1
|
Phetcharawetch J, Uppalabat T, Sawektreeratana N, Suwannapaporn P, Todsaporn D, Rungrotmongkol T, Muanprasat C, Kuhakarn C. Identification of sulfonylated indolo[1,2- a]quinolines as EGFR tyrosine kinase inhibitors. RSC Adv 2025; 15:3139-3146. [PMID: 39885850 PMCID: PMC11781080 DOI: 10.1039/d4ra07467j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
Two series of indolo[1,2-a]quinolines (IQs), comprising six 6-trifluoromethylthio indolo[1,2-a]quinolines and nine 6-arenesulfonyl indolo[1,2-a]quinolines, were screened for their inhibitory activity against EGFR tyrosine kinase (EGFR-TK) using the ADP-Glo™ kinase assay. Among the 15 IQs screened, four compounds exhibited cytotoxic activity against a lung cancer cell line (A549) that was as potent as the known drug afatinib with lower cytotoxicity in Vero cells. In addition, while they displayed cytotoxic activity against a head and neck squamous cell carcinoma cell line (SCC cells), they were inactive against a colorectal cancer cell line (LS174T cells). Molecular dynamics (MD) simulations revealed that IQSO2R-I (IC50: 0.28 ± 0.05 μM) formed a stable complex with wild-type EGFR through hydrophohic interactions and hydrogen bonding with the K745 residue. Additionally, the compound complied with the extended rule of five. This class of compounds represents a novel class of EGFR-TK inhibitors, which may serve as a novel scaffold for the development of anticancer therapeutics targeting EGFR-TK.
Collapse
Affiliation(s)
- Jongkonporn Phetcharawetch
- Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University Rama VI Road Bangkok 10400 Thailand
- Bureau of Quality and Safety of Food, Department of Medical Sciences, Ministry of Public Health 88/7 Moo 4 Tiwanon Road, Tambon Talad Kwan Amphur Muang Nonthaburi 11000 Thailand
| | - Thikhamporn Uppalabat
- Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University Rama VI Road Bangkok 10400 Thailand
| | - Natthapat Sawektreeratana
- Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University Rama VI Road Bangkok 10400 Thailand
| | - Pornsiri Suwannapaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University Samut Prakarn Thailand
| | - Duangjai Todsaporn
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University Bangkok 10330 Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University Samut Prakarn Thailand
| | - Chutima Kuhakarn
- Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University Rama VI Road Bangkok 10400 Thailand
| |
Collapse
|
2
|
Todsaporn D, Zubenko A, Kartsev VG, Mahalapbutr P, Geronikaki A, Sirakanyan SN, Divaeva LN, Chekrisheva V, Yildiz I, Choowongkomon K, Rungrotmongkol T. Furopyridine Derivatives as Potent Inhibitors of the Wild Type, L858R/T790M, and L858R/T790M/C797S EGFR. J Phys Chem B 2024; 128:12389-12402. [PMID: 39639019 DOI: 10.1021/acs.jpcb.4c06246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The treatment of patients with nonsmall cell lung cancer (NSCLC) using epidermal growth factor receptor (EGFR) inhibitors is complicated by drug-sensitive activating L858R/T790M and L858R/T790M/C797S mutations. To overcome drug resistance, a series of furopyridine (PD) compounds were virtually screened to identify potent EGFR inhibitors using molecular docking and molecular dynamics (MD) simulations based on the solvated interaction energy (SIE) method. Several PD compounds identified from virtual screening demonstrated the potential to suppress both wild-type and mutant forms of EGFR, with IC50 values in the nanomolar range. Among these, PD18 and PD56 exhibited highly potent inhibitory activity against both wild-type and mutant forms of EGFR, surpassing the efficacy of known drugs. Additionally, both PD compounds were cytotoxic to NSCLC cell lines (A549 and H1975) while being nontoxic to normal cell lines (Vero). The interaction mechanisms of both PD compounds complexed with wild-type and mutant forms of EGFR were elucidated through 500 ns molecular dynamics simulations. The predicted binding affinity from molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) correlated well with the experimental binding affinity derived from IC50 values. Furthermore, it was observed that van der Waals interactions, rather than electrostatic interactions, played a significant role in interacting with EGFR's active site. The strong inhibitory activity against EGFR was attributed to two key residues, M793 and S797, via hydrogen bonding, corresponding with lower solvent accessibility and a higher number of atomic contacts. Therefore, these potent compounds could be developed as promising drugs targeting both wild-type and mutant EGFR for the treatment of NSCLC.
Collapse
Affiliation(s)
- Duangjai Todsaporn
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Alexander Zubenko
- North-Caucasian Zonal Research Veterinary Institute, 346406 Novocherkassk, Russia
| | | | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Health, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Samvel N Sirakanyan
- The Scientific Technological Center of Organic and Pharmaceutical Chemistry, Armenian Academy of Science, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Avenue Azatutyan 26, Yerevan 0014, Armenia
| | - Lyudmila N Divaeva
- Institute of Physical and Organic Chemistry, Southern Federal University, Pr. Stachki 194/2, 344090 Rostov-on-Don, Russia
| | - Victoria Chekrisheva
- North-Caucasian Zonal Research Veterinary Institute, 346406 Novocherkassk, Russia
| | - Ilkay Yildiz
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara University, Tandogan, Ankara 06100, Turkey
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Todsaporn D, Zubenko A, Kartsev V, Aiebchun T, Mahalapbutr P, Petrou A, Geronikaki A, Divaeva L, Chekrisheva V, Yildiz I, Choowongkomon K, Rungrotmongkol T. Discovery of Novel EGFR Inhibitor Targeting Wild-Type and Mutant Forms of EGFR: In Silico and In Vitro Study. Molecules 2023; 28:molecules28073014. [PMID: 37049777 PMCID: PMC10096398 DOI: 10.3390/molecules28073014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Targeting L858R/T790M and L858R/T790M/C797S mutant EGFR is a critical challenge in developing EGFR tyrosine kinase inhibitors to overcome drug resistance in non-small cell lung cancer (NSCLC). The discovery of next-generation EGFR tyrosine kinase inhibitors (TKIs) is therefore necessary. To this end, a series of furopyridine derivatives were evaluated for their EGFR-based inhibition and antiproliferative activities using computational and biological approaches. We found that several compounds derived from virtual screening based on a molecular docking and solvated interaction energy (SIE) method showed the potential to suppress wild-type and mutant EGFR. The most promising PD13 displayed strong inhibitory activity against wild-type (IC50 of 11.64 ± 1.30 nM), L858R/T790M (IC50 of 10.51 ± 0.71 nM), which are more significant than known drugs. In addition, PD13 revealed a potent cytotoxic effect on A549 and H1975 cell lines with IC50 values of 18.09 ± 1.57 and 33.87 ± 0.86 µM, respectively. The 500-ns MD simulations indicated that PD13 formed a hydrogen bond with Met793 at the hinge region, thus creating excellent EGFR inhibitory activity. Moreover, the binding of PD13 in the hinge region of EGFR was the major determining factor in stabilizing the interactions via hydrogen bonds and van der Waals (vdW). Altogether, PD13 is a promising novel EGFR inhibitor that could be further clinically developed as fourth-generation EGFR-TKIs.
Collapse
|
4
|
Todsaporn D, Mahalapbutr P, Poo-Arporn RP, Choowongkomon K, Rungrotmongkol T. Structural dynamics and kinase inhibitory activity of three generations of tyrosine kinase inhibitors against wild-type, L858R/T790M, and L858R/T790M/C797S forms of EGFR. Comput Biol Med 2022; 147:105787. [PMID: 35803080 DOI: 10.1016/j.compbiomed.2022.105787] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/25/2022] [Accepted: 06/26/2022] [Indexed: 11/19/2022]
Abstract
Mutations in the tyrosine kinase domain of epidermal growth factor receptor (EGFR), including L858R/T790M double and L858R/T790M/C797S triple mutations, are major causes of acquired resistance towards EGFR targeted drugs. In this work, a combination of comprehensive molecular modeling and in vitro kinase inhibition assay was used to unravel the mutational effects of EGFR on the susceptibility of three generations of EGFR tyrosine kinase inhibitors (erlotinib, gefitinib, afatinib, dacomitinib, and osimertinib) in comparison with the wild-type EGFR. The binding affinity of all studied inhibitors towards the double and triple EGFR mutations was in good agreement with the experimental data, ranked in the order of osimertinib > afatinib > dacomitinib > erlotinib > gefitinib. Three hot-spot residues at the hinge region (M790, M793, and C797) were involved in the binding of osimertinib and afatinib, enhancing their inhibitory activity towards mutated EGFRs. Both double and triple EGFR mutations causing erlotinib and gefitinib resistance are mainly caused by the low number of H-bond occupations, the low number of surrounding atoms, and the high number of water molecules accessible to the enzyme active site. According to principal component analysis, the molecular complexation of osimertinib against the two mutated EGFRs was in a closed conformation, whereas that against wild-type EGFR was in an open conformation, resulting in drug resistance. This work paves the way for further design of the novel EGFR inhibitors to overcome drug resistance mechanisms.
Collapse
Affiliation(s)
- Duangjai Todsaporn
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, and Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Rungtiva P Poo-Arporn
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Zheng Y, You H, Duan J, Chen B, Wu C, Chen P, Wang M. Centromere protein N promotes lung adenocarcinoma progression by activating PI3K/AKT signaling pathway. Genes Genomics 2022; 44:1039-1049. [PMID: 35150399 DOI: 10.1007/s13258-021-01215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND As an important member of centromere family, centromere associated protein N (CENPN) was abnormally expressed in varied malignant tumors. OBJECTIVE This paper aimed to analyze the expression and related mechanism of CENPN in lung adenocarcinoma (LUAD). METHODS The expression of CENPN in LUAD was analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) database. The mRNA expression, protein expression, cell viability, cell invasion, cell apoptosis, cell stem like characteristics were detected by RT-PCR, western blot, CCK8 assay, transwell assay, flow cytometry and spheroidization assay, respectively. Finally, the pathological changes of xenograft were estimated by H&E staining, and the expression of proteins was detected by immunohistochemistry. RESULTS GEPIA analysis showed that the CENPN expression in LUAD was significantly higher than that in normal lung tissue, which was negatively correlated with the prognosis. These results were consistent with our clinical data. Besides, CENPN was highly expressed in LUAD cell lines. In addition, the upregulation of CENPN amplified the cell viability, stemness and invasive ability in PC9 cells. However, the knockdown of CENPN inhibited the cell activity, stemness, invasive ability with increased cell apoptosis in A549. Furthermore, CENPN could positively regulate the phosphorylation of PI3K and AKT. The PI3K inhibitor, 740Y-P, could reverse the effect of CENPN silencing on the expression of Ki-67, cleaved caspase 3, OCT4, and snail 1. Finally, the downregulation of CENPN restrained the growth of xenograft and inactivated the PI3K/AKT pathway. CONCLUSION CENPN was abnormally overexpressed in LUAD, and promoted tumor progression of LUAD by affecting PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Hui You
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Jingzhu Duan
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Biyu Chen
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Chenlin Wu
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Peipei Chen
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Meifang Wang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China.
| |
Collapse
|
6
|
Wang G, Wu M, Durham AC, Mason NJ, Roth DB. Canine Oncopanel: A capture-based, NGS platform for evaluating the mutational landscape and detecting putative driver mutations in canine cancers. Vet Comp Oncol 2021; 20:91-101. [PMID: 34286913 DOI: 10.1111/vco.12746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022]
Abstract
Canine cancer, a significant cause of mortality in domestic dogs, is a powerful comparative model for human cancers. Revealing genetic alterations driving the oncogenesis of canine cancers holds great potential to deepen our understanding of the cancer biology, guide therapeutic development, and improve cancer management in both dogs and people. Next generation sequencing (NGS) based-diagnostic panels have been routinely used in human oncology for the identification of clinically-actionable mutations, enabling tailored treatments based on the individual's unique mutation profiles. Here, we report the development of a comprehensive canine cancer gene panel, the Canine Oncopanel, using a hybridization capture-based targeted NGS method. The Canine Oncopanel allows deep sequencing of 283 cancer genes and the detection of somatic mutations within these genes. Vigorous optimization was performed to achieve robust, high-standard performance using metrics of similar cancer panels in human oncology as benchmarks. Validation of the Canine Oncopanel on reference tumour samples with known mutations demonstrated that it can detect variants previously identified by alternative methods, with high accuracy and sensitivity. Putative drivers were detected in over 90% of clinical samples, showing high sensitivity. The Canine Oncopanel is suitable to map mutation profiles and identify putative driver mutations across common and rare cancer types in dogs. The data generated by the Canine Oncopanel presents a rich resource of putative oncogenic driver mutations and potential clinically relevant markers, paving the way for personalized diagnostics and precision medicine in canine oncology.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Vet Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ming Wu
- Service and Support, Illumina, San Diego, California, USA
| | - Amy C Durham
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Vet Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicola J Mason
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Vet Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David B Roth
- Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Vet Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Aiebchun T, Mahalapbutr P, Auepattanapong A, Khaikate O, Seetaha S, Tabtimmai L, Kuhakarn C, Choowongkomon K, Rungrotmongkol T. Identification of Vinyl Sulfone Derivatives as EGFR Tyrosine Kinase Inhibitor: In Vitro and In Silico Studies. Molecules 2021; 26:molecules26082211. [PMID: 33921332 PMCID: PMC8069501 DOI: 10.3390/molecules26082211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/17/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), overexpressed in many types of cancer, has been proved as a high potential target for targeted cancer therapy due to its role in regulating proliferation and survival of cancer cells. In the present study, a series of designed vinyl sulfone derivatives was screened against EGFR tyrosine kinase (EGFR-TK) using in silico and in vitro studies. The molecular docking results suggested that, among 78 vinyl sulfones, there were eight compounds that could interact well with the EGFR-TK at the ATP-binding site. Afterwards, these screened compounds were tested for the inhibitory activity towards EGFR-TK using ADP-Glo™ kinase assay, and we found that only VF16 compound exhibited promising inhibitory activity against EGFR-TK with the IC50 value of 7.85 ± 0.88 nM. In addition, VF16 showed a high cytotoxicity with IC50 values of 33.52 ± 2.57, 54.63 ± 0.09, and 30.38 ± 1.37 µM against the A431, A549, and H1975 cancer cell lines, respectively. From 500-ns MD simulation, the structural stability of VF16 in complex with EGFR-TK was quite stable, suggesting that this compound could be a novel small molecule inhibitor targeting EGFR-TK.
Collapse
Affiliation(s)
- Thitinan Aiebchun
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Atima Auepattanapong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10700, Thailand; (A.A.); (O.K.); (C.K.)
| | - Onnicha Khaikate
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10700, Thailand; (A.A.); (O.K.); (C.K.)
| | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology of North Bangkok, Bangkok 10800, Thailand;
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10700, Thailand; (A.A.); (O.K.); (C.K.)
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
- Correspondence: (K.C.); (T.R.); Tel.: +66-2218-5426 (T.R.); Fax: +66-2218-5418 (T.R.)
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (K.C.); (T.R.); Tel.: +66-2218-5426 (T.R.); Fax: +66-2218-5418 (T.R.)
| |
Collapse
|
8
|
Munro D, Singh M. DeMaSk: a deep mutational scanning substitution matrix and its use for variant impact prediction. Bioinformatics 2020; 36:5322-5329. [PMID: 33325500 PMCID: PMC8016454 DOI: 10.1093/bioinformatics/btaa1030] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/16/2020] [Accepted: 11/30/2020] [Indexed: 01/27/2023] Open
Abstract
Motivation Accurately predicting the quantitative impact of a substitution on a protein’s molecular function would be a great aid in understanding the effects of observed genetic variants across populations. While this remains a challenging task, new approaches can leverage data from the increasing numbers of comprehensive deep mutational scanning (DMS) studies that systematically mutate proteins and measure fitness. Results We introduce DeMaSk, an intuitive and interpretable method based only upon DMS datasets and sequence homologs that predicts the impact of missense mutations within any protein. DeMaSk first infers a directional amino acid substitution matrix from DMS datasets and then fits a linear model that combines these substitution scores with measures of per-position evolutionary conservation and variant frequency across homologs. Despite its simplicity, DeMaSk has state-of-the-art performance in predicting the impact of amino acid substitutions, and can easily and rapidly be applied to any protein sequence. Availability and implementation https://demask.princeton.edu generates fitness impact predictions and visualizations for any user-submitted protein sequence. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Daniel Munro
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, 08544, USA
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, 08544, USA.,Department of Computer Science, Princeton University, Princeton, 08544, USA
| |
Collapse
|
9
|
Lee Y, Kim TM, Kim DW, Kim S, Kim M, Keam B, Ku JL, Heo DS. Preclinical Modeling of Osimertinib for NSCLC With EGFR Exon 20 Insertion Mutations. J Thorac Oncol 2019; 14:1556-1566. [DOI: 10.1016/j.jtho.2019.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 12/25/2022]
|
10
|
Chiral DNA sequences as commutable controls for clinical genomics. Nat Commun 2019; 10:1342. [PMID: 30902988 PMCID: PMC6430799 DOI: 10.1038/s41467-019-09272-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/15/2019] [Indexed: 12/14/2022] Open
Abstract
Chirality is a property describing any object that is inequivalent to its mirror image. Due to its 5′–3′ directionality, a DNA sequence is distinct from a mirrored sequence arranged in reverse nucleotide-order, and is therefore chiral. A given sequence and its opposing chiral partner sequence share many properties, such as nucleotide composition and sequence entropy. Here we demonstrate that chiral DNA sequence pairs also perform equivalently during molecular and bioinformatic techniques that underpin genetic analysis, including PCR amplification, hybridization, whole-genome, target-enriched and nanopore sequencing, sequence alignment and variant detection. Given these shared properties, synthetic DNA sequences mirroring clinically relevant or analytically challenging regions of the human genome are ideal controls for clinical genomics. The addition of synthetic chiral sequences (sequins) to patient tumor samples can prevent false-positive and false-negative mutation detection to improve diagnosis. Accordingly, we propose that sequins can fulfill the need for commutable internal controls in precision medicine. Any DNA sequence can be represented by a chiral partner sequence – an exact copy arranged in reverse nucleotide order. Here, the authors show that chiral DNA sequence pairs share important properties and show the utility of synthetic chiral sequences (sequins) as controls for clinical genomics.
Collapse
|
11
|
Sangpheak K, Tabtimmai L, Seetaha S, Rungnim C, Chavasiri W, Wolschann P, Choowongkomon K, Rungrotmongkol T. Biological Evaluation and Molecular Dynamics Simulation of Chalcone Derivatives as Epidermal Growth Factor-Tyrosine Kinase Inhibitors. Molecules 2019; 24:molecules24061092. [PMID: 30897725 PMCID: PMC6471738 DOI: 10.3390/molecules24061092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/02/2022] Open
Abstract
Targeted cancer therapy has become a high potential cancer treatment. Epidermal growth factor receptor (EGFR), which plays an important role in cell signaling, enhanced cell survival and proliferation, has been suggested as molecular target for the development of novel cancer therapeutics. In this study, a series of chalcone derivatives was screened by in vitro cytotoxicity against the wild type (A431 and A549) and mutant EGFR (H1975 and H1650) cancer cell lines, and, subsequently, tested for EGFR-tyrosine kinase (TK) inhibition. From the experimental screening, all chalcones seemed to be more active against the A431 than the A549 cell line, with chalcones 1c, 2a, 3e, 4e, and 4t showing a more than 50% inhibitory activity against the EGFR-TK activity and a high cytotoxicity with IC50 values of < 10 µM against A431 cells. Moreover, these five chalcones showed more potent on H1975 (T790M/L858R mutation) than H1650 (exon 19 deletion E746-A750) cell lines. Only three chalcones (1c, 2a and 3e) had an inhibitory activity against EGFR-TK with a relative inhibition percentage that was close to the approved drug, erlotinib. Molecular dynamics studies on their complexes with EGFR-TK domain in aqueous solution affirmed that they were well-occupied within the ATP binding site and strongly interacted with seven hydrophobic residues, including the important hinge region residue M793. From the above information, as well as ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, all three chalcones could serve as lead compounds for the development of EGFR-TK inhibitors.
Collapse
Affiliation(s)
- Kanyani Sangpheak
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Lueacha Tabtimmai
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand.
| | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand.
| | - Chompoonut Rungnim
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Peter Wolschann
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria.
- Institute of Theoretical Chemistry, University of Vienna, Vienna 1090, Austria.
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand.
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
12
|
Kaserer T, Blagg J. Combining Mutational Signatures, Clonal Fitness, and Drug Affinity to Define Drug-Specific Resistance Mutations in Cancer. Cell Chem Biol 2018; 25:1359-1371.e2. [PMID: 30146241 PMCID: PMC6242700 DOI: 10.1016/j.chembiol.2018.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/12/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022]
Abstract
The emergence of mutations that confer resistance to molecularly targeted therapeutics is dependent upon the effect of each mutation on drug affinity for the target protein, the clonal fitness of cells harboring the mutation, and the probability that each variant can be generated by DNA codon base mutation. We present a computational workflow that combines these three factors to identify mutations likely to arise upon drug treatment in a particular tumor type. The Osprey-based workflow is validated using a comprehensive dataset of ERK2 mutations and is applied to small-molecule drugs and/or therapeutic antibodies targeting KIT, EGFR, Abl, and ALK. We identify major clinically observed drug-resistant mutations for drug-target pairs and highlight the potential to prospectively identify probable drug resistance mutations.
Collapse
Affiliation(s)
- Teresa Kaserer
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK.
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|