1
|
Liang GT, Lai C, Yue Z, Zhang H, Li D, Chen Z, Lu X, Tao L, Subach FV, Piatkevich KD. Enhanced small green fluorescent proteins as a multisensing platform for biosensor development. Front Bioeng Biotechnol 2022; 10:1039317. [PMID: 36324888 PMCID: PMC9618808 DOI: 10.3389/fbioe.2022.1039317] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Engineered light, oxygen, and voltage (LOV)-based proteins are able to fluoresce without oxygen requirement due to the autocatalytic incorporation of exogenous flavin as a chromophore thus allowing for live cell imaging under hypoxic and anaerobic conditions. They were also discovered to have high sensitivity to transition metal ions and physiological flavin derivatives. These properties make flavin-binding fluorescent proteins (FPs) a perspective platform for biosensor development. However, brightness of currently available flavin-binding FPs is limited compared to GFP-like FPs creating a need for their further enhancement and optimization. In this study, we applied a directed molecular evolution approach to develop a pair of flavin-binding FPs, named miniGFP1 and miniGFP2. The miniGFP proteins are characterized by cyan-green fluorescence with excitation/emission maxima at 450/499 nm and a molecular size of ∼13 kDa. We carried out systematic benchmarking of miniGFPs in Escherichia coli and cultured mammalian cells against spectrally similar FPs including GFP-like FP, bilirubin-binding FP, and bright flavin-binding FPs. The miniGFPs proteins exhibited improved photochemical properties compared to other flavin-binding FPs enabling long-term live cell imaging. We demonstrated the utility of miniGFPs for live cell imaging in bacterial culture under anaerobic conditions and in CHO cells under hypoxia. The miniGFPs’ fluorescence was highly sensitive to Cu(II) ions in solution with Kd values of 67 and 68 nM for miniGFP1 and miniGFP2, respectively. We also observed fluorescence quenching of miniGFPs by the reduced form of Cu(I) suggesting its potential application as an optical indicator for Cu(I) and Cu(II). In addition, miniGFPs showed the ability to selectively bind exogenous flavin mononucleotide demonstrating a potential for utilization as a selective fluorescent flavin indicator. Altogether, miniGFPs can serve as a multisensing platform for fluorescence biosensor development for in vitro and in-cell applications.
Collapse
Affiliation(s)
- Guo-Teng Liang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Cuixin Lai
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zejun Yue
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences, Xi’an Jiao Tong University, Xi’an, Shaanxi, China
| | - Hanbin Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Danyang Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xingyu Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Liang Tao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Fedor V. Subach
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Kiryl D. Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- *Correspondence: Kiryl D. Piatkevich,
| |
Collapse
|
2
|
Akhmetova VR, Galimova RA, Akhmadiev NS, Galimova AM, Khisamutdinov RA, Nurtdinova GM, Agletdinov EF, Kataev VA. Synthesis of Bis(Isoxazol-4-Ylmethylsulfanyl)Alkanes and Some Metal Complexes as a Hepatoprotective Agents. Adv Pharm Bull 2018; 8:267-275. [PMID: 30023328 PMCID: PMC6046414 DOI: 10.15171/apb.2018.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/27/2018] [Accepted: 04/09/2018] [Indexed: 01/01/2023] Open
Abstract
Purpose: This research is devoted to designing the synthesis of sulfanyl-substituted 3,5-dimethylisoxazoles, which contain structural analogues of the SAM drug in the molecule. SAM (S-adenosyl-L-methionine), formed in the biosynthetic process, is used as an effective hepatoprotective drug. Complexation and hepatoprotective properties of the combinatorial series of bis(isoxazolylsulfanyl)ethane have been studied. Methods: Bis(isoxazol-4-ylmethylsulfanyl)alkanes were synthesized using the one-pot method. The structures of compounds were established by one-dimensional (1H,13C) and two-dimensional (COSY, HCQS, HMBC) NMR spectroscopy, mass-spectrometry and X-ray diffraction. The biological activity of the combinatorial series of sulfanyl derivatives of diketones, azoles and their metal complexes has been studied by in vivo method. Simulation of the animal associated processes was carried out in accordance with the principles of bioethics. Screening studies of hepatoprotective activity were carried out in a model of acute CC14 intoxication after a single injection intraperitoneally as a 50% solution in olive oil. The pharmacologically known hepatoprotective drug SAM served as a control. Results: Two-step synthesis of novel α,ω-bis(isoxazol-4-ylmethylsulfanyl)alkanes was carried out via the multicomponent reaction between 2,4-pentandione, CH2O and α,ω-dithiols, then the resulting α,ω-bis(1,3-diketone-2-ylmethylsulfanyl)alkanes were transformed by hydroxyl amine to obtain bis-isoxasole derivatives. Promising precursor 1,2-bis(isoxazol-4-ylmethylsulfanyl)ethane was converted to metal complexes by interaction with PdCl2 or CuCl. The obtained compounds were found to be practically non-toxic compounds (1001 - 3000 mg/kg) according to the classification of K.K. Sidorov, but copper complex refers to low-toxic compounds substances (165 mg/kg). Compounds of sulfanyl ethane series demonstrate hepatoprotective activity. Conclusion: Palladium(II) complex being almost non-toxic possesses hepatoprotective activity comparable to the drug like SAM.
Collapse
Affiliation(s)
- Vnira Rakhimovna Akhmetova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, 450075 Ufa, Russia
| | | | - Nail Salavatovich Akhmadiev
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, 450075 Ufa, Russia
| | | | | | - Galiya Maratovna Nurtdinova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, 450075 Ufa, Russia
| | | | | |
Collapse
|
3
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|