationship between current intensity and perceived intensity of sensation was observed. These findings provide novel insight into the quantitative nature of primary somatosensory cortex electrical stimulation-evoked sensation for development of somatosensory neuroprosthetics for clinical use.
Collapse
Affiliation(s)
- St. Clair Kirin
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Graduate School of Medicine Osaka University, Suita, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Japan
- *Correspondence: Takufumi Yanagisawa, ;
| | - Satoru Oshino
- Department of Neurosurgery, Graduate School of Medicine Osaka University, Suita, Japan
| | - Kohtaroh Edakawa
- Department of Neurosurgery, Graduate School of Medicine Osaka University, Suita, Japan
| | - Masataka Tanaka
- Department of Neurosurgery, Graduate School of Medicine Osaka University, Suita, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine Osaka University, Suita, Japan
| | - Yukio Nishimura
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
- Neural Prosthesis Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Yukio Nishimura,
| |
Collapse
|
23
|
Branco MP, de Boer LM, Ramsey NF, Vansteensel MJ. Encoding of kinetic and kinematic movement parameters in the sensorimotor cortex: A Brain-Computer Interface perspective. Eur J Neurosci 2019; 50:2755-2772. [PMID: 30633413 PMCID: PMC6625947 DOI: 10.1111/ejn.14342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/30/2018] [Accepted: 01/07/2019] [Indexed: 01/23/2023]
Abstract
For severely paralyzed people, Brain-Computer Interfaces (BCIs) can potentially replace lost motor output and provide a brain-based control signal for augmentative and alternative communication devices or neuroprosthetics. Many BCIs focus on neuronal signals acquired from the hand area of the sensorimotor cortex, employing changes in the patterns of neuronal firing or spectral power associated with one or more types of hand movement. Hand and finger movement can be described by two groups of movement features, namely kinematics (spatial and motion aspects) and kinetics (muscles and forces). Despite extensive primate and human research, it is not fully understood how these features are represented in the SMC and how they lead to the appropriate movement. Yet, the available information may provide insight into which features are most suitable for BCI control. To that purpose, the current paper provides an in-depth review on the movement features encoded in the SMC. Even though there is no consensus on how exactly the SMC generates movement, we conclude that some parameters are well represented in the SMC and can be accurately used for BCI control with discrete as well as continuous feedback. However, the vast evidence also suggests that movement should be interpreted as a combination of multiple parameters rather than isolated ones, pleading for further exploration of sensorimotor control models for accurate BCI control.
Collapse
Affiliation(s)
- Mariana P. Branco
- Brain Center Rudolf MagnusDepartment of Neurology and NeurosurgeryUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Nick F. Ramsey
- Brain Center Rudolf MagnusDepartment of Neurology and NeurosurgeryUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Mariska J. Vansteensel
- Brain Center Rudolf MagnusDepartment of Neurology and NeurosurgeryUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
24
|
Umeda T, Koizumi M, Katakai Y, Saito R, Seki K. Decoding of muscle activity from the sensorimotor cortex in freely behaving monkeys. Neuroimage 2019; 197:512-526. [PMID: 31015029 DOI: 10.1016/j.neuroimage.2019.04.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/06/2023] Open
Abstract
Remarkable advances have recently been made in the development of Brain-Machine Interface (BMI) technologies for restoring or enhancing motor function. However, the application of these technologies may be limited to patients in static conditions, as these developments have been largely based on studies of animals (e.g., non-human primates) in constrained movement conditions. The ultimate goal of BMI technology is to enable individuals to move their bodies naturally or control external devices without physical constraints. Here, we demonstrate accurate decoding of muscle activity from electrocorticogram (ECoG) signals in unrestrained, freely behaving monkeys. We recorded ECoG signals from the sensorimotor cortex as well as electromyogram signals from multiple muscles in the upper arm while monkeys performed two types of movements with no physical restraints, as follows: forced forelimb movement (lever-pull task) and natural whole-body movement (free movement within the cage). As in previous reports using restrained monkeys, we confirmed that muscle activity during forced forelimb movement was accurately predicted from simultaneously recorded ECoG data. More importantly, we demonstrated that accurate prediction of muscle activity from ECoG data was possible in monkeys performing natural whole-body movement. We found that high-gamma activity in the primary motor cortex primarily contributed to the prediction of muscle activity during natural whole-body movement as well as forced forelimb movement. In contrast, the contribution of high-gamma activity in the premotor and primary somatosensory cortices was significantly larger during natural whole-body movement. Thus, activity in a larger area of the sensorimotor cortex was needed to predict muscle activity during natural whole-body movement. Furthermore, decoding models obtained from forced forelimb movement could not be generalized to natural whole-body movement, which suggests that decoders should be built individually and according to different behavior types. These results contribute to the future application of BMI systems in unrestrained individuals.
Collapse
Affiliation(s)
- Tatsuya Umeda
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 1878502, Japan.
| | - Masashi Koizumi
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 1878502, Japan
| | - Yuko Katakai
- Administrative Section of Primate Research Facility, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 1878502, Japan; The Corporation for Production and Research of Laboratory Primates, Tsukuba, Ibaraki, 3050003, Japan
| | - Ryoichi Saito
- Administrative Section of Primate Research Facility, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 1878502, Japan
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 1878502, Japan.
| |
Collapse
|
25
|
Yokoyama H, Kaneko N, Ogawa T, Kawashima N, Watanabe K, Nakazawa K. Cortical Correlates of Locomotor Muscle Synergy Activation in Humans: An Electroencephalographic Decoding Study. iScience 2019; 15:623-639. [PMID: 31054838 PMCID: PMC6547791 DOI: 10.1016/j.isci.2019.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/09/2019] [Accepted: 04/04/2019] [Indexed: 01/17/2023] Open
Abstract
Muscular control during walking is believed to be simplified by the coactivation of muscles called muscle synergies. Although significant corticomuscular connectivity during walking has been reported, the level at which the cortical activity is involved in muscle activity (muscle synergy or individual muscle level) remains unclear. Here we examined cortical correlates of muscle activation during walking by brain decoding of activation of muscle synergies and individual muscles from electroencephalographic signals. We demonstrated that the activation of locomotor muscle synergies was decoded from slow cortical waves. In addition, the decoding accuracy for muscle synergies was greater than that for individual muscles and the decoding of individual muscle activation was based on muscle-synergy-related cortical information. These results indicate the cortical correlates of locomotor muscle synergy activation. These findings expand our understanding of the relationships between brain and locomotor muscle synergies and could accelerate the development of effective brain-machine interfaces for walking rehabilitation.
Collapse
Affiliation(s)
- Hikaru Yokoyama
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan; Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Tetsuya Ogawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for the Movement Functions, Research Institute of National Rehabilitation Center for the Disabled, Tokorozawa-shi, Saitama 359-0042, Japan
| | - Katsumi Watanabe
- Faculty of Science and Engineering, Waseda University, Shinjuku-ku Tokyo 169-8555, Japan; Art & Design, University of New South Wales, Sydney, NSW 2021, Australia; Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
26
|
Shin D, Kambara H, Yoshimura N, Koike Y. Control of a Robot Arm Using Decoded Joint Angles from Electrocorticograms in Primate. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2018; 2018:2580165. [PMID: 30420874 PMCID: PMC6211210 DOI: 10.1155/2018/2580165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/16/2018] [Indexed: 11/30/2022]
Abstract
Electrocorticogram (ECoG) is a well-known recording method for the less invasive brain machine interface (BMI). Our previous studies have succeeded in predicting muscle activities and arm trajectories from ECoG signals. Despite such successful studies, there still remain solving works for the purpose of realizing an ECoG-based prosthesis. We suggest a neuromuscular interface to control robot using decoded muscle activities and joint angles. We used sparse linear regression to find the best fit between band-passed ECoGs and electromyograms (EMG) or joint angles. The best coefficient of determination for 100 s continuous prediction was 0.6333 ± 0.0033 (muscle activations) and 0.6359 ± 0.0929 (joint angles), respectively. We also controlled a 4 degree of freedom (DOF) robot arm using only decoded 4 DOF angles from the ECoGs in this study. Consequently, this study shows the possibility of contributing to future advancements in neuroprosthesis and neurorehabilitation technology.
Collapse
Affiliation(s)
- Duk Shin
- Tokyo Polytechnic University, Tokyo, Japan
| | | | | | | |
Collapse
|
27
|
Costecalde T, Aksenova T, Torres-Martinez N, Eliseyev A, Mestais C, Moro C, Benabid AL. A Long-Term BCI Study With ECoG Recordings in Freely Moving Rats. Neuromodulation 2017; 21:149-159. [PMID: 28685918 DOI: 10.1111/ner.12628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 04/07/2017] [Accepted: 05/12/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Brain Computer Interface (BCI) studies are performed in an increasing number of applications. Questions are raised about electrodes, data processing and effectors. Experiments are needed to solve these issues. OBJECTIVE To develop a simple BCI set-up to easier studies for improving the mathematical tools to process the ECoG to control an effector. METHOD We designed a simple BCI using transcranial electrodes (17 screws, three mechanically linked to create a common reference, 14 used as recording electrodes) to record Electro-Cortico-Graphic (ECoG) neuronal activities in rodents. The data processing is based on an online self-paced non-supervised (asynchronous) BCI paradigm. N-way partial least squares algorithm together with Continuous Wavelet Transformation of ECoG recordings detect signatures related to motor activities. Signature detection in freely moving rats may activate external effectors during a behavioral task, which involved pushing a lever to obtain a reward. RESULTS After routine training, we showed that peak brain activity preceding a lever push (LP) to obtain food reward was located mostly in the cerebellar cortex with a higher correlation coefficient, suggesting a strong postural component and also in the occipital cerebral cortex. Analysis of brain activities provided a stable signature in the high gamma band (∼180Hz) occurring within 1500 msec before the lever push approximately around -400 msec to -500 msec. Detection of the signature from a single cerebellar cortical electrode triggers the effector with high efficiency (68% Offline and 30% Online) and rare false positives per minute in sessions about 30 minutes and up to one hour (∼2 online and offline). CONCLUSIONS In summary, our results are original as compared to the rest of the literature, which involves rarely rodents, a simple BCI set-up has been developed in rats, the data show for the first time long-term, up to one year, unsupervised online control of an effector.
Collapse
Affiliation(s)
- Thomas Costecalde
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, 38000, France
| | - Tetiana Aksenova
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, 38000, France
| | | | - Andriy Eliseyev
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, 38000, France
| | - Corinne Mestais
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, 38000, France
| | - Cecile Moro
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, 38000, France
| | - Alim Louis Benabid
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, 38000, France
| |
Collapse
|