1
|
Sharma SD, Hum RM, Nair N, Marshall L, Storrie A, Bowes J, MacGregor A, Yates M, Morris AP, Verstappen S, Barton A, van Steenbergen H, Knevel R, van der Helm-van Mil A, Viatte S. Systematic review and independent validation of genetic factors of radiographic outcome in rheumatoid arthritis identifies a genome-wide association with CARD9. Ann Rheum Dis 2025:S0003-4967(25)00897-0. [PMID: 40345877 DOI: 10.1016/j.ard.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/26/2025] [Accepted: 04/05/2025] [Indexed: 05/11/2025]
Abstract
OBJECTIVES This study aimed to investigate non-HLA genetic mechanisms underlying radiographic severity in rheumatoid arthritis (RA). METHODS A systematic review of publications reporting non-HLA genetic associations with radiographic severity in RA across ancestries was undertaken. Experimental validation was performed in the Norfolk Arthritis Register, comprising 1407 patients with available genetic and treatment data followed prospectively for up to 10 years, with 2198 longitudinal radiographs. Genome-wide genotyping was performed with Illumina Human Core Exome Array. Radiographic outcomes (presence of erosions; Larsen score) were modelled longitudinally. Fine mapping and functional annotations to refine associations to potential causative loci were undertaken using FUMA, PolyPhen2, and RegulomeDB. RESULTS The systematic review identified 102 publications reporting 139 independent associations with radiographic outcome. Association with 15 independent polymorphisms were replicated in the Norfolk Arthritis Register data set, implicating adaptive immune processes (Th1, Th2, and Th17 pathways), cytokine regulation, and osteoclast differentiation. Notably, we refined the association of rs59902911 at the CARD9 locus to an intronic polymorphism within an active enhancer (rs78892335), achieving genome-wide significance and with an effect size exceeding the minimal clinically important difference for each copy of the minor allele (4.78 Larsen units/copy; 95% CI, 3.15-6.41; p = 9.01 × 10-9). This polymorphism is associated with the expression of CARD9 in immune cells, including B cells. CONCLUSIONS We provide a comprehensive list of validated genetic associations with RA outcome and demonstrate that non-HLA polymorphisms can associate with radiographic severity independently of disease susceptibility. This highlights the importance of dedicated genetic outcome studies for patient stratification in precision medicine for RA.
Collapse
Affiliation(s)
- Seema Devi Sharma
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Ryan Malcolm Hum
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Nisha Nair
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Lysette Marshall
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom
| | - Alice Storrie
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Alexander MacGregor
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; Department of Rheumatology, Norfolk and Norwich University Hospital, United Kingdom
| | - Max Yates
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; Department of Rheumatology, Norfolk and Norwich University Hospital, United Kingdom
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Suzanne Verstappen
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Hanna van Steenbergen
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rachel Knevel
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sebastien Viatte
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
2
|
Lv S, Li Y, Sun B, Jing Y, Wang X, Gu Z, Wang B, Xiao C. Association of RIPK1 and RIPK2 Gene Polymorphisms with Rheumatoid Arthritis in a Chinese Han Population. Appl Clin Genet 2024; 17:159-169. [PMID: 39444708 PMCID: PMC11498044 DOI: 10.2147/tacg.s472418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Objects Rheumatoid arthritis (RA) is a systemic autoimmune disease with an obscure pathogenesis. This study aims to identify the susceptibility conferred by specific single nucleotide polymorphisms (SNPs), namely rs17548629 within the RIPK1 gene and rs10094579 within the RIPK2 gene, in RA. Additionally, it investigates the associations between inflammatory markers and biochemical parameters at various stages of the disease. Methods We analyzed 394 patients with RA and 258 normal controls (NCs), examining SNPs within the RIPK1 (rs17548629) and RIPK2 (rs10094579) genes using polymerase chain reaction (PCR) and sequencing techniques. Profiles of RA patients were evaluated for inflammatory markers, including C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), as well as biochemical parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, glucose, uric acid, and creatinine. Additionally, disease-specific indicators included cyclic citrullinated peptide (CCP), rheumatoid factor (RF), antinuclear antibodies (ANA), and anti-keratin antibodies. The Disease Activity Score 28 (DAS28), based on ESR, was used to categorize RA patients into groups of high, moderate, or low disease activity. Results We found a significant association between the RIPK1 rs17548629 genotype and RA in the additive model (p < 0.001; OR = 3.23), over-dominant model (p < 0.001; OR = 0.27), and dominant model (p < 0.001; OR = 3.94). The frequency of the C allele at rs17548629 was significantly higher in NCs than in RA patients (p < 0.001; OR = 0.322). When compared with normal controls, the RIPK1 rs17548629 genotype demonstrated significant associations with both anti-CCP-positive RA patients (p < 0.001) and anti-CCP-negative RA patients (p < 0.001). Similarly, this genotype was associated with RF-positive RA patients (p < 0.001). Furthermore, the RIPK2 rs10094579 genotype was significantly associated with CRP levels in RA patients with low disease activity in the over-dominant model (p = 0.029; OR = 0.065, adjusted for age and sex). Conclusion The presence of the RIPK1 rs17548629 genotype is associated with RA under additive, co-dominant, and dominant models. The T allele mutation at rs17548629 increases the risk of RA in the Chinese population. The RIPK1 rs17548629 genotype was identified as being associated with RF-positive RA patients, whereas no significant association was observed in RF-negative individuals. These findings suggest that this SNP may modulate the risk of RA in an RF-dependent manner. Furthermore, the RIPK2 rs10094579 genotype correlates with CRP levels in RA patients exhibiting low disease activity. This association underscores the necessity for caution when reducing the dosage of therapy in RA patients with low disease activity who carry the CA genotype at RIPK2 rs10094579. Additional research is warranted to explore other genotypes that may influence RA susceptibility and to refine potential treatment strategies.
Collapse
Affiliation(s)
- Shuang Lv
- Department of Rheumatology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Yiming Li
- Department of Cardiovascular, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Bojian Sun
- Department of Rheumatology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Yu Jing
- Department of Rheumatology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Xing Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Zhanqing Gu
- Department of Rheumatology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Bailiang Wang
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Tebeka S, Gloaguen E, Mullaert J, He Q, Boland A, Deleuze JF, Jamet C, Ramoz N, Dubertret C. Genome-wide association study of early-onset and late-onset postpartum depression: the IGEDEPP prospective study. Eur Psychiatry 2024; 67:1-36. [PMID: 38555957 PMCID: PMC11059250 DOI: 10.1192/j.eurpsy.2024.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Postpartum depression (PPD) appears at two peak periods: early-onset prior to 2 months after delivery and late-onset (2 months after delivery and beyond). The aim of our study is to evaluate the different genetic factors associated with early- and late-onset PPD. With the French multicenter interaction of gene and environment of depression during postpartum (IGEDEPP) cohort, we conducted a genome-wide association study (GWAS) on 234 women with early-onset PPD and 223 women with late-onset PPD, as well as 1,204 controls with no history of lifetime depression. We performed post-GWAS analyses: functional mapping and annotation of GWAS results using MAGMA thanks to Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA), expression quantitative trait loci (QTL) analyses, mapping using data from the PsychENCODE and GTEx, and polygenic risk score (PRS) analysis based on published GWAS. We found two new significant candidate loci for early-onset PPD, rs6436132 in PTPRN gene on chromosome 2 and rs184644645 in RAD18 on chromosome 14, respectively, and one region of interest with five significant associated SNPs in chromosome 20 for late-onset PPD. Variant rs6436132 is the most significant associated with early-onset PPD, and it is a QTL that significantly modifies the expression and splicing of the PTPRN gene in different brain tissues. We also found an enrichment of uterus tissue in the early expression of PPD genes. PRS analysis showed a genetic overlap between both early and late-onset PPD and major depressive disorder, but only early-onset PPD overlaps with bipolar disorder. Our study presents two GWAS separately, highlighting two candidate loci for early-onset PPD and one different region of interest for late-onset PPD. These results have important consequences in our understanding of these disorders, especially since our data reinforce the hormonal pathophysiological hypotheses for early-onset PPD.
Collapse
Affiliation(s)
- Sarah Tebeka
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, team 1, 75014 Paris, France
- Department of Psychiatry, AP-HP, Louis Mourier Hospital, Colombes, France
| | - Emilie Gloaguen
- Department of Epidemiology, Biostatistics and Clinical Research, AP-HP, Hôpital Bichat, Paris, France
| | - Jimmy Mullaert
- Department of Epidemiology, Biostatistics and Clinical Research, AP-HP, Hôpital Bichat, Paris, France
- IAME, INSERM, Université Paris Cité, Paris, France
| | - Qin He
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, team 1, 75014 Paris, France
| | - Anne Boland
- CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, Evry, France
| | - Jean-Francois Deleuze
- CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, Evry, France
| | - Camille Jamet
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, team 1, 75014 Paris, France
- Department of Psychiatry, AP-HP, Louis Mourier Hospital, Colombes, France
| | - Nicolas Ramoz
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, team 1, 75014 Paris, France
| | - Caroline Dubertret
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, team 1, 75014 Paris, France
- Department of Psychiatry, AP-HP, Louis Mourier Hospital, Colombes, France
| |
Collapse
|
4
|
Galita G, Sarnik J, Brzezinska O, Budlewski T, Poplawska M, Sakowski S, Dudek G, Majsterek I, Makowska J, Poplawski T. The Association between Inefficient Repair of DNA Double-Strand Breaks and Common Polymorphisms of the HRR and NHEJ Repair Genes in Patients with Rheumatoid Arthritis. Int J Mol Sci 2024; 25:2619. [PMID: 38473866 DOI: 10.3390/ijms25052619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation affecting up to 2.0% of adults around the world. The molecular background of RA has not yet been fully elucidated, but RA is classified as a disease in which the genetic background is one of the most significant risk factors. One hallmark of RA is impaired DNA repair observed in patient-derived peripheral blood mononuclear cells (PBMCs). The aim of this study was to correlate the phenotype defined as the efficiency of DNA double-strand break (DSB) repair with the genotype limited to a single-nucleotide polymorphism (SNP) of DSB repair genes. We also analyzed the expression level of key DSB repair genes. The study population contained 45 RA patients and 45 healthy controls. We used a comet assay to study DSB repair after in vitro exposure to bleomycin in PBMCs from patients with rheumatoid arthritis. TaqMan SNP Genotyping Assays were used to determine the distribution of SNPs and the Taq Man gene expression assay was used to assess the RNA expression of DSB repair-related genes. PBMCs from patients with RA had significantly lower bleomycin-induced DNA lesion repair efficiency and we identified more subjects with inefficient DNA repair in RA compared with the control (84.5% vs. 24.4%; OR 41.4, 95% CI, 4.8-355.01). Furthermore, SNPs located within the RAD50 gene (rs1801321 and rs1801320) increased the OR to 53.5 (95% CI, 4.7-613.21) while rs963917 and rs3784099 (RAD51B) to 73.4 (95% CI, 5.3-1011.05). These results were confirmed by decision tree (DT) analysis (accuracy 0.84; precision 0.87, and specificity 0.86). We also found elevated expression of RAD51B, BRCA1, and BRCA2 in PBMCs isolated from RA patients. The findings indicated that impaired DSB repair in RA may be related to genetic variations in DSB repair genes as well as their expression levels. However, the mechanism of this relation, and whether it is direct or indirect, needs to be elucidated.
Collapse
Affiliation(s)
- Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Joanna Sarnik
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland
| | - Olga Brzezinska
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland
| | - Tomasz Budlewski
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland
| | - Marta Poplawska
- Biobank, Department of Immunology and Allergy, Medical University of Lodz, 92-213 Lodz, Poland
| | - Sebastian Sakowski
- Faculty of Mathematics and Computer Science, University of Lodz, 90-238 Lodz, Poland
- Centre for Data Analysis, Modelling and Computational Sciences, University of Lodz, 90-128 Lodz, Poland
| | - Grzegorz Dudek
- Faculty of Mathematics and Computer Science, University of Lodz, 90-238 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Joanna Makowska
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland
| | - Tomasz Poplawski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
5
|
Mikhaylenko DS, Nemtsova MV, Bure IV, Kuznetsova EB, Alekseeva EA, Tarasov VV, Lukashev AN, Beloukhova MI, Deviatkin AA, Zamyatnin AA. Genetic Polymorphisms Associated with Rheumatoid Arthritis Development and Antirheumatic Therapy Response. Int J Mol Sci 2020; 21:E4911. [PMID: 32664585 PMCID: PMC7402327 DOI: 10.3390/ijms21144911] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common inflammatory arthropathy worldwide. Possible manifestations of RA can be represented by a wide variability of symptoms, clinical forms, and course options. This multifactorial disease is triggered by a genetic predisposition and environmental factors. Both clinical and genealogical studies have demonstrated disease case accumulation in families. Revealing the impact of candidate gene missense variants on the disease course elucidates understanding of RA molecular pathogenesis. A multivariate genomewide association study (GWAS) based analysis identified the genes and signalling pathways involved in the pathogenesis of the disease. However, these identified RA candidate gene variants only explain 30% of familial disease cases. The genetic causes for a significant proportion of familial RA have not been determined until now. Therefore, it is important to identify RA risk groups in different populations, as well as the possible prognostic value of some genetic variants for disease development, progression, and treatment. Our review has two purposes. First, to summarise the data on RA candidate genes and the increased disease risk associated with these alleles in various populations. Second, to describe how the genetic variants can be used in the selection of drugs for the treatment of RA.
Collapse
Affiliation(s)
- Dmitry S. Mikhaylenko
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Marina V. Nemtsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Irina V. Bure
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
| | - Ekaterina B. Kuznetsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Ekaterina A. Alekseeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Vadim V. Tarasov
- Department of Pharmacology and Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Alexander N. Lukashev
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Marina I. Beloukhova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
| | - Andrei A. Deviatkin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
6
|
Machaj F, Rosik J, Szostak B, Pawlik A. The evolution in our understanding of the genetics of rheumatoid arthritis and the impact on novel drug discovery. Expert Opin Drug Discov 2019; 15:85-99. [PMID: 31661990 DOI: 10.1080/17460441.2020.1682992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Rheumatoid arthritis (RA) is an autoimmune disease that is characterized by chronic inflammation of the joints and affects 1% of the population. Polymorphisms of genes that encode proteins that primarily participate in inflammation may influence RA occurrence or become useful biomarkers for certain types of anti-rheumatic treatment.Areas covered: The authors summarize the recent progress in our understanding of the genetics of RA. In the last few years, multiple variants of genes that are associated with RA risk have been identified. The development of new technologies and the detection of new potential therapeutic targets that contribute to novel drug discovery are also described.Expert opinion: There is still the need to search for new genes which may be a potential target for RA therapy. The challenge is to develop appropriate strategies for achieving insight into the molecular pathways involved in RA pathogenesis. Understanding the genetics, immunogenetics, epigenetics and immunology of RA could help to identify new targets for RA therapy. The development of new technologies has enabled the detection of a number of new genes, particularly genes associated with proinflammatory cytokines and chemokines, B- and T-cell activation pathways, signal transducers and transcriptional activators, which might be potential therapeutic targets in RA.
Collapse
Affiliation(s)
- Filip Machaj
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
7
|
KDR (VEGFR2) Genetic Variants and Serum Levels in Patients with Rheumatoid Arthritis. Biomolecules 2019; 9:biom9080355. [PMID: 31405022 PMCID: PMC6727087 DOI: 10.3390/biom9080355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022] Open
Abstract
We investigated kinase insert domain-containing receptor (KDR) polymorphisms and protein levels in relation to susceptibility to and severity of Rheumatoid Arthritis (RA). 641 RA patients and 340 controls (HC) were examined for the rs1870377 KDR variant by the polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method and for rs2305948 and rs2071559 KDR single nucleotide polymorphisms (SNPs) by TaqMan SNP genotyping assay. KDR serum levels were determined by enzyme-linked immunosorbent assay (ELISA). The rs1870377 KDR variant has shown association with RA under the codominant (p = 0.02, OR = 1.76, 95% CI = 1.09–2.85) and recessive models (p = 0.019, OR = 1.53, 95% CI = 1.07–2.20). KDR rs2305948 was associated with RA under the dominant model (p = 0.005, OR = 1.38, 95% CI = 1.10–1.73). Under the codominant model, the frequency of the rs2071559 TC and GG genotypes were lower in RA patients than in controls (p < 0.001, OR = 0.51, 95% CI = 0.37–0.69, and p = 0.002, OR = 0.57, 95% CI = 0.39–0.81). KDR rs2071559 T and rs2305948 A alleles were associated with RA (p = 0.001, OR = 0.60, 95% CI = 0.45–0.81 and p = 0.008, OR = 1.71, CI = 1.15–2.54). KDR rs2305948SNP was associated with Disease Activity Score (DAS)-28 score (p < 0.001), Visual Analog Scale (VAS) score (p < 0.001), number of swollen joints (p < 0.001), mean value of CRP (p < 0.001). A higher KDR serum level was found in RA patients than in HC (8018 pg/mL versus 7381 pg/mL, p = 0.002). Present results shed light on the role of KDR genetic variants in the severity of RA.
Collapse
|
8
|
RAD51B (rs8017304 and rs2588809), TRIB1 (rs6987702, rs4351379, and rs4351376), COL8A1 (rs13095226), and COL10A1 (rs1064583) Gene Variants with Predisposition to Age-Related Macular Degeneration. DISEASE MARKERS 2019; 2019:5631083. [PMID: 31191752 PMCID: PMC6525907 DOI: 10.1155/2019/5631083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/27/2019] [Indexed: 12/16/2022]
Abstract
Background Age-related macular degeneration (AMD) is a progressive neurodegenerative disease of a central part of the neural retina (macula) and a leading cause of blindness in elderly people. While it is known that the AMD is a multifactorial disease, genetic factors involved in lipid metabolism, inflammation, and neovascularization are currently being widely studied in genome-wide association studies (GWAS). The aim of our study was to evaluate the impact of new single nucleotide polymorphisms (SNPs) in RAD51B, TRIB1, COL8A1, and COL10A1 genes on AMD development. Methods Case-control study involved 254 patients diagnosed with early AMD, 244 patients with exudative AMD, and 942 control subjects. The genotyping of RAD51B (rs8017304 and rs2588809), TRIB1 (rs6987702, rs4351379, and rs4351376), COL8A1 (rs13095226), and COL10A1 (rs1064583) was carried out using TaqMan assays by a real-time polymerase chain reaction (RT-PCR) method. Results Statistically significant difference was found in genotype (TT, TC, and CC) distribution of COL8A1 rs13095226 between exudative AMD and control groups (60.2%, 33.6%, and 6.1% vs. 64.9%, 32.3%, and 2.9%, respectively, p = 0.036). Also, comparing with TT+TC, rs13095226 CC genotype was associated with 3.5-fold increased odds of exudative AMD development (OR = 3.540; 95% CI: 1.415-8.856; p = 0.007). Conclusion Our study revealed a strong association between a variant in COL8A1 (rs13095226) and exudative AMD development.
Collapse
|