1
|
Phytochrome A in plants comprises two structurally and functionally distinct populations — water-soluble phyA′ and amphiphilic phyA″. Biophys Rev 2022; 14:905-921. [DOI: 10.1007/s12551-022-00974-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022] Open
|
2
|
Sineshchekov VA, Koppel LA, Bolle C. Two native types of phytochrome A, phyA' and phyA", differ by the state of phosphorylation at the N-terminus as revealed by fluorescence investigations of the Ser/Ala mutant of rice phyA expressed in transgenic Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:150-159. [PMID: 32291029 DOI: 10.1071/fp16261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/01/2016] [Indexed: 06/11/2023]
Abstract
Phytochrome A (phyA) mediates different photoresponses what may be connected with the existence of its two types, phyA' and phyA'', differing by spectroscopic, photochemical and functional properties. We investigated a role of phyA phosphorylation in their formation turning to transgenic Arabidopsis thaliana (L. Heynh.) phyA or phyAphyB mutants overexpressing rice wild-type phyA (phyA WT) or mutant phyA (phyA SA) with the first 10 serines substituted by alanines. This prevents phyA phosphorylation at these sites and modifies photoresponses. Etiolated seedlings were employed and phyA parameters were evaluated with the use of low temperature fluorescence spectroscopy and photochemistry. Germination of seeds was induced by white light (WL) pre-treatment for 15min or 3h. Emission spectra of rice phyA WT and phyA SA were similar and their total content was comparable. However, the phyA'/phyA'' proportion in phyA WT was high and varied with the duration of the WL pre-treatment, whereas in phyA SA it was substantially shifted towards phyA'' and did not depend on the pre-illumination. This suggests that phyA SA comprises primarily or exclusively the phyA'' pool and supports the notion that the two phyA types differ by the state of serine phosphorylation. phyA'' was also found to be much more effective in the germination induction than phyA'.
Collapse
Affiliation(s)
| | - Larissa A Koppel
- Biology Department, MV Lomonosov Moscow State University, Moscow 119234, Russia
| | - Cordelia Bolle
- Biology Department, Ludwig Maximilian University, München, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Sineshchekov VA, Koppel LA, Bolle C. Two native types of phytochrome A, phyAʹ and phyAʺ, differ by the state of phosphorylation at the N-terminus as revealed by fluorescence investigations of the Ser/Ala mutant of rice phyA expressed in transgenic Arabidopsis. FUNCTIONAL PLANT BIOLOGY 2018; 45:150. [DOI: https:/doi.org/10.1071/fp16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Phytochrome A (phyA) mediates different photoresponses what may be connected with the existence of its two types, phyAʹ and phyAʹʹ, differing by spectroscopic, photochemical and functional properties. We investigated a role of phyA phosphorylation in their formation turning to transgenic Arabidopsis thaliana (L. Heynh.) phyA or phyAphyB mutants overexpressing rice wild-type phyA (phyA WT) or mutant phyA (phyA SA) with the first 10 serines substituted by alanines. This prevents phyA phosphorylation at these sites and modifies photoresponses. Etiolated seedlings were employed and phyA parameters were evaluated with the use of low temperature fluorescence spectroscopy and photochemistry. Germination of seeds was induced by white light (WL) pre-treatment for 15 min or 3 h. Emission spectra of rice phyA WT and phyA SA were similar and their total content was comparable. However, the phyAʹ/phyAʹʹ proportion in phyA WT was high and varied with the duration of the WL pre-treatment, whereas in phyA SA it was substantially shifted towards phyAʹʹ and did not depend on the pre-illumination. This suggests that phyA SA comprises primarily or exclusively the phyAʹʹ pool and supports the notion that the two phyA types differ by the state of serine phosphorylation. phyAʹʹ was also found to be much more effective in the germination induction than phyAʹ.
Collapse
|
4
|
Prieto-Dapena P, Almoguera C, Personat JM, Merchan F, Jordano J. Seed-specific transcription factor HSFA9 links late embryogenesis and early photomorphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1097-1108. [PMID: 28207924 PMCID: PMC5441851 DOI: 10.1093/jxb/erx020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
HSFA9 is a seed-specific transcription factor that in sunflower (Helianthus annuus) is involved in desiccation tolerance and longevity. Here we show that the constitutive overexpression of HSFA9 in tobacco (Nicotiana tabacum) seedlings attenuated hypocotyl growth under darkness and accelerated the initial photosynthetic development. Plants overexpressing HSFA9 increased accumulation of carotenoids, chlorophyllide, and chlorophyll, and displayed earlier unfolding of the cotyledons. HSFA9 enhanced phytochrome-dependent light responses, as shown by an intensified hypocotyl length reduction after treatments with continuous far-red or red light. This observation indicated the involvement of at least two phytochromes: PHYA and PHYB. Reduced hypocotyl length under darkness did not depend on phytochrome photo-activation; this was inferred from the lack of effect observed using far-red light pulses applied before the dark treatment. HSFA9 increased the expression of genes that activate photomorphogenesis, including PHYA, PHYB, and HY5. HSFA9 might directly upregulate PHYA and indirectly affect PHYB transcription, as suggested by transient expression assays. Converse effects on gene expression, greening, and cotyledon unfolding were observed using a dominant-negative form of HSFA9, which was overexpressed under a seed-specific promoter. This work uncovers a novel transcriptional link, through HSFA9, between seed maturation and early photomorphogenesis. In all, our data suggest that HSFA9 enhances photomorphogenesis via early transcriptional effects that start in seeds under darkness.
Collapse
Affiliation(s)
- Pilar Prieto-Dapena
- Departamento de Biotecnología Vegetal, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41012 Seville, Spain
| | - Concepción Almoguera
- Departamento de Biotecnología Vegetal, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41012 Seville, Spain
| | - José-María Personat
- Departamento de Biotecnología Vegetal, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41012 Seville, Spain
| | - Francisco Merchan
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain
| | - Juan Jordano
- Departamento de Biotecnología Vegetal, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41012 Seville, Spain
| |
Collapse
|
5
|
Sineshchekov V, Koppel L, Okamoto H, Wada M. Fern Adiantum capillus-veneris phytochrome 1 comprises two native photochemical types similar to seed plant phytochrome A. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2014; 130:20-29. [DOI: https:/doi.org/10.1016/j.jphotobiol.2013.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
|
6
|
Fern Adiantum capillus-veneris phytochrome 1 comprises two native photochemical types similar to seed plant phytochrome A. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 130:20-9. [PMID: 24246712 DOI: 10.1016/j.jphotobiol.2013.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 11/20/2022]
Abstract
Phytochrome (phy) in etiolated seedlings of wild-type (WT) Arabidopsis (Ler) and its transgenic lines (TL) L15 and L20 transformed with Adiantum capillus-veneris PHY1 cDNA (Okamoto et al., 1997) was investigated using low-temperature (85K) fluorescence spectroscopy and photochemistry. It was found that while WT seed germination requires stimulation by light, the TL germinated equally well with or without pre-illumination. Phytochrome content [Ptot] was 2-fold higher in TL whereas the level of Pr→lumi-R phototransformation at 85K (γ1) was similar between WT (0.25) and TL (0.27). When seeds germinated with pre-illumination, the proportion of the photochemical types Pr' active and Pr″ inactive at 85K was 50/50 in WT and 54/46 in TL, respectively. Dark-germinated TL had a γ1 value of 0.16 and the proportion of Pr' and Pr″ was 32/68, respectively, without changes in [Ptot]. Evaluations based on these data revealed that phy1 has Pr' and Pr″, designated phy1' and phy1″, akin to phyA, which comprises both Pr photochemical types (phyA' and phyA″), and in contrast to phyB that possesses only Pr″. The proportion of phy1' and phy1″ depends on pre-illumination for induction of germination. The pigment most likely accumulated in the seeds and was active in promoting Arabidopsis seed germination.
Collapse
|
7
|
Abstract
The phytochrome-interacting factor PIF3 has been proposed to act as a positive regulator of chloroplast development. Here, we show that the pif3 mutant has a phenotype that is similar to the pif1 mutant, lacking the repressor of chloroplast development PIF1, and that a pif1pif3 double mutant has an additive phenotype in all respects. The pif mutants showed elevated protochlorophyllide levels in the dark, and etioplasts of pif mutants contained smaller prolamellar bodies and more prothylakoid membranes than corresponding wild-type seedlings, similar to previous reports of constitutive photomorphogenic mutants. Consistent with this observation, pif1, pif3, and pif1pif3 showed reduced hypocotyl elongation and increased cotyledon opening in the dark. Transfer of 4-d-old dark-grown seedlings to white light resulted in more chlorophyll synthesis in pif mutants over the first 2 h, and analysis of gene expression in dark-grown pif mutants indicated that key tetrapyrrole regulatory genes such as HEMA1 encoding the rate-limiting step in tetrapyrrole synthesis were already elevated 2 d after germination. Circadian regulation of HEMA1 in the dark also showed reduced amplitude and a shorter, variable period in the pif mutants, whereas expression of the core clock components TOC1, CCA1, and LHY was largely unaffected. Expression of both PIF1 and PIF3 was circadian regulated in dark-grown seedlings. PIF1 and PIF3 are proposed to be negative regulators that function to integrate light and circadian control in the regulation of chloroplast development.
Collapse
|
8
|
Abstract
The ability to switch from skotomorphogenic to photomorphogenic development is essential for seedling survival. Central to this mechanism are the phytochrome interacting factors that are important for maintaining the skotomorphogenic state and regulating the switch to photomorphogenesis.
Collapse
Affiliation(s)
- Eve-Marie Josse
- Institute of Molecular Plant Sciences, Edinburgh University, Edinburgh, UK
| | | |
Collapse
|
9
|
Leivar P, Monte E, Oka Y, Liu T, Carle C, Castillon A, Huq E, Quail PH. Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Curr Biol 2008; 18:1815-23. [PMID: 19062289 PMCID: PMC2651225 DOI: 10.1016/j.cub.2008.10.058] [Citation(s) in RCA: 452] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 12/18/2022]
Abstract
BACKGROUND An important contributing factor to the success of terrestrial flowering plants in colonizing the land was the evolution of a developmental strategy, termed skotomorphogenesis, whereby postgerminative seedlings emerging from buried seed grow vigorously upward in the subterranean darkness toward the soil surface. RESULTS Here we provide genetic evidence that a central component of the mechanism underlying this strategy is the collective repression of premature photomorphogenic development in dark-grown seedlings by several members of the phytochrome (phy)-interacting factor (PIF) subfamily of bHLH transcription factors (PIF1, PIF3, PIF4, and PIF5). Conversely, evidence presented here and elsewhere collectively indicates that a significant component of the mechanism by which light initiates photomorphogenesis upon first exposure of dark-grown seedlings to irradiation involves reversal of this repression by rapid reduction in the abundance of these PIF proteins, through degradation induced by direct interaction of the photoactivated phy molecule with the transcription factors. CONCLUSIONS We conclude that bHLH transcription factors PIF1, PIF3, PIF4, and PIF5 act as constitutive repressors of photomorphogenesis in the dark, action that is rapidly abrogated upon light exposure by phy-induced proteolytic degradation of these PIFs, allowing the initiation of photomorphogenesis to occur.
Collapse
Affiliation(s)
- Pablo Leivar
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, and United States Department of Agriculture, Plant Gene Expression Center, Albany, California 94710
| | - Elena Monte
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, and United States Department of Agriculture, Plant Gene Expression Center, Albany, California 94710
- Department of Molecular Genetics, Center for Research in Agrigenomics CSIC-IRTA-UAB, Jordi Girona 18, Barcelona 08034, Spain
| | - Yoshito Oka
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, and United States Department of Agriculture, Plant Gene Expression Center, Albany, California 94710
| | - Tiffany Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, and United States Department of Agriculture, Plant Gene Expression Center, Albany, California 94710
| | - Christine Carle
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, and United States Department of Agriculture, Plant Gene Expression Center, Albany, California 94710
| | - Alicia Castillon
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Enamul Huq
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Peter H. Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, and United States Department of Agriculture, Plant Gene Expression Center, Albany, California 94710
| |
Collapse
|
10
|
Mateos JL, Luppi JP, Ogorodnikova OB, Sineshchekov VA, Yanovsky MJ, Braslavsky SE, Gärtner W, Casal JJ. Functional and biochemical analysis of the N-terminal domain of phytochrome A. J Biol Chem 2006; 281:34421-34429. [PMID: 16966335 DOI: 10.1074/jbc.m603538200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phytochrome A (phyA) is a versatile plant photoreceptor that mediates responses to brief light exposures (very low fluence responses, VLFR) as well as to prolonged irradiation (high irradiance responses, HIR). We identified the phyA-303 mutant allele of Arabidopsis thaliana bearing an R384K substitution in the GAF subdomain of the N-terminal half of phyA. phyA-303 showed reduced phyA spectral activity, almost normal VLFR, and severely impaired HIR. Recombinant N-terminal half oat of PHYA bearing the phyA-303 mutation showed poor incorporation of chromophore in vitro, despite the predicted relatively long distance (>13 A) between the mutation and the closest ring of the chromophore. Fusion proteins bearing the N-terminal domain of oat phyA, beta-glucuronidase, green fluorescent protein, and a nuclear localization signal showed physiological activity in darkness and mediated VLFR but not HIR. At equal protein levels, the phyA-303 mutation caused slightly less activity than the fusions containing the wild-type sequence. Taken together, these studies highlight the role of the N-terminal domain of phyA in signaling and of distant residues of the GAF subdomain in the regulation of phytochrome bilin-lyase activity.
Collapse
Affiliation(s)
- Julieta L Mateos
- Max-Planck-Institut für Bioanorganische Chemie, Postfach 101356, D-45413 Mülheim an der Ruhr, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Sineshchekov V, Loskovich A, Inagaki N, Takano M. Two Native Pools of Phytochrome A in Monocots: Evidence from Fluorescence Investigations of Phytochrome Mutants of Rice. Photochem Photobiol 2006; 82:1116-1122. [DOI: https:/doi.org/10.1562/2005-12-10-ra-749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
ABSTRACTFluorescence investigations of phytochrome (phy) in rice (Oryza sativa L. cv. Nipponbare) mutants deficient in phyA, phyB and phyA plus phyB were performed. Total content of the pigment (Ptot) and its spectroscopic and photochemical characteristics were determined in different parts of the dark‐grown and far‐red light (FR)‐grown coleoptiles. Spectroscopically, phyA in the phyB mutant was identical to phyA in the wild‐type (WT) and the extent of the conversion from Pr to lumi‐R at 85 K was the same for phyA in both lines and varied similarly, depending on the part of the coleoptile used. The latter finding proved that phyA in rice is heterogeneous and comprises two phyA populations, phyA′ and phyA″. Functional properties of phyA were also determined. In the dark the phyB mutant had a higher content of phyA, inactive protochlorophyllide (Pchlide633) and active protochlorophyllide (Pchlide655) than WT and its coleoptile was longer, indicating that phyB may affect the development of WT seedlings in the dark. Constant FR drastically reduced the content of phyA, Pchlide633 and Pchlide655 and brought about coleoptile shortening and appearance of the first leaf, whereas pulsed FR of equal fluence was less effective. This suggested that the reactions were primarily of the high irradiance responses type, which are likely to be mediated by phyA′. The effects on protochlorophyllide biosynthesis and growth responses type were more pronounced in the phyB mutant than in the WT seedlings, which can be connected with the higher phyA′ content in the phyB mutant and/or phyB interference with its action in WT seedlings. In the phyA mutant induction of Pchlide633 and Pchlide655 biosynthesis was observed under constant FR, indicating that phyC may be responsible for this effect.
Collapse
|
12
|
Sineshchekov V, Loskovich A, Inagaki N, Takano M. Two Native Pools of Phytochrome A in Monocots: Evidence from Fluorescence Investigations of Phytochrome Mutants of Rice. Photochem Photobiol 2006; 82:1116-22. [PMID: 17205634 DOI: 10.1562/2005-12-10-ra-749] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fluorescence investigations of phytochrome (phy) in rice (Oryza sativa L. cv. Nipponbare) mutants deficient in phyA, phyB and phyA plus phyB were performed. Total content of the pigment (P(tot)) and its spectroscopic and photochemical characteristics were determined in different parts of the dark-grown and far-red light (FR)-grown coleoptiles. Spectroscopically, phyA in the phyB mutant was identical to phyA in the wild-type (WT) and the extent of the conversion from Pr to lumi-R at 85 K was the same for phyA in both lines and varied similarly, depending on the part of the coleoptile used. The latter finding proved that phyA in rice is heterogeneous and comprises two phyA populations, phyA' and phyA". Functional properties of phyA were also determined. In the dark the phyB mutant had a higher content of phyA, inactive protochlorophyllide (Pchlide633) and active protochlorophyllide (Pchlide655) than WT and its coleoptile was longer, indicating that phyB may affect the development of WT seedlings in the dark. Constant FR drastically reduced the content of phyA, Pchlide633 and Pchlide655 and brought about coleoptile shortening and appearance of the first leaf, whereas pulsed FR of equal fluence was less effective. This suggested that the reactions were primarily of the high irradiance responses type, which are likely to be mediated by phyA'. The effects on protochlorophyllide biosynthesis and growth responses type were more pronounced in the phyB mutant than in the WT seedlings, which can be connected with the higher phyA' content in the phyB mutant and/or phyB interference with its action in WT seedlings. In the phyA mutant induction of Pchlide633 and Pchlide655 biosynthesis was observed under constant FR, indicating that phyC may be responsible for this effect.
Collapse
|
13
|
Correll MJ, Kiss JZ. The Roles of Phytochromes in Elongation and Gravitropism of Roots. ACTA ACUST UNITED AC 2005; 46:317-23. [PMID: 15695459 DOI: 10.1093/pcp/pci038] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Gravitropic orientation and the elongation of etiolated hypocotyls are both regulated by red light through the phytochrome family of photoreceptors. The importance of phytochromes A and B (phyA and phyB) in these red light responses has been established through studies using phy mutants. To identify the roles that phytochromes play in gravitropism and elongation of roots, we studied the effects of red light on root elongation and then compared the gravitropic curvature from roots of phytochrome mutants of Arabidopsis (phyA, phyB, phyD and phyAB) with wild type. We found that red light inhibits root elongation approximately 35% in etiolated seedlings and that this response is controlled by phytochromes. Roots from dark- and light-grown double mutants (phyAB) and light-grown phyB seedlings have reduced elongation rates compared with wild type. In addition, roots from these seedlings (dark/light-grown phyAB and light-grown phyB) have reduced rates of gravitropic curvature compared with wild type. These results demonstrate roles for phytochromes in regulating both the elongation and gravitropic curvature of roots.
Collapse
|