1
|
Garduño BM, Holmes TC, Deacon RMJ, Xu X, Cogram P. Octodon degus laboratory colony management principles and methods for behavioral analysis for Alzheimer's disease neuroscience research. Front Aging Neurosci 2025; 16:1517416. [PMID: 39902280 PMCID: PMC11788410 DOI: 10.3389/fnagi.2024.1517416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
The Chilean degu (Octodon degus) is a medium sized, long-lived rodent with traits that make them a natural model for neuroscience research. Their social behaviors, diurnality, and extended developmental time course, when compared to other rodents, make them useful for social behavioral, chronobiology, and developmental research. Lab-kept degus have a long lifespan (5-8 years) and may naturally develop age-related diseases that resemble Alzheimer's disease. While there is significant interest in using the Octodon degus for neuroscience research, including aging and Alzheimer's disease studies, laboratory management and methods for degus research are currently not standardized. This lack of standardization potentially impacts study reproducibility and makes it difficult to compare results between different laboratories. Degus require species-specific housing and handling methods that reflect their ecology, life history, and group-living characteristics. Here we introduce major principles and ethological considerations of colony management and husbandry. We provide clear instructions on laboratory practices necessary for maintaining a healthy and robust colony of degus for Alzheimer's disease neuroscience research towards conducting reproducible studies. We also report detailed procedures and methodical information for degu Apoe genotyping and ethologically relevant burrowing behavioral tasks in laboratory settings.
Collapse
Affiliation(s)
- B. Maximiliano Garduño
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Todd C. Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
| | - Robert M. J. Deacon
- Department of Ecological Sciences, Faculty of Sciences, Institute of Ecology and Biodiversity, Universidad de Chile, Santiago, Chile
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Patricia Cogram
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
- Department of Ecological Sciences, Faculty of Sciences, Institute of Ecology and Biodiversity, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Ferrer I. Alzheimer's Disease Neuropathological Change in Aged Non-Primate Mammals. Int J Mol Sci 2024; 25:8118. [PMID: 39125687 PMCID: PMC11311584 DOI: 10.3390/ijms25158118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Human brain aging is characterized by the production and deposition of β-amyloid (Aβ) in the form of senile plaques and cerebral amyloid angiopathy and the intracellular accumulation of hyper-phosphorylated tau (Hp-tau) to form neurofibrillary tangles (NFTs) and dystrophic neurites of senile plaques. The process progresses for years and eventually manifests as cognitive impairment and dementia in a subgroup of aged individuals. Aβ is produced and deposited first in the neocortex in most aged mammals, including humans; it is usually not accompanied by altered behavior and cognitive impairment. Hp-tau is less frequent than Aβ pathology, and NFTs are rare in most mammals. In contrast, NFTs are familiar from middle age onward in humans; NFTs first appear in the paleocortex and selected brain stem nuclei. NFTs precede for decades or years Aβ deposition and correlate with dementia in about 5% of individuals at the age of 65 and 25% at the age of 85. Based on these comparative data, (a) Aβ deposition is the most common Alzheimer's disease neuropathological change (ADNC) in the brain of aged mammals; (b) Hp-tau is less common, and NFTs are rare in most aged mammals; however, NFTs are the principal cytoskeletal pathology in aged humans; (c) NFT in aged humans starts in selected nuclei of the brain stem and paleocortical brain regions progressing to the most parts of the neocortex and other regions of the telencephalon; (d) human brain aging is unique among mammalian species due to the early appearance and dramatic progression of NFTs from middle age onward, matching with cognitive impairment and dementia in advanced cases; (e) neither mammalian nor human brain aging supports the concept of the amyloid cascade hypothesis.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, carrer Feixa Llarga sn, 08907 Hospitalet de Llobregat, Spain;
- Reial Acadèmia de Medicina de Catalunya, carrer del Carme 47, 08001 Barcelona, Spain
| |
Collapse
|
3
|
Tan Z, Garduño BM, Aburto PF, Chen L, Ha N, Cogram P, Holmes TC, Xu X. Cognitively impaired aged Octodon degus recapitulate major neuropathological features of sporadic Alzheimer's disease. Acta Neuropathol Commun 2022; 10:182. [PMID: 36529803 PMCID: PMC9761982 DOI: 10.1186/s40478-022-01481-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
The long-lived Chilean rodent (Octodon degus) has been reported to show spontaneous age-dependent neuropathology and cognitive impairments similar to those observed in human AD. However, the handful of published papers on degus of differing genetic backgrounds yield inconsistent findings about sporadic AD-like pathological features, with notably differing results between lab in-bred degus versus outbred degus. This motivates more extensive characterization of spontaneously occurring AD-like pathology and behavior in degus. In the present study, we show AD-like neuropathological markers in the form of amyloid deposits and tau abnormalities in a cognitively impaired subset of aged outbred degus. Compared to the aged degus that show normal burrowing behavior, the age-matched degus with burrowing behavior deficits correlatively exhibit detectable human AD-like Aβ deposits and tau neuropathology, along with neuroinflammatory markers that include enhanced microglial activation and higher numbers of reactive astrocytes in the brain. This subset of cognitively impaired aged degus also exhibits cerebral amyloid angiopathy and tauopathy. We find robust neurodegenerative features in behaviorally deficient aged degus, including hippocampal neuronal loss, altered parvalbumin and perineuronal net staining in the cortex, and increased c-Fos neuronal activation in the cortex that is consistent with the neural circuit hyperactivity reported in human AD patients. By focusing on the subset of aged degus that show AD-like behavioral deficits and correlative neuropathology, our findings establish outbred degus as a natural model of sporadic AD and demonstrate the potential importance of wild-type outbred genetic backgrounds for AD pathogenesis.
Collapse
Affiliation(s)
- Zhiqun Tan
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - B Maximiliano Garduño
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Pedro Fernández Aburto
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Lujia Chen
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Nicole Ha
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Patricia Cogram
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Todd C Holmes
- Department Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Xiangmin Xu
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Hoffman JM, Hernandez CM, Hernandez AR, Bizon JL, Burke SN, Carter CS, Buford TW. Bridging the Gap: A Geroscience Primer for Neuroscientists With Potential Collaborative Applications. J Gerontol A Biol Sci Med Sci 2022; 77:e10-e18. [PMID: 34653247 PMCID: PMC8751800 DOI: 10.1093/gerona/glab314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 11/13/2022] Open
Abstract
While neurodegenerative diseases can strike at any age, the majority of afflicted individuals are diagnosed at older ages. Due to the important impact of age in disease diagnosis, the field of neuroscience could greatly benefit from the many of the theories and ideas from the biology of aging-now commonly referred as geroscience. As discussed in our complementary perspective on the topic, there is often a "silo-ing" between geroscientists who work on understanding the mechanisms underlying aging and neuroscientists who are studying neurodegenerative diseases. While there have been some strong collaborations between the biology of aging and neuroscientists, there is still great potential for enhanced collaborative effort between the 2 fields. To this end, here, we review the state of the geroscience field, discuss how neuroscience could benefit from thinking from a geroscience perspective, and close with a brief discussion on some of the "missing links" between geroscience and neuroscience and how to remedy them. Notably, we have a corresponding, concurrent review from the neuroscience perspective. Our overall goal is to "bridge the gap" between geroscience and neuroscience such that more efficient, reproducible research with translational potential can be conducted.
Collapse
Affiliation(s)
- Jessica M Hoffman
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Caesar M Hernandez
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abbi R Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Bizon
- Department of Neuroscience and Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Sara N Burke
- Department of Neuroscience and Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Christy S Carter
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Nathan Shock Center for Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas W Buford
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Geriatric Research Education and Clinical Center, Birmingham Veteran's Affairs Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
5
|
Mitkevich VA, Barykin EP, Eremina S, Pani B, Katkova-Zhukotskaya O, Polshakov VI, Adzhubei AA, Kozin SA, Mironov AS, Makarov AA, Nudler E. Zn-dependent β-amyloid Aggregation and its Reversal by the Tetrapeptide HAEE. Aging Dis 2022; 14:309-318. [PMID: 37008059 PMCID: PMC10017155 DOI: 10.14336/ad.2022.0827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
The pathogenesis of Alzheimer's disease (AD) is associated with the formation of cerebral amyloid plaques, the main components of which are the modified Aβ molecules as well as the metal ions. Aβ isomerized at Asp7 residue (isoD7-Aβ) is the most abundant isoform in amyloid plaques. We hypothesized that the pathogenic effect of isoD7-Aβ is due to the formation of zinc-dependent oligomers, and that this interaction can be disrupted by the rationally designed tetrapeptide (HAEE). Here, we utilized surface plasmon resonance, nuclear magnetic resonance, and molecular dynamics simulation to demonstrate Zn2+-dependent oligomerization of isoD7-Aβ and the formation of a stable isoD7-Aβ:Zn2+:HAEE complex incapable of forming oligomers. To demonstrate the physiological importance of zinc-dependent isoD7-Aβ oligomerization and the ability of HAEE to interfere with this process at the organismal level, we employed transgenic nematodes overexpressing human Aβ. We show that the presence of isoD7-Aβ in the medium triggers extensive amyloidosis that occurs in a Zn2+-dependent manner, enhances paralysis, and shortens the animals' lifespan. Exogenous HAEE completely reverses these pathological effects of isoD7-Aβ. We conclude that the synergistic action of isoD7-Aβ and Zn2+ promotes Aβ aggregation and that the selected small molecules capable of interrupting this process, such as HAEE, can potentially serve as anti-amyloid therapeutics.
Collapse
Affiliation(s)
- Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Evgeny P Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Svetlana Eremina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, USA.
| | | | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia.
| | - Alexei A Adzhubei
- Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander S Mironov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, USA.
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, USA.
- Correspondence should be addressed to: Dr. Evgeny Nudler, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA. .
| |
Collapse
|
6
|
Rivera DS, Lindsay CB, Oliva CA, Bozinovic F, Inestrosa NC. A Multivariate Assessment of Age-Related Cognitive Impairment in Octodon degus. Front Integr Neurosci 2021; 15:719076. [PMID: 34526882 PMCID: PMC8437396 DOI: 10.3389/fnint.2021.719076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/23/2021] [Indexed: 01/27/2023] Open
Abstract
Aging is a progressive functional decline characterized by a gradual deterioration in physiological function and behavior. The most important age-related change in cognitive function is decline in cognitive performance (i.e., the processing or transformation of information to make decisions that includes speed of processing, working memory, and learning). The purpose of this study is to outline the changes in age-related cognitive performance (i.e., short-term recognition memory and long-term learning and memory) in long-lived Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects makes it a unique animal model for exploring the mechanisms underlying the behavioral and cognitive deficits related to natural aging. In this study, we examined young adult female degus (12- and 24-months-old) and aged female degus (38-, 56-, and 75-months-old) that were exposed to a battery of cognitive-behavioral tests. Multivariate analyses of data from the Social Interaction test or Novel Object/Local Recognition (to measure short-term recognition memory), and the Barnes maze test (to measure long-term learning and memory) revealed a consistent pattern. Young animals formed a separate group of aged degus for both short- and long-term memories. The association between the first component of the principal component analysis (PCA) from short-term memory with the first component of the PCA from long-term memory showed a significant negative correlation. This suggests age-dependent differences in both memories, with the aged degus having higher values of long-term memory ability but poor short-term recognition memory, whereas in the young degus an opposite pattern was found. Approximately 5% of the young and 80% of the aged degus showed an impaired short-term recognition memory; whereas for long-term memory about 32% of the young degus and 57% of the aged degus showed decreased performance on the Barnes maze test. Throughout this study, we outlined age-dependent cognitive performance decline during natural aging in degus. Moreover, we also demonstrated that the use of a multivariate approach let us explore and visualize complex behavioral variables, and identified specific behavioral patterns that allowed us to make powerful conclusions that will facilitate further the study on the biology of aging. In addition, this study could help predict the onset of the aging process based on behavioral performance.
Collapse
Affiliation(s)
- Daniela S Rivera
- GEMA Center for Genomics, Ecology and Environment, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Carolina B Lindsay
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina A Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
7
|
Taxonomic revision of the populations assigned to Octodon degus (Hystricomorpha: Octodontidae): With the designation of a neotype for Sciurus degus G. I. Molina, 1782 and the description of a new subspecies. ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Cuenca-Bermejo L, Pizzichini E, Gonçalves VC, Guillén-Díaz M, Aguilar-Moñino E, Sánchez-Rodrigo C, González-Cuello AM, Fernández-Villalba E, Herrero MT. A New Tool to Study Parkinsonism in the Context of Aging: MPTP Intoxication in a Natural Model of Multimorbidity. Int J Mol Sci 2021; 22:4341. [PMID: 33919373 PMCID: PMC8122583 DOI: 10.3390/ijms22094341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
The diurnal rodent Octodon degus (O. degus) is considered an attractive natural model for Alzheimer's disease and other human age-related features. However, it has not been explored so far if the O. degus could be used as a model to study Parkinson's disease. To test this idea, 10 adult male O. degus were divided into control group and MPTP-intoxicated animals. Motor condition and cognition were examined. Dopaminergic degeneration was studied in the ventral mesencephalon and in the striatum. Neuroinflammation was also evaluated in the ventral mesencephalon, in the striatum and in the dorsal hippocampus. MPTP animals showed significant alterations in motor activity and in visuospatial memory. Postmortem analysis revealed a significant decrease in the number of dopaminergic neurons in the ventral mesencephalon of MPTP animals, although no differences were found in their striatal terminals. We observed a significant increase in neuroinflammatory responses in the mesencephalon, in the striatum and in the hippocampus of MPTP-intoxicated animals. Additionally, changes in the subcellular expression of the calcium-binding protein S100β were found in the astrocytes in the nigrostriatal pathway. These findings prove for the first time that O. degus are sensitive to MPTP intoxication and, therefore, is a suitable model for experimental Parkinsonism in the context of aging.
Collapse
Affiliation(s)
- Lorena Cuenca-Bermejo
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| | - Elisa Pizzichini
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Department of Biology and Biotechnology “Charles Darwin” (BBCD), Sapienza, University of Rome, 00185 Rome, Italy
| | - Valeria C. Gonçalves
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - María Guillén-Díaz
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
| | - Elena Aguilar-Moñino
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
| | - Consuelo Sánchez-Rodrigo
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| | - Ana-María González-Cuello
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| | - Emiliano Fernández-Villalba
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| | - María Trinidad Herrero
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
9
|
Cadenillas R, D'Elía G. The number of species of degus (genus Octodon) is currently underestimated: An appraisal of species limits and their phylogenetic relationships (Rodentia: Hystricomorpha: Octodontidae). Mol Phylogenet Evol 2021; 159:107111. [PMID: 33607277 DOI: 10.1016/j.ympev.2021.107111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 01/04/2023]
Abstract
As currently understood, the genus Octodon contains five species degus, lunatus, bridgesii, pacificus, and ricardojeda. Previous phylogenetic studies suggest that genus specific diversity is underestimated. In order to evaluate the taxonomic diversity of Octodon, we implemented unilocus (cytochrome-b) and multilocus (cytochrome-b + 4 nuclear genes) species delimitation methods. Octodon degus was recovered as a sister of the other species of the genus. The unilocus bGMYC and mPTP methods, based on cytochrome-b sequences, delimits 11 and 7 candidate species respectively, and both methods fail to recognize O. pacificus from O. ricardojeda. Results of the multilocus analysis (BPP) vary as a function of the dataset used. When the five genes are used 11 species are delimited, while eight species are delimited when only the nuclear genes are used. Octodon bridgesii is shown as comprising at least two species (one on the Pacific coast and the typical form found on the Andean slopes), while O. ricardojeda may comprise two species (one on the Chilean side of the Andes and the other in Argentina). Likewise, both multilocus matrices recover O. pacificus as a distinct species. This shows that species diversity of Octodon is underestimated. Remarkably, many of the delimited species based on genetic data are morphologically differentiated in cranio-dental characteristics. However, a pair of species has not achieved morphological differentiation, being cryptic species. Finally, the incongruence between mitochondrial and nuclear phylogenies suggests that processes such as incomplete lineage sorting and/or introgression have been present during the radiation of the genus.
Collapse
Affiliation(s)
- Richard Cadenillas
- Doctorado en Ciencias, Mención Ecología y Evolución, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia 5090000, Chile; Instituto de Paleontología, Universidad Nacional de Piura, Piura 20002, Peru.
| | - Guillermo D'Elía
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia 5090000, Chile.
| |
Collapse
|
10
|
Ershov PV, Mezentsev YV, Yablokov EO, Kaluzgskiy LA, Ivanov AS, Gnuchev NV, Mitkevich VA, Makarov AA, Kozin SA. Direct Molecular Fishing of Zinc-Dependent Protein Partners of Amyloid-beta 1–16 with the Taiwan (D7H) Mutation and Phosphorylated Ser8 Residue. Mol Biol 2021. [DOI: 10.1134/s0026893320060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Octodon degus: a natural model of multimorbidity for ageing research. Ageing Res Rev 2020; 64:101204. [PMID: 33152453 DOI: 10.1016/j.arr.2020.101204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Integrating the multifactorial processes co-occurring in both physiological and pathological human conditions still remains one of the main challenges in translational investigation. Moreover, the impact of age-associated disorders has increased, which underlines the urgent need to find a feasible model that could help in the development of successful therapies. In this sense, the Octodon degus has been indicated as a 'natural' model in many biomedical areas, especially in ageing. This rodent shows complex social interactions and high sensitiveness to early-stressful events, which have been used to investigate neurodevelopmental processes. Interestingly, a high genetic similarity with some key proteins implicated in human diseases, such as apolipoprotein-E, β-amyloid or insulin, has been demonstrated. On the other hand, the fact that this animal is diurnal has provided important contribution in the field of circadian biology. Concerning age-related diseases, this rodent could be a good model of multimorbidity since it naturally develops cognitive decline, neurodegenerative histopathological hallmarks, visual degeneration, type II diabetes, endocrinological and metabolic dysfunctions, neoplasias and kidneys alterations. In this review we have collected and summarized the studies performed on the Octodon degus through the years that support its use as a model for biomedical research, with a special focus on ageing.
Collapse
|
12
|
Chang LYL, Ardiles AO, Tapia-Rojas C, Araya J, Inestrosa NC, Palacios AG, Acosta ML. Evidence of Synaptic and Neurochemical Remodeling in the Retina of Aging Degus. Front Neurosci 2020; 14:161. [PMID: 32256305 PMCID: PMC7095275 DOI: 10.3389/fnins.2020.00161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulation of amyloid-beta (Aβ) peptides is regarded as the hallmark of neurodegenerative alterations in the brain of Alzheimer’s disease (AD) patients. In the eye, accumulation of Aβ peptides has also been suggested to be a trigger of retinal neurodegenerative mechanisms. Some pathological aspects associated with Aβ levels in the brain are synaptic dysfunction, neurochemical remodeling and glial activation, but these changes have not been established in the retina of animals with Aβ accumulation. We have employed the Octodon degus in which Aβ peptides accumulated in the brain and retina as a function of age. This current study investigated microglial morphology, expression of PSD95, synaptophysin, Iba-1 and choline acetyltransferase (ChAT) in the retina of juvenile, young and adult degus using immunolabeling methods. Neurotransmitters glutamate and gamma-aminobutyric acid (GABA) were detected using immunogold labeling and glutamate receptor subunits were quantified using Western blotting. There was an age-related increase in presynaptic and a decrease in post-synaptic retinal proteins in the retinal plexiform layers. Immunolabeling showed changes in microglial morphology characteristic of intermediate stages of activation around the optic nerve head (ONH) and decreasing activation toward the peripheral retina. Neurotransmitter expression pattern changed at juvenile ages but was similar in adults. Collectively, the results suggest that microglial activation, synaptic remodeling and neurotransmitter changes may be consequent to, or parallel to Aβ peptide and phosphorylated tau accumulation in the retina.
Collapse
Affiliation(s)
- Lily Y-L Chang
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - Alvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Cheril Tapia-Rojas
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Center for Aging and Regeneration, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joaquin Araya
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Nibaldo C Inestrosa
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Center for Aging and Regeneration, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Monica L Acosta
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand.,New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand.,Faculty of Medical and Health Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, Auckland, New Zealand
| |
Collapse
|
13
|
|
14
|
Cisternas P, Zolezzi JM, Lindsay C, Rivera DS, Martinez A, Bozinovic F, Inestrosa NC. New Insights into the Spontaneous Human Alzheimer's Disease-Like Model Octodon degus: Unraveling Amyloid-β Peptide Aggregation and Age-Related Amyloid Pathology. J Alzheimers Dis 2019; 66:1145-1163. [PMID: 30412496 DOI: 10.3233/jad-180729] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Despite advances in our understanding of the molecular milieu driving AD pathophysiology, no effective therapy is currently available. Moreover, various clinical trials have continued to fail, suggesting that our approach to AD must be revised. Accordingly, the development and validation of new models are highly desirable. Over the last decade, we have been working with Octodon degus (degu), a Chilean rodent, which spontaneously develops AD-like neuropathology, including increased amyloid-β (Aβ) aggregates, tau hyperphosphorylation, and postsynaptic dysfunction. However, for proper validation of degu as an AD model, the aggregation properties of its Aβ peptide must be analyzed. Thus, in this study, we examined the capacity of the degu Aβ peptide to aggregate in vitro. Then, we analyzed the age-dependent variation in soluble Aβ levels in the hippocampus and cortex of third- to fifth-generation captive-born degu. We also assessed the appearance and spatial distribution of amyloid plaques in O. degus and compared them with the plaques in two AD transgenic mouse models. In agreement with our previous studies, degu Aβ was able to aggregate, forming fibrillar species in vitro. Furthermore, amyloid plaques appeared in the anterior brain structures of O. degus at approximately 32 months of age and in the whole brain at 56 months, along with concomitant increases in Aβ levels and the Aβ42/Aβ40 ratio, indicating that O. degus spontaneously develops AD-like pathology earlier than other spontaneous models. Based on these results, we can confirm that O. degus constitutes a valuable model to improve AD research.
Collapse
Affiliation(s)
- Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Lindsay
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela S Rivera
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Ecología Aplicada y Sustentabilidad (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Martinez
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Centro de Ecología Aplicada y Sustentabilidad (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro UC-Síndrome de Down, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
15
|
Palanca-Castan N, Harcha PA, Neira D, Palacios AG. Chromatic pupillometry for the characterization of the pupillary light reflex in Octodon degus. Exp Eye Res 2019; 190:107866. [PMID: 31682845 DOI: 10.1016/j.exer.2019.107866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/06/2019] [Accepted: 10/28/2019] [Indexed: 11/25/2022]
Abstract
The common degu (Octodon degus) is an emerging model in biomedical science research due to its longevity and propensity to develop human-like conditions. However, there is a lack of standardized techniques for this non-traditional laboratory animal. In an effort to characterize the model, we developed a chromatic pupillometry setup and analysis protocol to characterize the pupillary light reflex (PLR) in our animals. The PLR is a biomarker to detect early signs for central nervous system deterioration. Chromatic pupillometry is a non-invasive and anesthesia-free method that can evaluate different aspects of the PLR, including the response of intrinsically photosensitive retinal ganglion cells (ipRGCs), the disfunction of which has been linked to various disorders. We studied the PLR of 12 degus between 6 and 48 months of age to characterize responses to LEDs of 390, 450, 500, 525 and 605 nm, and used 5 with overall better responses to establish a benchmark for healthy PLR (PLR+) and deteriorated PLR (PLR-). Degu pupils contracted up to 65% of their horizontal resting size before reaching saturation. The highest sensitivity was found at 500 nm, with similar sensitivities at lower tested intensities for 390 nm, coinciding with the medium wavelength and short wavelength cones of the degu. We also tested the post-illumination pupillary response (PIPR), which is driven exclusively by ipRGCs. PIPR was largest in response to 450 nm light, with the pupil preserving 48% of its maximum constriction 9 s after the stimulus, in contrast with 24% preserved in response to 525 nm, response driven mainly by cones. PLR- animals showed maximum constriction between 40% and 50% smaller than PLR+, and their PIPR almost disappeared, pointing to a disfunction of the iPRGCs rather than the retinal photoreceptors. Our method thus allows us to non-invasively estimate the condition of experimental animals before attempting other procedures.
Collapse
Affiliation(s)
- Nicolas Palanca-Castan
- Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso, Chile.
| | - Paloma A Harcha
- Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso, Chile
| | - David Neira
- Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso, Chile
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso, Chile
| |
Collapse
|
16
|
The long-lived Octodon degus as a rodent drug discovery model for Alzheimer's and other age-related diseases. Pharmacol Ther 2018. [PMID: 29514054 DOI: 10.1016/j.pharmthera.2018.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial progressive neurodegenerative disease. Despite decades of research, no disease modifying therapy is available and a change of research objectives and/or development of novel research tools may be required. Much AD research has been based on experimental models using animals with a short lifespan that have been extensively genetically manipulated and do not represent the full spectrum of late-onset AD, which make up the majority of cases. The aetiology of AD is heterogeneous and involves multiple factors associated with the late-onset of the disease like disturbances in brain insulin, oxidative stress, neuroinflammation, metabolic syndrome, retinal degeneration and sleep disturbances which are all progressive abnormalities that could account for many molecular, biochemical and histopathological lesions found in brain from patients dying from AD. This review is based on the long-lived rodent Octodon degus (degu) which is a small diurnal rodent native to South America that can spontaneously develop cognitive decline with concomitant phospho-tau, β-amyloid pathology and neuroinflammation in brain. In addition, the degu can also develop several other conditions like type 2 diabetes, macular and retinal degeneration and atherosclerosis, conditions that are often associated with aging and are often comorbid with AD. Long-lived animals like the degu may provide a more realistic model to study late onset AD.
Collapse
|