1
|
Siposova K, Huntosova V, Sedlakova D, Macajova M, Bilcik B, Nair AV, Nair S, Hovhannisyan V, Chen SJ, Musatov A. Biocompatible zeolite-dye composites with anti-amyloidogenic properties. Int J Biol Macromol 2023; 251:126331. [PMID: 37579899 DOI: 10.1016/j.ijbiomac.2023.126331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
One of the most attractive approaches in biomedicine and pharmacy is the application of multifunctional materials. The mesoporous structure of clinoptilolite (CZ) absorbs various types of substances and can be used as a model for studying the carriers for targeted drug delivery with controlled release. CZ-dye composites are fabricated by incorporation into clinoptilolite pores commonly used dyes, aluminum phthalocyanine, zinc porphine, and hypericin. We examined and compared the effect of pure dyes and CZ-dye composites on insulin amyloidogenesis. The formation of insulin amyloid fibrils and the disassembly of preformed fibrils is significantly affected by any of the three compounds, however, the strongest effect is observed for aluminum phthalocyanine indicating a structurally-dependent anti-amyloidogenic activity of the dyes. The incorporation of dyes into CZ particles resulted in enhanced anti-amyloidogenic activity in comparison to pure CZ particles. The cell metabolic activity, biocompatibility and fluorescence biodistribution of the dyes entrapped in the composites were tested in vitro (U87 MG cells) and in vivo in the quail chorioallantoic membrane model. Considering the photoactive properties of the dyes used, we assume their applicability in photodiagnostics and photodynamic therapy. It can also be expected that their anti-amyloidogenic potential can be enhanced by photodynamic effect.
Collapse
Affiliation(s)
- Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia; College of Photonics, National Yang Ming Chiao Tung University, Tainan 711, Taiwan.
| | - Veronika Huntosova
- Center for Interdisciplinary Biosciences, Technology, and Innovation Park, P.J. Safarik University in Kosice, Jesenna 5, 041 54, Kosice, Slovakia.
| | - Dagmar Sedlakova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia.
| | - Mariana Macajova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia.
| | - Boris Bilcik
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia.
| | | | - Sumesh Nair
- College of Photonics, National Yang Ming Chiao Tung University, Tainan 711, Taiwan
| | | | - Shean-Jen Chen
- College of Photonics, National Yang Ming Chiao Tung University, Tainan 711, Taiwan.
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia.
| |
Collapse
|
2
|
Bimetallic Copper-Silver Systems Supported on Natural Clinoptilolite: Long-Term Changes in Nanospecies’ Composition and Stability. INORGANICS 2022. [DOI: 10.3390/inorganics10030034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long-term changes in species of copper-silver bimetallic systems on natural clinoptilolite obtained by ion exchange of Cu2+ and Ag+ and then reduced at different temperatures were studied. Even after storage under ambient conditions, XRD and UV-Vis diffuse reflectance spectra indicate the presence of nanospecies and larger particles of reduced copper and silver. Scanning electron microscopy of aged bimetallic samples, reduced at the highest temperature (450 °C) and the pristine sample for their preparation, also aged, showed the presence of silver particles with a size of about 100 nm. They are formed in the initial ion-exchanged sample (without reduction) due to the degradation of Ag+ ions. The particles in the reduced sample are larger; in both samples they are evenly distributed over the surface. The presence of silver affects the stability and the mechanism of decomposition/oxidation of reduced copper species, and this stability is higher in bimetallic systems. The decomposition pattern of recently reduced species includes the formation of smaller nanoparticles and few-atomic clusters. This can occur, preceding the complete oxidation of Cu to ions. Quasicolloidal silver, which is present in fresh bimetallic samples reduced at lower temperatures, transforms after aging into Ag8 clusters, which indicates the stability of these nanospecies on natural clinoptilolite.
Collapse
|
3
|
Ghazi M, Pourhajibagher M, Bahador A, Chiniforush N, Dadpour S, Dadpour Y. Evaluation of adding nanosized natural zeolite to photodynamic therapy against P. gingivalis biofilm on titanium disks. Photodiagnosis Photodyn Ther 2021; 36:102519. [PMID: 34478899 DOI: 10.1016/j.pdpdt.2021.102519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/15/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Antibacterial photodynamic therapy (aPDT) can be used as an adjunctive therapy for eliminating bacterial biofilm. The application of nanotechnology in aPDT, which is a growing trend, has improved the delivery of photosensitizers (PSs) into microorganisms. Encapsulation of molecules and ions is considered an outstanding potential feature of zeolites. This study sought to enhance the effect of aPDT using a diode laser (810 nm) with a potential PS, indocyanine green (ICG), combined with nanosized natural zeolite (NZ), against biofilm of P. gingivalis on sandblasted, large-grit, and acid-etched (SLA) implant titanium disks surface. METHODS A bacterial suspension of standard P. gingivalis (™ATCC® 33277) strains was prepared. To prepare bacterial biofilm, the titanium disks were added to 48 microtubes containing bacterial suspension, and divided into eight groups, i.e., the control groups (positive and negative), and 6 test groups (ICG; NZ; Diod laser; NZ+ICG; aPDT; NZ+aPDT). After the treatments, the total number of colony-forming units per disk was calculated. Finally, the data was analyzed, and the eight groups were compared together. RESULTS The highest reduction in the number of P. gingivalis was seen in group 8 (NZ+aPDT) with 3.55 log10 CFU/ml and the antibacterial effect of 45.7% compared with the negative control group. Conversley, group 5 (Diode Laser solely) represented the highest mean of colony count with the lowest antibacterial effects per disk (6.42 log10 CFU/ml, 1.8%). CONCLUSIONS The antibacterial effect of NZ+aPDT against P. gingivalis biofilm was noticeable. Thus, adding NZ to ICG improved the result of aPDT in this study.
Collapse
Affiliation(s)
- M Ghazi
- International Campus, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - M Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - A Bahador
- Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Clinical Laboratory Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - N Chiniforush
- Laser Research Center of Dentistry, Dental Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - S Dadpour
- Nanotechnology Research Center, Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Y Dadpour
- Department of Periodontology, International Campus, School of Dentistry, Tehran University of Medical Sciences, Mahan St. Zam Zam St. Navab Highway, Tehran, Iran..
| |
Collapse
|
4
|
Yaneva Z, Ivanova D, Popov N. Clinoptilolite Microparticles as Carriers of Catechin-Rich Acacia catechu Extracts: Microencapsulation and In Vitro Release Study. Molecules 2021; 26:1655. [PMID: 33809751 PMCID: PMC8002362 DOI: 10.3390/molecules26061655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 11/16/2022] Open
Abstract
The main goal of the present study was to investigate the microencapsulation, in vitro release capacity and efficiency of catechin-rich Acacia catechu extract by Clinosorbent-5 (CLS-5) microparticles by in-depth detailed analyses and mathematical modelling of the encapsulation and in vitro release kinetics behaviour of the polyphenol-mineral composite system. The bioflavanol encapsulation and release efficiency on/from the mineral matrix were assessed by sorption experiments and interpretative modelling of the experimental data. The surface and spectral characteristics of the natural bioactive substance and the inorganic microcarrier were determined by Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet/Visible (UV/Vis) spectrophotometric analyses. The maximum extent of catechin microencapsulation in acidic medium was 32%. The in vitro release kinetics study in simulated enzyme-free gastric medium (pH = 1.2) approved 88% maximum release efficiency achieved after 24 h. The in vitro release profile displayed that the developed bioflavanol/clinoptilolite microcarrier system provided sustained catechin in vitro release behaviour without an initial burst effect. Thus, the results from the present study are essential for the design and development of innovative catechin-CLS-5 microcarrier systems for application in human and veterinary medicine.
Collapse
Affiliation(s)
- Zvezdelina Yaneva
- Chemistry Unit, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Students Campus, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Donika Ivanova
- Chemistry Unit, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Students Campus, Trakia University, 6000 Stara Zagora, Bulgaria;
| | | |
Collapse
|
5
|
Hovhannisyan V, Siposova K, Musatov A, Chen SJ. Development of multifunctional nanocomposites for controlled drug delivery and hyperthermia. Sci Rep 2021; 11:5528. [PMID: 33750868 PMCID: PMC7943572 DOI: 10.1038/s41598-021-84927-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/18/2021] [Indexed: 01/16/2023] Open
Abstract
Magnetic nano/micro-particles based on clinoptilolite-type of natural zeolite (CZ) were fabricated and were expected to act as carriers for controlled drug delivery/release, imaging and local heating in biological systems. Adsorption of rhodamine B, sulfonated aluminum phthalocyanine and hypericin by magnetic CZ nano/micro-particles was investigated, as was the release of hypericin. Using an alternating magnetic field, local temperature increase by 10 °C in animal tissue with injected magnetic CZ particles was demonstrated. In addition, the CZ-based particles have been found to exhibit an anti-amyloidogenic effect on the amyloid aggregation of insulin and lysozyme in a dose- and temperature-dependent manner. Therefore, the mesoporous structure of CZ particles provided a unique platform for preparation of multifunctional magnetic and optical probes suitable for optical imaging, MRI, thermo- and phototherapy and as effective containers for controlled drug delivery. We concluded that magnetic CZ nano/micro-particles could be evaluated for further application in cancer hyperthermia therapy and as anti-amyloidogenic agents.
Collapse
Affiliation(s)
| | - Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia.
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia
| | - Shean-Jen Chen
- College of Photonics, National Chiao Tung University, Tainan, 711, Taiwan.
| |
Collapse
|
6
|
Khodadadi Yazdi M, Zarrintaj P, Hosseiniamoli H, Mashhadzadeh AH, Saeb MR, Ramsey JD, Ganjali MR, Mozafari M. Zeolites for theranostic applications. J Mater Chem B 2020; 8:5992-6012. [PMID: 32602516 DOI: 10.1039/d0tb00719f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Theranostic platforms bring about a revolution in disease management. During recent years, theranostic nanoparticles have been utilized for imaging and therapy simultaneously. Zeolites, because of their porous structure and tunable properties, which can be modified with various materials, can be used as a delivery agent. The porous structure of a zeolite enables it to be loaded and unloaded with various molecules such as therapeutic agents, photosensitizers, biological macromolecules, MRI contrast agents, radiopharmaceuticals, near-infrared (NIR) fluorophores, and microbubbles. Furthermore, theranostic zeolite nanocarriers can be further modified with targeting ligands, which is highly interesting for targeted cancer therapies.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Salari Lak Y, Khorram S, Mesgari Abbasi M, Asghari-Jafarabadi M, Tarighat-Esfanjani A, Bazri E, Omidi H. The effects of natural nano-sized clinoptilolite and Nigella sativa supplementation on serum bone markers in diabetic rats. ACTA ACUST UNITED AC 2019; 9:173-178. [PMID: 31508332 PMCID: PMC6726750 DOI: 10.15171/bi.2019.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 11/24/2022]
Abstract
![]()
Introduction: Many studies confirm that diabetes mellitus is associated with higher risks of bone fracture. The beneficial effects of Nigella sativa (NS) and clinoptilolite in preventing/reducing some diabetes-related disorders have been shown. This study was conducted to examine the effects of separate and concurrent supplementation of natural nano-sized clinoptilolite (NCLN) and NS on serum bone markers in rats with type 2 diabetes.
Methods: A total of 42 (case=36 and control=6) adult male Wistar rats were divided into 2 groups: diabetic and non-diabetic. An oral glucose tolerance test and a homeostatic model assessment of insulin resistance (HOMA-IR) test were conducted to confirm diabetes. Then, the diabetic group was divided into 4 subgroups: [1] control (n=9), [2] NS 1%/food (n=9), [3] NCLN 2%/food (n=9), [4] NS 1%/food + NCLN 2%/food (n=9). After 7 weeks, serum levels of bone markers were determined using ELISA kits.
Results: Analysis showed that serum levels of alkaline phosphatase (ALP) in the NCLN group (1318.6 ± 217.5 U/L) was significantly (P<0.05) higher than other intervented groups. On the other hand, serum levels of calcium in NCLN+NS group (10.8 ± 2.6 mg/dL) were higher (P=0.027) compared to all other study groups. However, rats in the NS group had higher (535.8 ± 49.3 pg/mL) PTH (P<0.0001) compared to other supplementation groups. There were no significant differences in vitamin D and osteoprotegerin.
Conclusion: The results of the current study suggest that bone mineralization may be affected by concurrent use of NS and NCLN through influencing calcium circulation. Moreover, dietary NS administration is strongly related to an augmented level of PTH.
Collapse
Affiliation(s)
- Yalda Salari Lak
- Student Research Committee, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sirous Khorram
- Plasma group,Research Institute for Applied Physics and Astronomy (RIAPA), University of Tabriz, Tabriz, Iran
| | | | | | - Ali Tarighat-Esfanjani
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Bazri
- Student Research Committee, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Omidi
- Student Research Committee, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Hovhannisyan VA, Dong CY, Lai FJ, Chang NS, Chen SJ. Natural zeolite for adsorbing and release of functional materials. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-7. [PMID: 29858548 DOI: 10.1117/1.jbo.23.9.091411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Using multiphoton microscopy (MPM), we demonstrated that effective inducing of two-photon excited luminescence and second-harmonic generation signals in nano/microparticles of clinoptilolite type of zeolite (CZ) by femtosecond near-infrared laser excitation can be successfully utilized in multiphoton imaging of the drug adsorption processes. Adsorption of photodynamic active dyes (hypericin, chlorin e6, methylene blue, and fluorescein) and their release from CZ pores in the presence of biomolecules, such as collagen from bovine Achilles tendon, albumin, and hemoglobin, were investigated by absorption and fluorescence spectrometry. To quantify the experimental results on hypericin release, here we use a kinetic curves fitting approach and calculate hypericin release rates in different environments. This approach allows to compare various mathematical models and uses more parameters to better characterize drug release profiles. In addition, magnetic CZ particles were fabricated and proposed as a promising material for drug delivery and controlled release in biological systems. Optical spectrometry and MPM are effective approaches that may reveal potential of natural zeolites in controlled drug delivery and biomedical imaging.
Collapse
Affiliation(s)
| | - Chen-Yuan Dong
- National Taiwan University, Department of Physics, Taipei, Taiwan
| | - Feng-Jie Lai
- Chi Mei Medical Center, Department of Dermatology, Tainan, Taiwan
| | - Nan-Shan Chang
- National Cheng Kung University, Institute of Molecular Medicine, Tainan, Taiwan
| | - Shean-Jen Chen
- National Chiao Tung University, College of Photonics, Tainan, Taiwan
| |
Collapse
|
9
|
Liu X, You J, Wang R, Ni Z, Han F, Jin L, Ye Z, Fang Z, Guo R. Synthesis and Absorption Properties of Hollow-spherical Dy 2Cu 2O 5 via a Coordination Compound Method with [DyCu(3,4-pdc) 2(OAc)(H 2O) 2]•10.5H 2O Precursor. Sci Rep 2017; 7:13085. [PMID: 29026151 PMCID: PMC5638867 DOI: 10.1038/s41598-017-13544-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022] Open
Abstract
Dy2Cu2O5 nanoparticles with perovskite structures were synthesized via a simple solution method (SSM) and a coordination compound method (CCM) using [DyCu(3,4-pdc)2(OAc)(H2O)2]•10.5H2O (pdc = 3,4-pyridinedicarboxylic acid) as precursor. The as-prepared samples were structurally characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), x-ray photoelectron spectroscopy (XPS) and standard Brunauer-Emmett-Teller (BET) methods. Compared to the aggregated hexahedral particles prepared by SSM, the Dy2Cu2O5 of CCM showed hollow spherical morphology composed of nanoparticles with average diameters of 100-150 nm and a larger special surface area up to 36.5 m2/g. The maximum adsorption capacity (Q m ) of CCM for malachite green (MG) determined by the adsorption isotherms with different adsorbent dosages of 0.03-0.07 g, reached 5.54 g/g at room temperature. The thermodynamic parameters of adsorption process were estimated by the fittings of the isotherms at 298, 318, and 338 K, and the kinetic parameters were obtained from the time-dependent adsorption isotherms. The results revealed that the adsorption process followed a pseudo-second-order reaction. Finally, the adsorption mechanism was studied using a competitive ion (CI) experiments, and the highly efficient selective adsorption was achieved due to strong O-Cu and O-Dy coordination bonds between Dy2Cu2O5 and MG.
Collapse
Affiliation(s)
- Xuanwen Liu
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110004, China
- Key Laboratory of Nano-Materials and Photoelectric Catalysis of Qinhuangdao, Qinhuangdao, 066004, China
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Renchao Wang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
- Key Laboratory of Nano-Materials and Photoelectric Catalysis of Qinhuangdao, Qinhuangdao, 066004, China
| | - Zhiyuan Ni
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
- Key Laboratory of Nano-Materials and Photoelectric Catalysis of Qinhuangdao, Qinhuangdao, 066004, China
| | - Fei Han
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Lei Jin
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Zhiqi Ye
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Zhao Fang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Rui Guo
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110004, China.
- Key Laboratory of Nano-Materials and Photoelectric Catalysis of Qinhuangdao, Qinhuangdao, 066004, China.
| |
Collapse
|