1
|
Li Y, Li M, Wang M, Yao J, Li F, Chen S, Yin X, Gao Z. Multigenetic pharmacogenomics-guided treatment shows greater improvements on motor symptoms compared to usual therapy in Parkinson's disease: a small real-word prospective cohort study. Front Pharmacol 2025; 16:1502379. [PMID: 40201683 PMCID: PMC11975922 DOI: 10.3389/fphar.2025.1502379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Background Dopamine replacement therapy is a cornerstone of Parkinson's disease treatment. In clinical practice, there is considerable variability in patients' responses, tolerability, and safety regarding anti-parkinsonian medications, which is largely influenced by genetic polymorphisms in pharmacokinetic and pharmacodynamic genes. However, the application of multigenetic pharmacogenomics-guided treatment (MPGT) to optimize therapeutic outcomes in Parkinson's disease (PD) remains under-explored. In this study, we conducted a prospective cohort investigation to evaluate the potential benefits of MPGT on motor symptoms in PD patients. Methods A total of 28 patients with PD were followed for 4 weeks. Among them, 22 patients underwent multigenetic pharmacogenomic testing, with 13 receiving treatments based on the test results (MPGT group). The remaining 15 received standard care (TAU group). Baseline characteristics, as well as changes in Unified Parkinson's Disease Rating Scale (UPDRS) III scores and sub-scores, were compared between the two groups. Associations between various single nucleotide polymorphisms (SNPs) and treatment outcomes were analyzed using generalized linear models. Results At the 4-week follow-up, the MPGT group showed significantly greater reductions in UPDRS III total scores (p < 0.05) and limb sub-scores (p < 0.01) compared to the TAU group. These differences remained significant after adjusting for increases in levodopa equivalent daily dose (p = 0.011 and p = 0.002, respectively) and piribedil use (p = 0.006 and p = 0.004, respectively). Patients homozygous for the major allele of rs4984241 (AA vs. AG+GG, p = 0.003), rs4680 (GG vs. GA+AA, p = 0.013), rs1076560/rs2283265 (CC vs. AC+AA, p = 0.039) and rs622342 (AA vs. AC, p = 0.043) showed greater improvement in total UPDRS III, postural instability and gait difficulty (PIGD), rigidity and tremor scores, respectively, compared to those carrying at least one minor allele. Conclusion MGPT demonstrates significant potential as a valuable tool for personalized treatment in PD patients. Additionally, we identified several SNPs associated with the responsiveness to chronic administration of multiple anti-parkinsonian drugs. However, to confirm these findings, well-designed studies with larger, well-characterized samples are necessary.
Collapse
Affiliation(s)
- Yifan Li
- Geriatric Neurological Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Mao Li
- Department of Neurology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Miao Wang
- Geriatric Neurological Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jiarui Yao
- Geriatric Neurological Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Fengzhu Li
- Geriatric Neurological Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Siyu Chen
- Geriatric Neurological Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xi Yin
- Geriatric Neurological Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhongbao Gao
- Geriatric Neurological Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Chaparro-Solano HM, Rivera Paz M, Anis S, Hockings JK, Kundrick A, Piccinin CC, Assaedi E, Saadatpour L, Mata IF. Critical evaluation of the current landscape of pharmacogenomics in Parkinson's disease - What is missing? A systematic review. Parkinsonism Relat Disord 2024:107206. [PMID: 39551668 DOI: 10.1016/j.parkreldis.2024.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
INTRODUCTION The first-line treatment for Parkinson's disease (PD) involves dopamine-replacement therapies; however, significant variability exists in patient responses. Pharmacogenomics has been explored as a potential approach to understanding and predicting treatment outcomes. This review aims to evaluate the current state of knowledge regarding the role of pharmacogenomics in PD, focusing on identifying challenges and proposing future directions. METHODS We conducted a systematic review following PRISMA 2020 guidelines. The PubMed database was searched for original, English-language studies using the R package 'RISmed.' Data were extracted and analyzed based on sample size, population origin, evaluated genes and polymorphisms, outcomes, and methodological approaches. RESULTS Out of 183 identified articles, 76 met the inclusion criteria. The COMT-rs4680 polymorphism was the most frequently studied, and levodopa-related motor complications were the most commonly assessed outcomes. All but two studies employed a candidate gene approach. In 75 % of the studies, the sample size was fewer than 225 individuals. There was a notable underrepresentation of Latino participants, with a lack of studies from Latin American countries other than Brazil. None of the studies produced consistent results across investigations. CONCLUSIONS The variability in patient responses to PD treatments suggests a genetic predisposition. While current research has enhanced our understanding of PD medication metabolism, it has not yet fully elucidated the complex genetic interactions involved in PD pharmacogenomics. Novel approaches, larger and more genetically diverse cohorts, and improved data collection are essential for advancing pharmacogenomics in PD clinical practice.
Collapse
Affiliation(s)
- Henry Mauricio Chaparro-Solano
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 44195, Cleveland, OH, United States; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 44195, Cleveland, OH, United States
| | - Maria Rivera Paz
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 44195, Cleveland, OH, United States
| | - Saar Anis
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 44195, Cleveland, OH, United States
| | - Jennifer K Hockings
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 44195, Cleveland, OH, United States; Department of Pharmacy, Cleveland Clinic, 44195, Cleveland, OH, United States; Department of Medical Genetics and Genomics, Cleveland Clinic, 44195, Cleveland, OH, United States
| | - Avery Kundrick
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 44195, Cleveland, OH, United States
| | - Camila C Piccinin
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 44195, Cleveland, OH, United States
| | - Ekhlas Assaedi
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 44195, Cleveland, OH, United States; College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Leila Saadatpour
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 44195, Cleveland, OH, United States; Department of Neurology, University of Texas Health Science Center at San Antonio, 78229, San Antonio, TX, United States
| | - Ignacio F Mata
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 44195, Cleveland, OH, United States; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 44195, Cleveland, OH, United States.
| |
Collapse
|
3
|
Tian Y, Zi J, Hu Y, Zeng Y, Li H, Luo H, Xiong J. Shared and Unique Genetic Links between Neuroticism and Gastrointestinal Tract Diseases. Depress Anxiety 2024; 2024:5515448. [PMID: 40226707 PMCID: PMC11919111 DOI: 10.1155/2024/5515448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 06/10/2024] [Indexed: 04/15/2025] Open
Abstract
Objective Association between neuroticism and gastrointestinal tract (GIT) diseases may not be attributable to the genetic overlaps between neuroticism and psychiatric disorders. We aim to explore the genetic links and mechanisms of neuroticism and GIT diseases. Materials and Methods We obtained European genome-wide association data of neuroticism (n = 390,278) or subclusters (depressed, n = 357,957; worry, n = 348,219) and six GIT diseases: gastroesophageal reflux disease (GERD, n = 456,327), inflammatory bowel disease (IBD, n = 456,327), peptic ulcer disease (PUD, n = 456,327), irritable bowel syndrome (IBS, n = 486,601), Crohn's disease (CD, n = 20,883), and ulcerative colitis (UC, n = 21,895). We performed genetic correlation analysis (high-definition likelihood method and cross-trait linkage disequilibrium score regression), pairwise pleiotropic analysis, single nucleic acid polymorphism annotation, Bayesian colocalization, gene-level analysis, transcriptome-wide association analysis, and gene set enrichment analysis. Results Neuroticism and its subclusters are associated with most GIT diseases (15 of 18 trait-pairs). GERD and PUD were highly correlated with depressed affect. We identified pleiotropic loci 11q23.2 (mapped gene: NCAM1/DRD2) and 18q12.2 (mapped gene: CELF4) in neuroticism and IBS/GERD, supporting the genetic overlap between neuroticism and depression. We found that 16q12.1 (mapped gene: NKD1/ZNF423/NOD2) and 2q37.1 (mapped gene: ATG16L1/SP140) are only highlighted in depressed/neuroticism CD, revealing pleiotropic loci with dissimilarities between neuroticism and different GIT diseases. MR analysis suggested that genetic liability to neuroticism is associated with increased risks of IBS, PUD, and GERD. Conclusion Our findings document the genetic links between neuroticism and six GIT diseases, highlighting the genetic overlaps and heterogeneity between neuroticism and psychiatric disorders in the context of gastrointestinal disorders. Both the shared and unique pleiotropic loci identified between neuroticism and different GIT diseases could facilitate mechanistic understandings and may stimulate further translational implications.
Collapse
Affiliation(s)
- Ye Tian
- Department of Occupational and Environmental Health, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jing Zi
- Department of Occupational and Environmental Health, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yifan Hu
- Department of Occupational and Environmental Health, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yaxian Zeng
- Department of Occupational and Environmental Health, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Haoqi Li
- Department of Occupational and Environmental Health, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hang Luo
- Department of Occupational and Environmental Health, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jingyuan Xiong
- Department of Occupational and Environmental Health, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China
| |
Collapse
|
4
|
Ayuso P, Jiménez-Jiménez FJ, Gómez-Tabales J, Alonso-Navarro H, García-Martín E, Agúndez JAG. An update on the pharmacogenetic considerations when prescribing dopamine receptor agonists for Parkinson's disease. Expert Opin Drug Metab Toxicol 2023; 19:447-460. [PMID: 37599424 DOI: 10.1080/17425255.2023.2249404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Parkinson's disease is a chronic neurodegenerative multisystemic disorder that affects approximately 2% of the population over 65 years old. This disorder is characterized by motor symptoms which are frequently accompanied by non-motor symptoms such as cognitive disorders. Current drug therapies aim to reduce the symptoms and increase the patient's life expectancy. Nevertheless, there is heterogeneity in therapy response in terms of efficacy and adverse effects. This wide range in response may be linked to genetic variability. Thus, it has been suggested that pharmacogenomics may help to tailor and personalize drug therapy for Parkinson's disease. AREAS COVERED This review describes and updates the clinical impact of genetic factors associated with the efficacy and adverse drug reactions related to common medications used to treat Parkinson's disease. Additionally, we highlight current informative recommendations for the drug treatment of Parkinson's disease. EXPERT OPINION The pharmacokinetic, pharmacodynamic, and safety profiles of Parkinson's disease drugs do not favor the development of pharmacogenetic tests with a high probability of success. The chances of obtaining ground-breaking pharmacogenetics biomarkers for Parkinson's disease therapy are limited. Nevertheless, additional information on the metabolism of certain drugs, and an analysis of the potential of pharmacogenetics in novel drugs could be of interest.
Collapse
Affiliation(s)
- Pedro Ayuso
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | | | - Javier Gómez-Tabales
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | | | - Elena García-Martín
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | - José A G Agúndez
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| |
Collapse
|
5
|
Zhou Y, Li Z, Chi C, Li C, Yang M, Liu B. Identification of Hub Genes and Potential Molecular Pathogenesis in Substantia Nigra in Parkinson's Disease via Bioinformatics Analysis. PARKINSON'S DISEASE 2023; 2023:6755569. [PMID: 37089789 PMCID: PMC10121343 DOI: 10.1155/2023/6755569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/23/2023] [Accepted: 03/25/2023] [Indexed: 04/25/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, with significant socioeconomic burdens. One of the crucial pathological features of PD is the loss of dopaminergic neurons in the substantia nigra (SN). However, the exact pathogenesis remains unknown. Moreover, therapies to prevent neurodegenerative progress are still being explored. We performed bioinformatics analysis to identify candidate genes and molecular pathogenesis in the SN of patients with PD. We analyzed the expression profiles, GSE49036 and GSE7621, which included 31 SN tissues in PD samples and 17 SN tissues in healthy control samples, and identified 86 common differentially expressed genes (DEGs). Then, GO and KEGG pathway analyses of the identified DEGs were performed to understand the biological processes and significant pathways of PD. Subsequently, a protein-protein interaction network was established, with 15 hub genes and four key modules which were screened in this network. The expression profiles, GSE8397 and GSE42966, were used to verify these hub genes. We demonstrated a decrease in the expression levels of 14 hub genes in the SN tissues of PD samples. Our results indicated that, among the 14 hub genes, DRD2, SLC18A2, and SLC6A3 may participate in the pathogenesis of PD by influencing the function of the dopaminergic synapse. CACNA1E, KCNJ6, and KCNB1 may affect the function of the dopaminergic synapse by regulating ion transmembrane transport. Moreover, we identified eight microRNAs (miRNAs) that can regulate the hub genes and 339 transcription factors (TFs) targeting these hub genes and miRNAs. Subsequently, we established an mTF-miRNA-gene-gTF regulatory network. Together, the identification of DEGs, hub genes, miRNAs, and TFs could provide better insights into the pathogenesis of PD and contribute to the diagnosis and therapies.
Collapse
Affiliation(s)
- Yunan Zhou
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150001, China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150001, China
| | - Chunling Chi
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150001, China
| | - Chunmei Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150001, China
| | - Meimei Yang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150001, China
| | - Bin Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
6
|
Genetic Markers as Risk Factors for the Development of Impulsive-Compulsive Behaviors in Patients with Parkinson's Disease Receiving Dopaminergic Therapy. J Pers Med 2021; 11:jpm11121321. [PMID: 34945793 PMCID: PMC8706187 DOI: 10.3390/jpm11121321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Impulsive–compulsive and related behavioral disorders (ICD) are drug-induced non-motor symptoms of Parkinson’s disease (PD). Recently research has focused on evaluating whether ICD could be predicted and managed using a pharmacogenetic approach based on dopaminergic therapies, which are the main risk factors. The aim of our study was to evaluate the role of candidate genes such as DBH, DRD2, MAOA, BDNF, COMT, SLC6A4, SLC6A3, ACE, DRD1 gene polymorphisms in the pathogenesis of ICD in PD. We compared patients with PD and ICD (n = 49), patients with PD without ICD (n = 36) and a healthy control group (n = 365). ICD was diagnosed using the QUIP questionnaires and specific diagnostic criteria for subtypes of ICD. Genotyping was conducted using a number of PCR techniques and SNaPshot. Statistical analysis was performed using WinPepi and APSampler v3.6 software. PCA testing was conducted using RStudio software v1.4.1106-5. The following substitutions showed statistically significant correlations with PD and ICD: DBH (rs2097629, rs1611115), DRD2 (rs6275, rs12364283, rs1076560), ACE (rs4646994), DRD1 (rs686), BDNF (rs6265), these associations are novel in Russian PD patients. Our findings suggest that polymorphisms in DBH, BDNF, DRD2, ACE genes in Russian subjects are associated with an increased risk of ICD development.
Collapse
|
7
|
Vuletić V, Rački V, Papić E, Peterlin B. A Systematic Review of Parkinson's Disease Pharmacogenomics: Is There Time for Translation into the Clinics? Int J Mol Sci 2021; 22:ijms22137213. [PMID: 34281267 PMCID: PMC8268929 DOI: 10.3390/ijms22137213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most frequent neurodegenerative disease, which creates a significant public health burden. There is a challenge for the optimization of therapies since patients not only respond differently to current treatment options but also develop different side effects to the treatment. Genetic variability in the human genome can serve as a biomarker for the metabolism, availability of drugs and stratification of patients for suitable therapies. The goal of this systematic review is to assess the current evidence for the clinical translation of pharmacogenomics in the personalization of treatment for Parkinson's disease. METHODS We performed a systematic search of Medline database for publications covering the topic of pharmacogenomics and genotype specific mutations in Parkinson's disease treatment, along with a manual search, and finally included a total of 116 publications in the review. RESULTS We analyzed 75 studies and 41 reviews published up to December of 2020. Most research is focused on levodopa pharmacogenomic properties and catechol-O-methyltransferase (COMT) enzymatic pathway polymorphisms, which have potential for clinical implementation due to changes in treatment response and side-effects. Likewise, there is some consistent evidence in the heritability of impulse control disorder via Opioid Receptor Kappa 1 (OPRK1), 5-Hydroxytryptamine Receptor 2A (HTR2a) and Dopa decarboxylase (DDC) genotypes, and hyperhomocysteinemia via the Methylenetetrahydrofolate reductase (MTHFR) gene. On the other hand, many available studies vary in design and methodology and lack in sample size, leading to inconsistent findings. CONCLUSIONS This systematic review demonstrated that the evidence for implementation of pharmacogenomics in clinical practice is still lacking and that further research needs to be done to enable a more personalized approach to therapy for each patient.
Collapse
Affiliation(s)
- Vladimira Vuletić
- Clinic of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Correspondence:
| | - Valentino Rački
- Clinic of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Eliša Papić
- Clinic of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.)
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
8
|
Cacabelos R, Carrera I, Martínez O, Alejo R, Fernández-Novoa L, Cacabelos P, Corzo L, Rodríguez S, Alcaraz M, Nebril L, Tellado I, Cacabelos N, Pego R, Naidoo V, Carril JC. Atremorine in Parkinson's disease: From dopaminergic neuroprotection to pharmacogenomics. Med Res Rev 2021; 41:2841-2886. [PMID: 34106485 DOI: 10.1002/med.21838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Atremorine is a novel bioproduct obtained by nondenaturing biotechnological processes from a genetic species of Vicia faba. Atremorine is a potent dopamine (DA) enhancer with powerful effects on the neuronal dopaminergic system, acting as a neuroprotective agent in Parkinson's disease (PD). Over 97% of PD patients respond to a single dose of Atremorine (5 g, p.o.) 1 h after administration. This response is gender-, time-, dose-, and genotype-dependent, with optimal doses ranging from 5 to 20 g/day, depending upon disease severity and concomitant medication. Drug-free patients show an increase in DA levels from 12.14 ± 0.34 pg/ml to 6463.21 ± 1306.90 pg/ml; and patients chronically treated with anti-PD drugs show an increase in DA levels from 1321.53 ± 389.94 pg/ml to 16,028.54 ± 4783.98 pg/ml, indicating that Atremorine potentiates the dopaminergic effects of conventional anti-PD drugs. Atremorine also influences the levels of other neurotransmitters (adrenaline, noradrenaline) and hormones which are regulated by DA (e.g., prolactin, PRL), with no effect on serotonin or histamine. The variability in Atremorine-induced DA response is highly attributable to pharmacogenetic factors. Polymorphic variants in pathogenic (SNCA, NUCKS1, ITGA8, GPNMB, GCH1, BCKDK, APOE, LRRK2, ACMSD), mechanistic (DRD2), metabolic (CYP2D6, CYP2C9, CYP2C19, CYP3A4/5, NAT2), transporter (ABCB1, SLC6A2, SLC6A3, SLC6A4) and pleiotropic genes (APOE) influence the DA response to Atremorine and its psychomotor and brain effects. Atremorine enhances DNA methylation and displays epigenetic activity via modulation of the pharmacoepigenetic network. Atremorine is a novel neuroprotective agent for dopaminergic neurons with potential prophylactic and therapeutic activity in PD.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Carrera
- Department of Health Biotechnology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Olaia Martínez
- Department of Medical Epigenetics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | | | | | - Pablo Cacabelos
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Susana Rodríguez
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Margarita Alcaraz
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Laura Nebril
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Tellado
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Rocío Pego
- Department of Neuropsychology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Vinogran Naidoo
- Department of Neuroscience, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Juan C Carril
- Department of Genomics & Pharmacogenomics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| |
Collapse
|
9
|
Magistrelli L, Ferrari M, Furgiuele A, Milner AV, Contaldi E, Comi C, Cosentino M, Marino F. Polymorphisms of Dopamine Receptor Genes and Parkinson's Disease: Clinical Relevance and Future Perspectives. Int J Mol Sci 2021; 22:ijms22073781. [PMID: 33917417 PMCID: PMC8038729 DOI: 10.3390/ijms22073781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease caused by loss of dopaminergic neurons in the midbrain. PD is clinically characterized by a variety of motor and nonmotor symptoms, and treatment relies on dopaminergic replacement. Beyond a common pathological hallmark, PD patients may present differences in both clinical progression and response to drug therapy that are partly affected by genetic factors. Despite extensive knowledge on genetic variability of dopaminergic receptors (DR), few studies have addressed their relevance as possible influencers of clinical heterogeneity in PD patients. In this review, we summarized available evidence regarding the role of genetic polymorphisms in DR as possible determinants of PD development, progression and treatment response. Moreover, we examined the role of DR in the modulation of peripheral immunity, in light of the emerging role of the peripheral immune system in PD pathophysiology. A better understanding of all these aspects represents an important step towards the development of precise and personalized disease-modifying therapies for PD.
Collapse
Affiliation(s)
- Luca Magistrelli
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy; (L.M.); (A.F.)
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
| | - Marco Ferrari
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
| | - Alessia Furgiuele
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy; (L.M.); (A.F.)
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
| | - Anna Vera Milner
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
| | - Elena Contaldi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
- PhD Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, 28100 Novara, Italy
| | - Cristoforo Comi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Correspondence:
| | - Marco Cosentino
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Center of Research in Neuroscience, University of Insubria, 21100 Varese, Italy
| | - Franca Marino
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Center of Research in Neuroscience, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
10
|
Marino BLB, de Souza LR, Sousa KPA, Ferreira JV, Padilha EC, da Silva CHTP, Taft CA, Hage-Melim LIS. Parkinson's Disease: A Review from Pathophysiology to Treatment. Mini Rev Med Chem 2021; 20:754-767. [PMID: 31686637 DOI: 10.2174/1389557519666191104110908] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/02/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease in the elderly population, with a higher prevalence in men, independent of race and social class; it affects approximately 1.5 to 2.0% of the elderly population over 60 years and 4% for those over 80 years of age. PD is caused by the necrosis of dopaminergic neurons in the substantia nigra, which is the brain region responsible for the synthesis of the neurotransmitter dopamine (DA), resulting in its decrease in the synaptic cleft. The monoamine oxidase B (MAO-B) degrades dopamine, promoting the glutamate accumulation and oxidative stress with the release of free radicals, causing excitotoxicity. The PD symptoms are progressive physical limitations such as rigidity, bradykinesia, tremor, postural instability and disability in functional performance. Considering that there are no laboratory tests, biomarkers or imaging studies to confirm the disease, the diagnosis of PD is made by analyzing the motor features. There is no cure for PD, and the pharmacological treatment consists of a dopaminergic supplement with levodopa, COMT inhibitors, anticholinergics agents, dopaminergic agonists, and inhibitors of MAO-B, which basically aims to control the symptoms, enabling better functional mobility and increasing life expectancy of the treated PD patients. Due to the importance and increasing prevalence of PD in the world, this study reviews information on the pathophysiology, symptomatology as well as the most current and relevant treatments of PD patients.
Collapse
Affiliation(s)
- Bianca L B Marino
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Amapa, Brazil
| | - Lucilene R de Souza
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Amapa, Brazil
| | - Kessia P A Sousa
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Amapa, Brazil
| | - Jaderson V Ferreira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Amapa, Brazil
| | - Elias C Padilha
- Faculdade de Ciencias Farmaceuticas, Universidade Estadual Paulista (UNESP), Campus Araraquara, Departamento de Principios Ativos Naturais e Toxicologia, Araraquara, Sao Paulo, Brazil
| | - Carlos H T P da Silva
- Laboratório Computacional de Química Farmacêutica, Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Chemistry, School of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlton A Taft
- Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
| | - Lorane I S Hage-Melim
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Amapa, Brazil
| |
Collapse
|
11
|
Eryilmaz IE, Erer S, Zarifoglu M, Egeli U, Karakus E, Yurdacan B, Cecener G, Tunca B, Colakoglu B, Bora Tokcaer A, Saka E, Demirkiran M, Akbostanci C, Dogu O, Kaleagasi H, Kenangil G, Cakmur R, Elibol B. Contribution of functional dopamine D2 and D3 receptor variants to motor and non-motor symptoms of early onset Parkinson's disease. Clin Neurol Neurosurg 2020; 199:106257. [PMID: 33039854 DOI: 10.1016/j.clineuro.2020.106257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/12/2020] [Accepted: 09/28/2020] [Indexed: 01/29/2023]
Abstract
In the present study, we focused on investigating the contribution of functional dopamine D2 and D3 receptor variants to motor and/or non-motor symptoms of early onset Parkinson's disease (EOPD). Three functional single nucleotide polymorphisms (SNPs), DRD3 rs6280, DRD2 rs2283265 and DRD2 rs1076560, were genotyped in 128 Turkish EOPD patients and then, statistical analysis was conducted for the potential impacts of SNPs on clinical parameters. All three SNPs were found to be statistically significant in terms of PD-related pain: DRD3 [rs6280; risk allele "T" for pain; p = 0.031; odds ratio (OR)=4.25], DRD2 [rs2283265; risk allele "A" for pain; p = 0.001; OR=8.47] and, DRD2 [rs1076560; risk allele "A" for pain; p = 0.022; OR=4.58]. Additionally, bilateral disease [p = 0.011; OR=5.10] and gender [risk group "female"; p = 0.003; OR=8.53] were also identified as significant univariate risk factors for PD-related pain. Based on logistic regression analysis conducted with the significant univariate risk factors, this the first report to clarify that a female patient with bilateral PD and DRD2 rs2283265 polymorphism has a significant risk for PD-related pain. Our findings might contribute to improve life quality by offering treatment options for pain in PD patients with these clinical and genetic features.
Collapse
Affiliation(s)
- Isil Ezgi Eryilmaz
- Bursa Uludag University, Faculty of Medicine, Medical Biology Department, Bursa, Turkey
| | - Sevda Erer
- Bursa Uludag University, Faculty of Medicine, Neurology Department, Bursa, Turkey.
| | - Mehmet Zarifoglu
- Bursa Uludag University, Faculty of Medicine, Neurology Department, Bursa, Turkey
| | - Unal Egeli
- Bursa Uludag University, Faculty of Medicine, Medical Biology Department, Bursa, Turkey
| | - Ece Karakus
- Bursa Uludag University, Faculty of Medicine, Bursa, Turkey
| | - Beste Yurdacan
- Bursa Uludag University, Faculty of Medicine, Medical Biology Department, Bursa, Turkey
| | - Gulsah Cecener
- Bursa Uludag University, Faculty of Medicine, Medical Biology Department, Bursa, Turkey
| | - Berrin Tunca
- Bursa Uludag University, Faculty of Medicine, Medical Biology Department, Bursa, Turkey
| | - Beril Colakoglu
- Dokuz Eylul University, Faculty of Medicine, Neurology Department, Izmir, Turkey
| | - Ayse Bora Tokcaer
- Gazi University, Faculty of Medicine, Neurology Department, Ankara, Turkey
| | - Esen Saka
- Hacettepe University, Faculty of Medicine, Neurology Department, Ankara, Turkey
| | - Meltem Demirkiran
- Cukurova University, Faculty of Medicine, Neurology Department, Adana, Turkey
| | - Cenk Akbostanci
- Ankara University, Faculty of Medicine, Neurology Department, Ankara, Turkey
| | - Okan Dogu
- Mersin University, Faculty of Medicine, Neurology Department, Mersin, Turkey
| | - Hakan Kaleagasi
- Mersin University, Faculty of Medicine, Neurology Department, Mersin, Turkey
| | - Gulay Kenangil
- BAU Medical Park Goztepe, Neurology Department, İstanbul, Turkey
| | - Raif Cakmur
- Dokuz Eylul University, Faculty of Medicine, Neurology Department, Izmir, Turkey
| | - Bulent Elibol
- Hacettepe University, Faculty of Medicine, Neurology Department, Ankara, Turkey
| |
Collapse
|
12
|
Cacabelos R. Pharmacogenomics of drugs used to treat brain disorders. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1738217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ramon Cacabelos
- International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| |
Collapse
|
13
|
Zakharyan R, Ghazaryan H, Kocourkova L, Chavushyan A, Mkrtchyan A, Zizkova V, Arakelyan A, Petrek M. Association of Genetic Variants of Dopamine and Serotonin In Schizophrenia. Arch Med Res 2020; 51:13-20. [PMID: 32086104 DOI: 10.1016/j.arcmed.2019.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Several studies indicated that antipsychotic treatment response and side effect manifestation can be different due to inter-individual variability in genetic variations. AIM OF THE STUDY Here we perform a case-control study to explore a potential association between schizophrenia and variants within the antipsychotic drug molecular targets (DRD1, DRD2, DRD3, HTR2A, HTR6) and metabolizing enzymes (CYP2D6, COMT) genes in Armenian population including also analysis of their possible relationship with disease clinical symptoms. METHODS A total of 18 SNPs was studied in patients with schizophrenia (n = 78) and healthy control subjects (n = 77) using MassARRAY genotyping. RESULTS We found that two studied genetic variants, namely DRD2 rs4436578*C and HTR2A rs6314*A are underrepresented in the group of patients compared to healthy subjects. After the correction for multiple testing, the rs4436578*C variant remained significant while the rs6314*A reported borderline significance. No significant differences in minor allele frequencies for other studied variants were identified. Also, a relationship between the genotypes and age of onset as well as disease duration has been detected. CONCLUSIONS The DRD2 rs4436578*C genetic variant might have protective role against schizophrenia, at least in Armenians.
Collapse
Affiliation(s)
- Roksana Zakharyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia; Russian-Armenian, University, Yerevan, Armenia.
| | - Hovsep Ghazaryan
- Andranik Chavushyan, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Lenka Kocourkova
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Andranik Chavushyan
- Andranik Chavushyan, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Artur Mkrtchyan
- Department of Psychiatry, National Institute of Health, MH RA, Yerevan, Armenia
| | - Veronika Zizkova
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Arsen Arakelyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia; Russian-Armenian, University, Yerevan, Armenia
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
14
|
Ozaki Y, Yoshino Y, Yamazaki K, Ochi S, Iga J, Nagai M, Nomoto M, Ueno S. DRD2 methylation to differentiate dementia with Lewy bodies from Parkinson's disease. Acta Neurol Scand 2020; 141:177-182. [PMID: 31659741 DOI: 10.1111/ane.13186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The aim was to clarify whether DRD2 methylation changes in leukocytes of dementia with Lewy bodies (DLB) or Parkinson's disease (PD) patients are seen and can be used to discriminate between them. METHODS Methylation rates were examined in 23 DLB subjects and 23 age- and sex-matched healthy controls and 37 PD patients and 37 age- and sex-matched healthy controls. RESULTS Significant DRD2 DNA methylation changes were found in leukocytes of DLB and PD patients compared with healthy subjects. Discriminant analysis between DLB and PD using seven CpG sites demonstrated sensitivity and specificity of 83.8% and 90.9%, respectively. None of the CpG sites were associated with sex, age, age of onset, disease duration, and any of the neuropsychological tests in DLB and PD patients. CONCLUSION This is the first report showing that DRD2 DNA methylation rates in leukocytes were increased in DLB patients and decreased in PD patients. These results may be an important step in understanding epigenetic mechanisms underlying DLB and PD pathogenesis and providing a novel biomarker for discriminating between them.
Collapse
Affiliation(s)
- Yuki Ozaki
- Department of Neuropsychiatry, Molecules and Function Ehime University Graduate School of Medicine Toon Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function Ehime University Graduate School of Medicine Toon Japan
| | - Kiyohiro Yamazaki
- Department of Neuropsychiatry, Molecules and Function Ehime University Graduate School of Medicine Toon Japan
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function Ehime University Graduate School of Medicine Toon Japan
| | - Jun‐ichi Iga
- Department of Neuropsychiatry, Molecules and Function Ehime University Graduate School of Medicine Toon Japan
| | - Masahiro Nagai
- Department of Neurology and Clinical Pharmacology Ehime University Graduate School of Medicine Toon Japan
| | - Masahiro Nomoto
- Department of Neurology and Clinical Pharmacology Ehime University Graduate School of Medicine Toon Japan
| | - Shu‐ichi Ueno
- Department of Neuropsychiatry, Molecules and Function Ehime University Graduate School of Medicine Toon Japan
| |
Collapse
|
15
|
Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev 2020; 57:100994. [PMID: 31765822 PMCID: PMC6939386 DOI: 10.1016/j.arr.2019.100994] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms which relentlessly and progressively lead to substantial disability and economic burden. Pathologically, these symptoms follow the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) associated with abnormal α-synuclein (α-Syn) deposition as cytoplasmic inclusions called Lewy bodies in pigmented brainstem nuclei, and in dystrophic neurons in striatal and cortical regions (Lewy neurites). Pharmacotherapy for PD focuses on improving quality of life and primarily targets dopaminergic pathways. Dopamine acts through two families of receptors, dopamine D1-like and dopamine D2-like; dopamine D3 receptors (D3R) belong to dopamine D2 receptor (D2R) family. Although D3R's precise role in the pathophysiology and treatment of PD has not been determined, we present evidence suggesting an important role for D3R in the early development and occurrence of PD. Agonist activation of D3R increases dopamine concentration, decreases α-Syn accumulation, enhances secretion of brain derived neurotrophic factors (BDNF), ameliorates neuroinflammation, alleviates oxidative stress, promotes neurogenesis in the nigrostriatal pathway, interacts with D1R to reduce PD associated motor symptoms and ameliorates side effects of levodopa (L-DOPA) treatment. Furthermore, D3R mutations can predict PD age of onset and prognosis of PD treatment. The role of D3R in PD merits further research. This review elucidates the potential role of D3R in PD pathogenesis and therapy.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Physical Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Occupational Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA.
| |
Collapse
|
16
|
Utilization of Biased G Protein-Coupled ReceptorSignaling towards Development of Safer andPersonalized Therapeutics. Molecules 2019; 24:molecules24112052. [PMID: 31146474 PMCID: PMC6600667 DOI: 10.3390/molecules24112052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/19/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are involved in a wide variety of physiological processes. Therefore, approximately 40% of currently prescribed drugs have targeted this receptor family. Discovery of β-arrestin mediated signaling and also separability of G protein and β-arrestin signaling pathways have switched the research focus in the GPCR field towards development of biased ligands, which provide engagement of the receptor with a certain effector, thus enriching a specific signaling pathway. In this review, we summarize possible factors that impact signaling profiles of GPCRs such as oligomerization, drug treatment, disease conditions, genetic background, etc. along with relevant molecules that can be used to modulate signaling properties of GPCRs such as allosteric or bitopic ligands, ions, aptamers and pepducins. Moreover, we also discuss the importance of inclusion of pharmacogenomics and molecular dynamics simulations to achieve a holistic understanding of the relation between genetic background and structure and function of GPCRs and GPCR-related proteins. Consequently, specific downstream signaling pathways can be enriched while those that bring unwanted side effects can be prevented on a patient-specific basis. This will improve studies that centered on development of safer and personalized therapeutics, thus alleviating the burden on economy and public health.
Collapse
|
17
|
Redenšek S, Flisar D, Kojović M, Gregorič Kramberger M, Georgiev D, Pirtošek Z, Trošt M, Dolžan V. Dopaminergic Pathway Genes Influence Adverse Events Related to Dopaminergic Treatment in Parkinson's Disease. Front Pharmacol 2019; 10:8. [PMID: 30745869 PMCID: PMC6360186 DOI: 10.3389/fphar.2019.00008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/07/2019] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic pathway is the most disrupted pathway in the pathogenesis of Parkinson's disease. Several studies reported associations of dopaminergic genes with the occurrence of adverse events of dopaminergic treatment. However, none of these studies adopted a pathway based approach. The aim of this study was to comprehensively evaluate the influence of selected single nucleotide polymorphisms of key dopaminergic pathway genes on the occurrence of motor and non-motor adverse events of dopaminergic treatment in Parkinson's disease. In total, 231 Parkinson's disease patients were enrolled. Demographic and clinical data were collected. Genotyping was performed for 16 single nucleotide polymorphisms from key dopaminergic pathway genes. Logistic and Cox regression analyses were used for evaluation. Results were adjusted for significant clinical data. We observed that carriers of at least one COMT rs165815 C allele had lower odds for developing visual hallucinations (OR = 0.34; 95% CI = 0.16-0.72; p = 0.004), while carriers of at least one DRD3 rs6280 C allele and CC homozygotes had higher odds for this adverse event (OR = 1.88; 95% CI = 1.00-3.54; p = 0.049 and OR = 3.31; 95% CI = 1.37-8.03; p = 0.008, respectively). Carriers of at least one DDC rs921451 C allele and CT heterozygotes had higher odds for orthostatic hypotension (OR = 1.86; 95% CI = 1.07-3.23; p = 0.028 and OR = 2.30; 95% CI = 1.26-4.20; p = 0.007, respectively). Heterozygotes for DDC rs3837091 and SLC22A1 rs628031 AA carriers also had higher odds for orthostatic hypotension (OR = 1.94; 95% CI = 1.07-3.51; p = 0.028 and OR = 2.57; 95% CI = 1.11-5.95; p = 0.028, respectively). Carriers of the SLC22A1 rs628031 AA genotype had higher odds for peripheral edema and impulse control disorders (OR = 4.00; 95% CI = 1.62-9.88; p = 0.003 and OR = 3.16; 95% CI = 1.03-9.72; p = 0.045, respectively). Finally, heterozygotes for SLC22A1 rs628031 and carriers of at least one SLC22A1 rs628031 A allele had lower odds for dyskinesia (OR = 0.48; 95% CI = 0.24-0.98, p = 0.043 and OR = 0.48; 95% CI = 0.25-0.92; p = 0.027, respectively). Gene-gene interactions, more specifically DDC-COMT, SLC18A2-SV2C, and SLC18A2-SLC6A3, also significantly influenced the occurrence of some adverse events. Additionally, haplotypes of COMT and SLC6A3 were associated with the occurrence of visual hallucinations (AT vs. GC: OR = 0.34; 95% CI = 0.16-0.72; p = 0.005) and orthostatic hypotension (ATG vs. ACG: OR = 2.48; 95% CI: 1.01-6.07; p = 0.047), respectively. Pathway based approach allowed us to identify new potential candidates for predictive biomarkers of adverse events of dopaminergic treatment in Parkinson's disease, which could contribute to treatment personalization.
Collapse
Affiliation(s)
- Sara Redenšek
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Dušan Flisar
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maja Trošt
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
|
19
|
Politi C, Ciccacci C, Novelli G, Borgiani P. Genetics and Treatment Response in Parkinson's Disease: An Update on Pharmacogenetic Studies. Neuromolecular Med 2018; 20:1-17. [PMID: 29305687 DOI: 10.1007/s12017-017-8473-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 12/29/2017] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by a progressive loss of dopamine neurons of the central nervous system. The disease determines a significant disability due to a combination of motor symptoms such as bradykinesia, rigidity and rest tremor and non-motor symptoms such as sleep disorders, hallucinations, psychosis and compulsive behaviors. The current therapies consist in combination of drugs acting to control only the symptoms of the illness by the replacement of the dopamine lost. Although patients generally receive benefits from this symptomatic pharmacological management, they also show great variability in drug response in terms of both efficacy and adverse effects. Pharmacogenetic studies highlighted that genetic factors play a relevant influence in this drug response variability. In this review, we tried to give an overview of the recent progresses in the pharmacogenetics of PD, reporting the major genetic factors identified as involved in the response to drugs and highlighting the potential use of some of these genomic variants in the clinical practice. Many genes have been investigated and several associations have been reported especially with adverse drug reactions. However, only polymorphisms in few genes, including DRD2, COMT and SLC6A3, have been confirmed as associated in different populations and in large cohorts. The identification of genomic biomarkers involved in drug response variability represents an important step in PD treatment, opening the prospective of more personalized therapies in order to identify, for each person, the better therapy in terms of efficacy and toxicity and to improve the PD patients' quality of life.
Collapse
Affiliation(s)
- Cristina Politi
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
20
|
Redenšek S, Dolžan V, Kunej T. From Genomics to Omics Landscapes of Parkinson's Disease: Revealing the Molecular Mechanisms. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:1-16. [PMID: 29356624 PMCID: PMC5784788 DOI: 10.1089/omi.2017.0181] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular mechanisms of Parkinson's disease (PD) have already been investigated in various different omics landscapes. We reviewed the literature about different omics approaches between November 2005 and November 2017 to depict the main pathological pathways for PD development. In total, 107 articles exploring different layers of omics data associated with PD were retrieved. The studies were grouped into 13 omics layers: genomics-DNA level, transcriptomics, epigenomics, proteomics, ncRNomics, interactomics, metabolomics, glycomics, lipidomics, phenomics, environmental omics, pharmacogenomics, and integromics. We discussed characteristics of studies from different landscapes, such as main findings, number of participants, sample type, methodology, and outcome. We also performed curation and preliminary synthesis of multiple omics data, and identified overlapping results, which could lead toward selection of biomarkers for further validation of PD risk loci. Biomarkers could support the development of targeted prognostic/diagnostic panels as a tool for early diagnosis and prediction of progression rate and prognosis. This review presents an example of a comprehensive approach to revealing the underlying processes and risk factors of a complex disease. It urges scientists to structure the already known data and integrate it into a meaningful context.
Collapse
Affiliation(s)
- Sara Redenšek
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
21
|
Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE, Babu MM. Pharmacogenomics of GPCR Drug Targets. Cell 2017; 172:41-54.e19. [PMID: 29249361 PMCID: PMC5766829 DOI: 10.1016/j.cell.2017.11.033] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/11/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022]
Abstract
Natural genetic variation in the human genome is a cause of individual differences in responses to medications and is an underappreciated burden on public health. Although 108 G-protein-coupled receptors (GPCRs) are the targets of 475 (∼34%) Food and Drug Administration (FDA)-approved drugs and account for a global sales volume of over 180 billion US dollars annually, the prevalence of genetic variation among GPCRs targeted by drugs is unknown. By analyzing data from 68,496 individuals, we find that GPCRs targeted by drugs show genetic variation within functional regions such as drug- and effector-binding sites in the human population. We experimentally show that certain variants of μ-opioid and Cholecystokinin-A receptors could lead to altered or adverse drug response. By analyzing UK National Health Service drug prescription and sales data, we suggest that characterizing GPCR variants could increase prescription precision, improving patients’ quality of life, and relieve the economic and societal burden due to variable drug responsiveness. Video Abstract
GPCRs targeted by FDA-approved drugs show genetic variation in the human population Genetic variation occurs in functional sites and may result in altered drug response We present an online resource of GPCR genetic variants for pharmacogenomics research Understanding variation in drug targets may help alleviate economic healthcare burden
Collapse
Affiliation(s)
- Alexander S Hauser
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Leonie J Jahn
- The Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet 2800 Kgs. Lyngby, Denmark
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|