1
|
Cui Z, Wong AJW, Janik MJ, Co AC. Cation effects on CO 2 reduction catalyzed by single-crystal and polycrystalline gold under well-defined mass transport conditions. SCIENCE ADVANCES 2025; 11:eadr6465. [PMID: 39919184 PMCID: PMC11804923 DOI: 10.1126/sciadv.adr6465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025]
Abstract
The presence of alkali metal cations in the electrolyte substantially affects the reactivity and selectivity of electrochemical carbon dioxide (CO2) reduction (CO2R). This study examines the role of cations in CO2R on single-crystal and polycrystalline Au under controlled mass-transport conditions. It establishes that CO2 adsorption is the rate-determining step regardless of cation type or surface structure. Density functional theory calculations show that electron transfer occurs to a solvated CO2-cation complex. A more positive potential of zero charge enhances CO2R activity only on Au with similar surface coordination. The symmetry factor (β) of the rate-determining step varies with surface structure and cation identity, with density functional theory calculations indicating β's sensitivity to surface and double-layer structures. These findings emphasize the importance of both surface and double-layer structures in understanding cation effects on CO2R.
Collapse
Affiliation(s)
- Zhihao Cui
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Andrew Jark-Wah Wong
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J. Janik
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Anne C. Co
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Fu K, Yuan D, Yu T, Lei C, Kou Z, Huang B, Lyu S, Zhang F, Wan T. Recent Advances on Two-Dimensional Nanomaterials Supported Single-Atom for Hydrogen Evolution Electrocatalysts. Molecules 2024; 29:4304. [PMID: 39339299 PMCID: PMC11434429 DOI: 10.3390/molecules29184304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Water electrolysis has been recognized as a promising technology that can convert renewable energy into hydrogen for storage and utilization. The superior activity and low cost of catalysis are key factors in promoting the industrialization of water electrolysis. Single-atom catalysts (SACs) have attracted attention due to their ultra-high atomic utilization, clear structure, and highest hydrogen evolution reaction (HER) performance. In addition, the performance and stability of single-atom (SA) substrates are crucial, and various two-dimensional (2D) nanomaterial supports have become promising foundations for SA due to their unique exposed surfaces, diverse elemental compositions, and flexible electronic structures, to drive single atoms to reach performance limits. The SA supported by 2D nanomaterials exhibits various electronic interactions and synergistic effects, all of which need to be comprehensively summarized. This article aims to organize and discuss the progress of 2D nanomaterial single-atom supports in enhancing HER, including common and widely used synthesis methods, advanced characterization techniques, different types of 2D supports, and the correlation between structural hydrogen evolution performance. Finally, the latest understanding of 2D nanomaterial supports was proposed.
Collapse
Affiliation(s)
- Kangkai Fu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Douke Yuan
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Ting Yu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Chaojun Lei
- Key Laboratory of Organosilicon Chemistry and Material Technology, College of Material, Chemistry and Chemical Engineering, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenhui Kou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bingfeng Huang
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Siliu Lyu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Feng Zhang
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Tongtao Wan
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| |
Collapse
|
3
|
Nattino F, Truscott M, Marzari N, Andreussi O. Continuum models of the electrochemical diffuse layer in electronic-structure calculations. J Chem Phys 2019; 150:041722. [PMID: 30709273 DOI: 10.1063/1.5054588] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Continuum electrolyte models represent a practical tool to account for the presence of the diffuse layer at electrochemical interfaces. However, despite the increasing popularity of these in the field of materials science, it remains unclear which features are necessary in order to accurately describe interface-related observables such as the differential capacitance (DC) of metal electrode surfaces. We present here a critical comparison of continuum diffuse-layer models that can be coupled to an atomistic first-principles description of the charged metal surface in order to account for the electrolyte screening at electrified interfaces. By comparing computed DC values for the prototypical Ag(100) surface in an aqueous solution to experimental data, we validate the accuracy of the models considered. Results suggest that a size-modified Poisson-Boltzmann description of the electrolyte solution is sufficient to qualitatively reproduce the main experimental trends. Our findings also highlight the large effect that the dielectric cavity parameterization has on the computed DC values.
Collapse
Affiliation(s)
- Francesco Nattino
- Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Matthew Truscott
- Department of Physics, University of North Texas, Denton, Texas 76207, USA
| | - Nicola Marzari
- Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Oliviero Andreussi
- Department of Physics, University of North Texas, Denton, Texas 76207, USA
| |
Collapse
|
4
|
Weitzner SE, Dabo I. Voltage effects on the stability of Pd ensembles in Pd-Au/Au(111) surface alloys. J Chem Phys 2019; 150:041715. [PMID: 30709256 DOI: 10.1063/1.5054124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The catalytic performance of multimetallic electrodes is often attributed to a beneficial combination of ligand, strain, and ensemble effects. Understanding the influence of the electrochemical environment on the stability of the alloy surface structure is thus a crucial component to the design of highly active and durable electrocatalysts. In this work, we study the effects of an applied voltage to electrocatalytic Pd-Au/Au(111) surface alloys in contact with a model continuum electrolyte. Using planewave density functional theory, two-dimensional cluster expansions are parameterized and used to simulate dilute Pd-Au surface alloys under electrochemical conditions via Metropolis Monte Carlo within an extended canonical ensemble. While Pd monomers are stable at all potentials considered, different extents of surface electrification are observed to promote the formation of Pd dimers and trimers, as well as clusters of Pd monomers. We find that the relative proportion of monomer, dimer, and trimer surface fractions is in good agreement with in situ scanning tunneling microscopy measurements. The further development and refinement of the approaches described herein may serve as a useful aid in the development of next-generation electrocatalysts.
Collapse
Affiliation(s)
- Stephen E Weitzner
- Department of Materials Science and Engineering, Materials Research Institute, and Penn State Institutes of Energy and the Environment, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ismaila Dabo
- Department of Materials Science and Engineering, Materials Research Institute, and Penn State Institutes of Energy and the Environment, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
5
|
Rawal SH, McKee WC, Xu Y. Estimation of electric field effects on the adsorption of molecular superoxide species on Au based on density functional theory. Phys Chem Chem Phys 2017; 19:32626-32635. [PMID: 29192706 DOI: 10.1039/c7cp06242g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Superoxide species are key intermediates in the oxygen reduction reactions (ORR) that occur at the cathodes of aprotic metal-air batteries. Herein we report a DFT study of the effects of an externally applied electric field (ε) on the stability of various molecular superoxide species, including MO2 (M = Li, Na, K) and O2-, on gold surfaces, which shows that the stability of such species on Au electrodes can be materially affected by the presence of an electric field and solvent molecules, suggesting that such effects should be included in the first-principles modeling of cathode reactions in metal-O2 cells. In the ε range of ±0.4 V Å-1, the stability of MO2 species is found to vary by up to |0.4| eV on Au(111) and |0.2| eV on Au(211) in vacuo, which is larger than the field effects on the stability of O and OH, key intermediates in the ORR by hydrogen. An aprotic solvent such as dimethyl sulfoxide (DMSO), considered here via the inclusion of explicit DMSO molecules above the Au surfaces, stabilizes all three MO2 species at zero fields and amplifies the field effects on the stability of MO2, on both Au surfaces. The variations in the stability of the molecular MO2 species with ε, which have small polarizabilities, are closely approximated by the first-order Stark effect (μ0·ε, where μ0 is the static surface dipole moment induced by adsorption at ε = 0 V Å-1). The superoxide anion (O2-) that has been identified on an under-coordinated Au site has a larger polarizability than the MOx species and a μ0 that is opposite in sign to those of the metal MO2 species, which results in larger errors by the first-order approximation, although its stability varies only moderately under positive electric fields of up to 0.4 V Å-1.
Collapse
Affiliation(s)
- Saurin H Rawal
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | |
Collapse
|