1
|
González-Vila A, Ibrahim-Alasoufi AM, Luengo-Mateos M, Pardo-García V, Diaz-López A, Fernández-Rodríguez B, Poutanen M, Ohlsson C, Tena-Sempere M, Diéguez-González C, García-García MDC, Barca-Mayo O. IL-6 decodes sex and diet-dependent circadian and metabolic rhythms. Mol Metab 2025; 97:102171. [PMID: 40412648 DOI: 10.1016/j.molmet.2025.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/10/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025] Open
Abstract
OBJECTIVE Interleukin-6 (IL-6) is a pleiotropic cytokine involved in immune regulation and energy metabolism. Its diurnal secretion influences core circadian components, emphasizing its critical role in circadian biology. Despite known sex differences in immune, circadian, and metabolic processes, how IL-6 integrates these processes remains poorly understood. METHODS IL6 knockout (KO) and control mice of both sexes were phenotyped for circadian and metabolic traits under standard (STD) and high-fat diet (HFD), fasting, and time-restricted feeding. Molecular analyses in muscle, liver, and hypothalamus assessed clock gene expression and IL-6 signaling pathway. Circulating sex steroid hormones were quantified to examine their contribution to the observed sex-specific phenotypes. RESULTS IL-6 deficiency disrupts circadian locomotor and metabolic rhythms in a sex- and diet-dependent manner. Males exhibit impaired light-driven circadian rhythms under STD conditions and metabolic misalignment under HFD, whereas females display greater circadian resilience under STD conditions but increased vulnerability to circadian disruption during HFD. Additionally, IL-6 emerges as a novel regulator of the food-entrainable oscillator (FEO), linking food anticipatory activity and metabolic cycles under both STD and HFD in a sex-dependent manner. CONCLUSIONS These findings identify IL-6 as a critical mediator of circadian-metabolic plasticity, shaping sex- and diet-specific trade-offs between circadian stability and metabolic homeostasis. Our study highlights IL-6 as a potential therapeutic target for mitigating circadian misalignment-associated metabolic disorders, with implications for the timed modulation of IL-6 signaling.
Collapse
Affiliation(s)
- Antía González-Vila
- Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ali Mohammad Ibrahim-Alasoufi
- Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain; Biology Department, Al-Hussein Bin Talal University, Ma'an, Jordan
| | - María Luengo-Mateos
- Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Víctor Pardo-García
- Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alejandro Diaz-López
- Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Belén Fernández-Rodríguez
- Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Matti Poutanen
- Research Center for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland; Turku Center for Disease Modeling, Turku, Finland
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Diéguez-González
- Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María Del Carmen García-García
- Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Olga Barca-Mayo
- Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Alhazzani K, Mohammed H, Algahtani MM, Aljerian K, Alhoshani A, As Sobeai HM, Ahamad SR, Alotaibi MR, Alhamed AS, Alasmari F, Alqinyah M, Alhamami HN, Alanazi AZ. Integrating Metabolomics, Histopathology, and Cardiac Marker Analysis to Assess Valsartan's Efficacy in Mitigating Dasatinib-Induced Cardiac Toxicity in Sprague-Dawley Rats. Drug Des Devel Ther 2024; 18:5641-5654. [PMID: 39654603 PMCID: PMC11626959 DOI: 10.2147/dddt.s497212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
Background Dasatinib (DASA) is associated with cardiotoxic effects, posing risks to patients. Valsartan (VAL) may offer protective benefits against these effects. This study evaluates the impact of DASA, VAL, and their combination on cardiac health. Methods Wistar rats were treated with DASA, VAL, and a combination of VAL and DASA intraperitoneally every other day for 14 days. Body weight and survival rates were monitored. Serum levels of cardiac biomarkers (CPK, LDH, AST) were analyzed. Histopathological and immunohistochemical analyses assessed myocardial architecture and apoptosis-related protein expression. Metabolomic profiling was conducted using GC-MS to identify metabolic changes across treatment groups. Results The DASA group experienced significant weight loss and a 50% mortality rate, while the combination group had no mortality. Cardiac biomarkers like CPK, LDH, and AST were elevated in the DASA group but significantly reduced in the VAL + DASA group. Histopathological examination showed significant myocardial injury in the DASA group, with improved cardiac tissue morphology in the combination group. Immunohistochemical analysis revealed altered expression of apoptosis-related proteins, including caspase-3 and BCL-2, with improved levels in the combination group compared to DASA alone. Metabolomic profiling identified significant metabolic shifts, with 15 metabolites differentiating the treatment groups, and the VAL + DASA group mitigated the metabolic disturbances caused by DASA. Conclusion The study suggesting VAL's potential therapeutic role in managing DASA-induced cardiac toxicity. The combination of VAL with DASA not only improved survival rates and reduced cardiac biomarker levels but also preserved myocardial architecture and normalized metabolic profiles. These findings highlight the importance of integrated approaches in evaluating drug efficacy and suggest VAL as a promising candidate for protecting cardiac function in preclinical models of DASA therapy.
Collapse
Affiliation(s)
- Khalid Alhazzani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Mohammed
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Algahtani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaldoon Aljerian
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ali Alhoshani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Homood M As Sobeai
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Moureq R Alotaibi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hussain N Alhamami
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Suarez LM, Diaz-Del Cerro E, Felix J, Gonzalez-Sanchez M, Ceprian N, Guerra-Perez N, G Novelle M, Martinez de Toda I, De la Fuente M. Sex differences in neuroimmunoendocrine communication. Involvement on longevity. Mech Ageing Dev 2023; 211:111798. [PMID: 36907251 DOI: 10.1016/j.mad.2023.111798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Endocrine, nervous, and immune systems work coordinately to maintain the global homeostasis of the organism. They show sex differences in their functions that, in turn, contribute to sex differences beyond reproductive function. Females display a better control of the energetic metabolism and improved neuroprotection and have more antioxidant defenses and a better inflammatory status than males, which is associated with a more robust immune response than that of males. These differences are present from the early stages of life, being more relevant in adulthood and influencing the aging trajectory in each sex and may contribute to the different life lifespan between sexes.
Collapse
Affiliation(s)
- Luz M Suarez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.
| | - Estefania Diaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Judith Felix
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Monica Gonzalez-Sanchez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Noemi Ceprian
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Natalia Guerra-Perez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Marta G Novelle
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain
| | - Irene Martinez de Toda
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Monica De la Fuente
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| |
Collapse
|
4
|
Barco VS, Gallego FQ, Paula VG, Sinzato YK, Cruz LL, Souza MR, Iessi IL, Karki B, Corrente JE, Volpato GT, Damasceno DC. Exposure to intrauterine diabetes and post-natal high-fat diet: Effects on the endocrine pancreas of adult rat female pups. Life Sci 2022; 310:121108. [DOI: 10.1016/j.lfs.2022.121108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
5
|
Paula VG, Sinzato YK, Moraes Souza RQ, Soares TS, Souza FQG, Karki B, Andrade Paes AM, Corrente JE, Damasceno DC, Volpato GT. Metabolic changes in female rats exposed to intrauterine Hyperglycemia and post-weaning consumption of high-fat diet. Biol Reprod 2021; 106:200-212. [PMID: 34668971 DOI: 10.1093/biolre/ioab195] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/01/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
We evaluated the influence of the hyperglycemic intrauterine environment and post-weaning consumption of a high-fat diet on the glycemia, insulin, lipid and immunological profile of rat offspring in adulthood. Female rats received citrate buffer (Control - C) or Streptozotocin (a beta cell-cytotoxic drug to induce diabetes - D) on post-natal day 5. In adulthood, these rats were mated to obtain female offspring, who were fed a standard diet (SD) or high-fat diet (HFD) from weaning to adulthood (n = 10 rats/group). OC/SD and OC/HFD represent female offspring of control mothers and received SD or HFD, respectively; OD/SD and OD/HFD represent female offspring of diabetic mothers and received SD or HFD, respectively. At adulthood, the Oral Glucose Tolerance Test (OGTT) was performed and, next, the rats were anesthetized and euthanized. Pancreas was collected and analyzed, and adipose tissue was weighted. Blood samples were collected to determine biochemical and immunological profiles. The food intake was lower in HFD-fed rats and visceral fat weight was increased in the OD/HFD group. OC/HFD, OD/SD, and OD/HFD groups presented glucose intolerance and lower insulin secretion during OGTT. An impaired pancreatic beta-cell function was shown in the adult offspring of diabetic rats, regardless of diet. Interleukin (IL)-6 and IL-10 concentrations were lower in the OD/HFD group and associated to a low-grade inflammatory condition. The fetal programming was responsible for impaired beta cell function in experimental animals. The association of maternal diabetes and post-weaning high-fat diet is responsible for greater glucose intolerance, impaired insulin secretion and immunological change.
Collapse
Affiliation(s)
- Verônyca Gonçalves Paula
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil.,Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Rafaianne Queiroz Moraes Souza
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil.,Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Thaigra Souza Soares
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil.,Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Franciane Quintanilha Gallego Souza
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Barshana Karki
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Antonio Marcus Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão - UFMA -Maranhão State, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo State, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| |
Collapse
|
6
|
Treatment with a dual amylin and calcitonin receptor agonist improves metabolic health in an old, obese, and ovariectomized rat model. ACTA ACUST UNITED AC 2021; 28:423-430. [PMID: 33399320 PMCID: PMC8284344 DOI: 10.1097/gme.0000000000001722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objectives: Menopause is often characterized by detrimental metabolic changes, such as obesity, insulin resistance, and impaired glucose tolerance, often requiring treatment. KeyBioscience Peptides (KBPs) are Dual Amylin and Calcitonin Receptor Agonists which have shown promising metabolic effects in rats. The objective of this study was to investigate the in vivo effect of KBP on the metabolic health in a model driven by unhealthy diet, age, and menopause. Methods: Female Sprague Dawley rats were fed a high-fat diet (HFD) for 3 months before the initiation of the study. At 6 months of age the rats were randomized into groups (n = 12) and subjected to ovariectomy surgery and treatment with KBP: (1) Lean-Sham, (2) HFD-Sham, (3) Lean-OVX, (4) HFD-OVX, (5) HFD-OVX-KBP (10 μg/kg/d), (6) HFD-OVX-KBP (20 μg/kg/d), (7) HFD-OVX-EE2 (30 μg/d 17a-ethynylestradiol). Body weight, food intake, oral glucose tolerance tests (OGTTs), subcutaneous fat, visceral fat, liver weight, and uterus weight were assessed during the 6-month study. Statistical analyses were conducted by one-way ANOVA with Tukey post-hoc test for multiple comparisons. Results: Combination of OVX and HFD led to significant induction of obesity (31% weight increase, P < 0.001) and insulin resistance (13% increase in tAUCglucose during OGTT P < 0.01) compared with the relevant control groups (P < 0.05), and this could be completely rescued by EE2 therapy confirming the model system (P < 0.05). Treatment of OVX-HFD rats with KBP for 26 weeks led to a significant reduction in body weight (13%, P < 0.001) in the high dose and 9% (P < 0.01) in the low dose, with corresponding improvements in fat depot sizes, all compared with HFD-OVX controls. As expected, food intake was suppressed, albeit mainly in the first 2 weeks of treatment, resulting in a reduction of overall caloric intake by 6.5% (P < 0.01) and 12.5% (P < 0.001) in the low and high doses respectively. Furthermore, treatment with KBP reduced the weight of visceral and subcutaneous fat tissues. Finally, KBP treatment significantly improved glucose tolerance, assessed using OGTTs at weeks 8, 16, and 24. Conclusions: The data presented here clearly indicate a positive and sustained effect of KBP treatment on body weight loss, fat depot size, and improved glucose tolerance, illustrating the potential of KBPs as treatments for metabolic complications of overweight and menopause.
Collapse
|
7
|
Fernández-Vega A, Chicano-Gálvez E, Prentice BM, Anderson D, Priego-Capote F, López-Bascón MA, Calderón-Santiago M, Avendaño MS, Guzmán-Ruiz R, Tena-Sempere M, Fernández JA, Caprioli RM, Malagón MM. Optimization of a MALDI-Imaging protocol for studying adipose tissue-associated disorders. Talanta 2020; 219:121184. [PMID: 32887102 DOI: 10.1016/j.talanta.2020.121184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
Abstract
Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is increasingly recognized for its potential in the discovery of novel biomarkers directly from tissue sections. However, there are no MALDI IMS studies as yet on the adipose tissue, a lipid-enriched tissue that plays a pivotal role in the development of obesity-associated disorders. Herein, we aimed at developing an optimized method for analyzing adipose tissue lipid composition under both physiological and pathological conditions by MALDI IMS. Our studies showed an exacerbated lipid delocalization from adipose tissue sections when conventional strategies were applied. However, our optimized method using conductive-tape sampling and 2,5-dihydroxybenzoic acid (DHB) as a matrix, preserved the anatomical organization and minimized lipid diffusion from sample sections. This method enabled the identification of a total of 625 down-regulated and 328 up-regulated m/z values in the adipose tissue from a rat model of extreme obesity as compared to lean animals. Combination of MALDI IMS and liquid chromatography (LC)-MS/MS data identified 44 differentially expressed lipid species between lean and obese animals, including phospholipids and sphingomyelins. Among the lipids identified, SM(d18:0_18:2), PE(P-16:0_20:0), and PC(O-16:0_16:1) showed a differential spatial distribution in the adipose tissue of lean vs. obese animals. In sum, our method provides a valuable new tool for research on adipose tissue that may pave the way for the identification of novel biomarkers of obesity and metabolic disease.
Collapse
Affiliation(s)
- A Fernández-Vega
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain
| | | | - B M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - D Anderson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - F Priego-Capote
- Department of Analytical Chemistry, IMIBIC/UCO/HURS, Cordoba, Spain
| | - M A López-Bascón
- Department of Analytical Chemistry, IMIBIC/UCO/HURS, Cordoba, Spain
| | | | - M S Avendaño
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain
| | - R Guzmán-Ruiz
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain
| | - M Tena-Sempere
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain
| | - J A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - R M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA; Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Department of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - M M Malagón
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain.
| |
Collapse
|
8
|
Novelle MG, Diéguez C. Updating gender differences in the control of homeostatic and hedonic food intake: Implications for binge eating disorder. Mol Cell Endocrinol 2019; 497:110508. [PMID: 31319096 DOI: 10.1016/j.mce.2019.110508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/30/2022]
Abstract
In an obesity pandemic context, eating disorders (ED) have arisen as serious illnesses associated with severe disturbances and has a clear gender dependent bias. In this manuscript, we provide an overview of the oestrogen role in the homeostatic and hedonic control of food intake. We draw attention to the role of oestrogens in the various reward processes and their possible implication in the development of ED, a condition much more common in women. In here, we have summarized the most relevant studies conducted in animal models over the last few years. In particular, we want to emphasize on the importance of continuing thorough investigations in female animal models. We believe that understanding the molecular mechanisms that regulate gender differences in food intake may provide new potential targets for ED treatment.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Physiology, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Santiago de Compostela, Spain.
| | - Carlos Diéguez
- Department of Physiology, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Rotondo F, Ho-Palma AC, Remesar X, Fernández-López JA, Romero MDM, Alemany M. Effect of sex on glucose handling by adipocytes isolated from rat subcutaneous, mesenteric and perigonadal adipose tissue. PeerJ 2018; 6:e5440. [PMID: 30128201 PMCID: PMC6089212 DOI: 10.7717/peerj.5440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
Background Adult rat epididymal adipocytes are able to convert large amounts of glucose to lactate and glycerol. However, fatty acid efflux is much lower than that expected from glycerol levels if they were the product of lipolysis. Use of glucose for lipogenesis is limited, in contrast with the active glycolysis-derived lactate (and other 3-carbon substrates). In this study, we analyzed whether white adipose tissue (WAT) site and sex affect these processes. Methods Mature adipocytes from perigonadal, mesenteric and subcutaneous WAT of female and male rats were isolated, and incubated with 7 or 14 mM glucose during 1 or 2 days. Glucose consumption, metabolite efflux and gene expression of glycolytic and lipogenesis-related genes were measured. Results The effects of medium initial glucose concentration were minimal on most parameters studied. Sex-induced differences that were more extensive; however, the most marked, distinct, effects between WAT sites, were dependent on the time of incubation. In general, the production of lactate was maintained during the incubation, but glycerol release rates increased with time, shifting from a largely glycolytic origin to its triacylglycerol (TAG) lipolytic release. Glycerol incorporation was concurrent with increased TAG turnover: lipolytic glycerol was selectively secreted, while most fatty acids were recycled again into TAG. Fatty acid efflux increased with incubation, but was, nevertheless, minimal compared with that of glycerol. Production of lactate and glycerol from glucose were maximal in mesenteric WAT. Discussion Female rats showed a higher adipocyte metabolic activity than males. In mesenteric WAT, gene expression (and substrate efflux) data suggested that adipocyte oxidation of pyruvate to acetyl-CoA was higher in females than in males, with enhanced return of oxaloacetate to the cytoplasm for its final conversion to lactate. WAT site differences showed marked tissue specialization-related differences. Use of glucose for lipogenesis was seriously hampered over time, when TAG turnover-related lipolysis was activated. We postulate that these mechanisms may help decrease glycaemia and fat storage, producing, instead, a higher availability of less-regulated 3-carbon substrates, used for energy elsewhere.
Collapse
Affiliation(s)
- Floriana Rotondo
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain
| | - Ana Cecilia Ho-Palma
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBER OBN, Centro de Investigación Biomédica en Red: Obesidad y Nutrición, Barcelona, Spain
| | - José Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBER OBN, Centro de Investigación Biomédica en Red: Obesidad y Nutrición, Barcelona, Spain
| | - María Del Mar Romero
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBER OBN, Centro de Investigación Biomédica en Red: Obesidad y Nutrición, Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBER OBN, Centro de Investigación Biomédica en Red: Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
10
|
Argente-Arizón P, Díaz F, Ros P, Barrios V, Tena-Sempere M, García-Segura LM, Argente J, Chowen JA. The Hypothalamic Inflammatory/Gliosis Response to Neonatal Overnutrition Is Sex and Age Dependent. Endocrinology 2018; 159:368-387. [PMID: 29077836 DOI: 10.1210/en.2017-00539] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/20/2017] [Indexed: 01/10/2023]
Abstract
Astrocytes participate in both physiological and pathophysiological responses to metabolic and nutrient signals. Although most studies have focused on the astrocytic response to weight gain due to high-fat/high-carbohydrate intake, surplus intake of a balanced diet also induces excess weight gain. We have accessed the effects of neonatal overnutrition, which has both age- and sex-dependent effects on weight gain, on hypothalamic inflammation/gliosis. Although both male and female Wistar rats accumulate excessive fat mass as early as postnatal day (PND) 10 with neonatal overnutrition, no increase in hypothalamic cytokine levels, markers of astrocytes or microglia, or inflammatory signaling pathways were observed. At PND 50, no effect of neonatal overnutriton was found in either sex, whereas at PND 150, males again weighed significantly more than their controls, and this was coincident with an increase in markers of inflammation and astrogliosis in the hypothalamus. Circulating triglycerides and free fatty acids were also elevated in these males, but not in females or in either sex at PND 10. Thus, the effects of fatty acids and estrogens on astrocytes in vitro were analyzed. Our results indicate that changes in circulating fatty acid levels may be involved in the induction of hypothalamic inflammation/gliosis in excess weight gain, even on a normal diet, and that estrogens could participate in the protection of females from these processes. In conclusion, the interaction of developmental influences, dietary composition, age, and sex determines the central inflammatory response and the associated long-term outcomes of excess weight gain.
Collapse
Affiliation(s)
- Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición, Instituto Carlos III, Madrid, Spain
| | - Francisca Díaz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición, Instituto Carlos III, Madrid, Spain
| | - Purificación Ros
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Hospital Universitario Puerto de Hierro-Majadahonda, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición, Instituto Carlos III, Madrid, Spain
| | - Manuel Tena-Sempere
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición, Instituto Carlos III, Madrid, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | - Luis Miguel García-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición, Instituto Carlos III, Madrid, Spain
- Instituto Madrileño de Estudios Svanzados Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición, Instituto Carlos III, Madrid, Spain
| |
Collapse
|