1
|
SNPs in 3'UTR miRNA Target Sequences Associated with Individual Drug Susceptibility. Int J Mol Sci 2022; 23:ijms232213725. [PMID: 36430200 PMCID: PMC9692299 DOI: 10.3390/ijms232213725] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
The complementary interaction of microRNAs (miRNAs) with their binding sites in the 3'untranslated regions (3'UTRs) of target gene mRNAs represses translation, playing a leading role in gene expression control. MiRNA recognition elements (MREs) in the 3'UTRs of genes often contain single nucleotide polymorphisms (SNPs), which can change the binding affinity for target miRNAs leading to dysregulated gene expression. Accumulated data suggest that these SNPs can be associated with various human pathologies (cancer, diabetes, neuropsychiatric disorders, and cardiovascular diseases) by disturbing the interaction of miRNAs with their MREs located in mRNA 3'UTRs. Numerous data show the role of SNPs in 3'UTR MREs in individual drug susceptibility and drug resistance mechanisms. In this review, we brief the data on such SNPs focusing on the most rigorously proven cases. Some SNPs belong to conventional genes from the drug-metabolizing system (in particular, the genes coding for cytochromes P450 (CYP 450), phase II enzymes (SULT1A1 and UGT1A), and ABCB3 transporter and their expression regulators (PXR and GATA4)). Other examples of SNPs are related to the genes involved in DNA repair, RNA editing, and specific drug metabolisms. We discuss the gene-by-gene studies and genome-wide approaches utilized or potentially utilizable to detect the MRE SNPs associated with individual response to drugs.
Collapse
|
2
|
Bargal SA, Kight JN, Augusto de Oliveira F, Shahin MH, Langaee T, Gong Y, Hamadeh IS, Cooper-DeHoff RM, Cavallari LH. Implications of Polymorphisms in the BCKDK and GATA-4 Gene Regions on Stable Warfarin Dose in African Americans. Clin Transl Sci 2020; 14:492-496. [PMID: 33278335 PMCID: PMC7993290 DOI: 10.1111/cts.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/04/2020] [Indexed: 11/28/2022] Open
Abstract
VKORC1 and CYP2C9 genotypes explain less variability in warfarin dose requirements in African Americans compared with Europeans. Variants in BCKDK and GATA-4 gene regions, purported to regulate VKORC1 and CYP2C9 expression, have been shown to play an important role in warfarin dose requirements in Europeans and Asians, respectively. We sought to determine whether rs56314408 near BCKDK or GATA-4 rs2645400 influence warfarin dose requirements in 200 African Americans. Unlike the strong linkage disequilibrium (LD) between rs56314408 and VKORC1 rs9923231 in Europeans, they were not in LD in African Americans. No associations were found on univariate analysis. On multivariable analysis, rs56314408 was associated (P = 0.027) with dose in a regression model excluding VKORC1 rs9923231, and GATA-4 rs2645400 was associated (P = 0.032) with dose in a model excluding CYP2C (CYP2C9*2, *3, *5, *6, *8, and *11, CYP2C rs12777823) variants. Neither variant contributed to dose in the model that included both VKORC1 rs9923231 and CYP2C variants. Our results do not support contributions of the studied variants to warfarin dose requirements in African Americans. However, they illustrate the value of studies in African descent populations, who have low LD in their genome, in teasing out genetic variation underlying drug response associations. They also emphasize the importance of confirming associations in persons of African ancestry.
Collapse
Affiliation(s)
- Salma A Bargal
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Jennifer N Kight
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Felipe Augusto de Oliveira
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Mohamed H Shahin
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Taimour Langaee
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Yan Gong
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Issam S Hamadeh
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Larisa H Cavallari
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Han JM, Yee J, Chung JE, Lee KE, Park K, Gwak HS. Effects of cytochrome P450 oxidoreductase genotypes on the pharmacokinetics of amlodipine in healthy Korean subjects. Mol Genet Genomic Med 2020; 8:e1201. [PMID: 32134573 PMCID: PMC7216797 DOI: 10.1002/mgg3.1201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the effects of P450 oxidoreductase (POR) genetic polymorphisms on the pharmacokinetic parameters of amlodipine. METHODS After a single 10-mg dose of amlodipine administration, 25 healthy male subjects completed genotyping for 12 single nucleotide polymorphisms (SNPs) of the POR genes, cytochrome P450 (CYP)3A4 g.25343G>A (CYP3A4*1G), and CYP3A5 g.12083G>A (CYP3A5*3). Stratified analysis and in silico analysis to predict the possible effects of given variants on splicing were performed. RESULTS The maximum blood concentration (Cmax ) of amlodipine in carriers of g.57332T>C and g.56551G>A SNPs of the POR gene was statistically significantly different. In addition, T-allele carriers of g.57332T>C had a 21% higher Cmax than those with the CC genotype (p = .007). Subjects who carried the wild-type g.56551G>A allele also had a 1.12-fold significantly higher Cmax than subjects with mutant-type homozygous carriers (p = .033). In stratified analyses, g.57332T>C was significantly associated with a 1.3-fold increase in Cmax value in T-allele carriers compared with subjects with the CC genotype in CYP3A4 and CYP3A5 expressers. POR g.57332T>C increased the score above the threshold in both ESEfinder 3.0 and HSF 3.1. CONCLUSION This study identified a novel SNP of the POR gene, which affected amlodipine metabolism and may reduce interindividual variation in responses to amlodipine.
Collapse
Affiliation(s)
- Ji Min Han
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jee Eun Chung
- College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Kyung Eun Lee
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Kyungsoo Park
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Hosseindokht M, Boroumand M, Salehi R, Mandegary A, Hajhosseini Talasaz A, Pourgholi L, Zare H, Ziaee S, Sharifi M. Association between four microRNA binding site-related polymorphisms and the risk of warfarin-induced bleeding complications. EXCLI JOURNAL 2019; 18:287-299. [PMID: 31338002 PMCID: PMC6635724 DOI: 10.17179/excli2019-1352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022]
Abstract
Bleeding is the most serious complication of warfarin anticoagulation therapy and is known to occur even at patients with therapeutic international normalized ratio (INR) range. Recently, it has been shown that microRNAs play a significant role in pharmacogenetics by regulating genes that are critical for drug function. Interaction between microRNAs and these target genes could be affected by single-nucleotide polymorphisms (SNPs) located in microRNA-binding sites. This study focused on 3′-untranslated region (3′-UTR) SNPs of the genes involved in the warfarin action and the occurrence of bleeding complications in an Iranian population receiving warfarin. A total of 526 patients under warfarin anticoagulation therapy with responding to the therapeutic dose and maintenance of the INR in the range of 2.0-3.5 in three consecutive blood tests were included in the study. Four selected 3'-UTR SNPs (rs12458, rs7294, rs1868774 and rs34669593 located in GATA4, VKORC1, CALU and GGCX genes, respectively) with the potential to disrupt/eliminate or enhance/create microRNA-binding site were genotyped using a simple PCR-based restriction fragment length polymorphism (PCR-RFLP) method. Patients with the rs12458 AT or TT genotypes of the GATA4 gene had a lower risk of bleeding compared to patients with the AA genotype (adjusted OR: 0.478, 95% CI: 0.285-0.802, P= 0.005, OR: 0.416, 95% CI: 0.192-0.902, P= 0.026, respectively). 3'-UTR polymorphisms in other genes were not significantly associated with the risk of bleeding complications. In conclusion, the SNP rs12458A>T in the 3′UTR region of GATA4 is associated with the incidence of warfarin-related bleeding at target range of INR, likely by altering microRNA binding and warfarin metabolism. Further genetics association studies are needed to validate these findings before they can be implemented in clinical settings.
Collapse
Affiliation(s)
- Maryam Hosseindokht
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadali Boroumand
- Department of Pathology and Laboratory Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Mandegary
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Gastroenterology and Hepatology Research Center, Afzalipour's Hospital, Imam Highway, Kerman, Iran
| | - Azita Hajhosseini Talasaz
- Department of Cardiac Research, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences
| | - Leyla Pourgholi
- Department of Pathology and Laboratory Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Zare
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shayan Ziaee
- Department of Pathology and Laboratory Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Nuclear receptor gene polymorphisms and warfarin dose requirements in the Quebec Warfarin Cohort. THE PHARMACOGENOMICS JOURNAL 2018; 19:147-156. [PMID: 29298995 PMCID: PMC6462825 DOI: 10.1038/s41397-017-0005-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 08/24/2017] [Accepted: 09/18/2017] [Indexed: 01/02/2023]
Abstract
Warfarin is primarily metabolized by cytochrome 2C9, encoded by gene CYP2C9. Here, we investigated whether variants in nuclear receptor genes which regulate the expression of CYP2C9 are associated with warfarin response. We used data from 906 warfarin users from the Quebec Warfarin Cohort (QWC) and tested the association of warfarin dose requirement at 3 months following the initiation of therapy in nine nuclear receptor genes: NR1I3, NR1I2, NR3C1, ESR1, GATA4, RXRA, VDR, CEBPA, and HNF4A. Three correlated SNPs in the VDR gene (rs4760658, rs11168292, and rs11168293) were associated with dose requirements of warfarin (P = 2.68 × 10-5, P = 5.81 × 10-4, and P = 5.94 × 10-4, respectively). Required doses of warfarin were the highest for homozygotes of the minor allele at the VDR variants (P < 0.0026). Variants in the VDR gene were associated with the variability in response to warfarin, emphasizing the possible clinical relevance of nuclear receptor gene variants on the inter-individual variability in drug metabolism.
Collapse
|
6
|
Ang HX, Chan SL, Sani LL, Quah CB, Brunham LR, Tan BOP, Winther MD. Pharmacogenomics in Asia: a systematic review on current trends and novel discoveries. Pharmacogenomics 2017; 18:891-910. [DOI: 10.2217/pgs-2017-0009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While early pharmacogenomic studies have primarily been carried out in Western populations, there has been a notable increase in the number of Asian studies over the past decade. We systematically reviewed all pharmacogenomic studies conducted in Asia published before 2016 to highlight trends and identify research gaps in Asia. We observed that pharmacogenomic research in Asia was dominated by larger developed countries, notably Japan and Korea, and mainly driven by local researchers. Studies were focused on drugs acting on the CNS, chemotherapeutics and anticoagulants. Significantly, several novel pharmacogenomic associations have emerged from Asian studies. These developments are highly encouraging for the strength of regional scientific and clinical community and propound the importance of discovery studies in different populations.
Collapse
Affiliation(s)
- Hazel Xiaohui Ang
- Genome Institute of Singapore, Agency for Science, Technology & Research, Singapore
| | - Sze Ling Chan
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology & Research, Singapore
| | - Levana L Sani
- Genome Institute of Singapore, Agency for Science, Technology & Research, Singapore
| | | | - Liam R Brunham
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology & Research, Singapore
- Department of Medicine, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Boon Ooi Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology & Research, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Cancer & Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
- Division of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore
| | - Michael D Winther
- Genome Institute of Singapore, Agency for Science, Technology & Research, Singapore
| |
Collapse
|
7
|
Effects of NAD(P)H quinone oxidoreductase 1 polymorphisms on stable warfarin doses in Korean patients with mechanical cardiac valves. Eur J Clin Pharmacol 2015; 71:1229-36. [PMID: 26257249 DOI: 10.1007/s00228-015-1915-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/23/2015] [Indexed: 01/21/2023]
Abstract
PURPOSE NAD(P)H dehydrogenase, encoded by NAD(P)H quinone oxidoreductase 1 (NQO1), is an enzyme that catalyzes the reduction of quinones, including vitamin K. Given its potential role in vitamin K metabolism, this study aimed to investigate the effects of NQO1 polymorphisms on stable warfarin doses. METHODS We tested a possible effect of gene polymorphisms on variability in warfarin response using 206 Korean patients with mechanical cardiac valves. Single nucleotide polymorphisms (SNPs) of NQO1 with a minor allele frequency of at least 15% were included. Also, genotypes of vitamin K epoxide reductase complex subunit 1 (VKORC1), cytochrome P450 (CYP) 2C9, CYP4F2, gamma-glutamyl carboxylase (GGCX), and GATA4 were determined. RESULTS NQO1 rs1800566 (C>T) and rs10517 (C>T) were significantly associated with stable warfarin doses. Variant homozygote carriers required lower stable warfarin doses than those with wild-type C allele in rs1800566 (4.85 ± 1.61 vs. 5.61 ± 1.94 mg; p = 0.033), whereas patients with wild homozygote required lower doses than those with T allele in rs10517 (5.11 ± 1.73 vs. 5.75 ± 1.98 mg; p = 0.017). Similar results were obtained from stratified analysis using VKORC1 variant homozygote carriers in both SNPs. Multivariate analysis showed that rs10517 (C>T) increased contribution of gene variations to the overall warfarin dose variability from 42.5 to 43.8%. CONCLUSION Our results demonstrate that NQO1 gene polymorphisms influence stable warfarin doses in Korean patients.
Collapse
|
8
|
Moon JY, Chang BC, Lee KE, Bang JS, Gwak HS. Effects of Pregnane X Receptor Genetic Polymorphisms on Stable Warfarin Doses. J Cardiovasc Pharmacol Ther 2015; 20:532-8. [DOI: 10.1177/1074248415578906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/17/2015] [Indexed: 12/16/2022]
Abstract
Objective: Pregnane X receptor (PXR) is a transcriptional regulator of many drug-metabolizing enzymes including cytochrome P450 (CYP) 2C9. The objective of this study was to assess the possible association between PXR single-nucleotide polymorphisms (SNPs) and stable warfarin doses. Methods: A total of 201 patients with stable warfarin doses from the EwhA-Severance Treatment (EAST) Group of Warfarin were included in this study. The influence of genetic polymorphisms on stable warfarin doses was investigated by genotyping 11 SNPs, that is, vitamin K epoxide reductase complex 1 (VKORC1) rs9934438, CYP2C9 rs1057910, CYP4F2 rs2108622, constitutive androstane receptor (CAR) rs2501873, hepatocyte nuclear factor 4α (HNF4α) rs3212198, and PXR (rs3814055, rs1403526, rs3732357, rs3732360, rs2276707 and rs2472682). Subgroup analysis was conducted on CYP2C9 wild-type homozygote allele (AA) carriers. Results: One PXR SNP of rs2472682 (A>C) exhibited significant association with stable warfarin doses in study population and the subgroup; variant homozygote carriers required significantly lower daily doses of warfarin than those carrying wild allele by about 0.8 mg. Approximate 43.7% of overall interindividual variability in warfarin dose requirement was explained by multivariate regression model. VKORC1, CYP2C9, age, CYP4F2, PXR rs2472682, and CAR/HNF4α rs2501873/rs3212198 accounted for 29.6%, 5.9%, 3.7%, 2.3%, 1.3%, and 0.9% of the variability, respectively. PXR SNP of rs2472682 remained a significant factor in CYP2C9 wild-type homozygote carriers based on univariate and multivariate analyses. The combination of CAR/HNF4α/PXR SNPs of rs2501873/rs3212198/rs2472682 showed about 1 mg dose difference between grouped genotypes in study population and subgroup. Conclusion: Our results revealed that PXR could be a determinant of stable warfarin doses.
Collapse
Affiliation(s)
- Jung Yeon Moon
- College of Pharmacy & Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Byung Chul Chang
- Department of Thoracic & Cardiovascular Surgery, Yonsei University Medical Center, Seoul, Korea
| | - Kyung Eun Lee
- College of Pharmacy & Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Jun Seok Bang
- Graduate School of Clinical Pharmacy, Sookmyung Women’s University, Seoul, Korea
| | - Hye Sun Gwak
- College of Pharmacy & Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|